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Abstract

Learning to play and perform a music instrument is a complex cognitive task, requiring high conscious control and
coordination of an impressive number of cognitive and sensorimotor skills. For professional violinists, there exists a
physical connection with the instrument allowing the player to continuously manage the sound through sophisticated bowing
techniques and fine hand movements. Hence, it is not surprising that great importance in violin training is given to right
hand techniques, responsible for most of the sound produced. In this paper, our aim is to understand which motion features
can be used to efficiently and effectively distinguish a professional performance from that of a student without exploiting
sound-based features. We collected and made freely available a dataset consisting of motion capture recordings of different
violinists with different skills performing different exercises covering different pedagogical and technical aspects. We
then engineered peculiar features and trained a data-driven classifier to distinguish among two different levels of violinist
experience, namely beginners and experts. In accordance with the hierarchy present in the dataset, we study two different
scenarios: extrapolation with respect to different exercises and violinists. Furthermore, we study which features are the most
predictive ones of the quality of a violinist to corroborate the significance of the results. The results, both in terms of accuracy
and insight on the cognitive problem, support the proposal and support the use of the proposed technique as a support tool
for students to monitor and enhance their home study and practice.

Keywords Movement technology - Music education - Music learning technology - Multimodal interactive systems -
Machine learning - Feature engineering - Feature ranking - Model selection - Error estimation

Introduction

In music education, individual music practice is an essential
element to teach from the first period of study and
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that accompanies the music student and then the concert
musician throughout his musical career. In [1], researchers
indicate that expert music performers based their work
on a methodical rehearsals’ planning and a systematic
approach to problem identification, strategy selection,
and evaluation, namely all components of self-regulated
thinking. Consequently, in music education, the same
approach is used. Self-regulated learning is a cognitive
model that bases its efficiency on an effective planning
and execution, and reviewed strategies to enhance learning.
Moreover, this model also includes meta-strategies that
require knowledge of the nature and benefit of each
component of the learning process, and the ability to
understand when to use it. These strategies include but
are not limited to planning goals, mental rehearsal, and
error understandings. Practice is a core element of music
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education and career, either address individual or group
and it represents the way musicians learn outside the
classroom. It can be often believed that from a music lesson
it is possible to infer enough information to successfully
understand and face the issues that rehearsals may rise. In
literature, however, it can be easily found indication that
beginner music students do not demonstrate any systematic
plan during their individual practice sessions [2, 3].
Hence, often, no self-learning occurs, inhibiting the musical
development and progress of students [4]. Furthermore,
music students learn how to play music in specific contexts
(e.g., music classroom) in which they have a vast set of
resources to use, but at the same time, they also face
challenges in communication with teachers and a highly
competitive and stressful environment where to develop
their studies and careers. Moreover, the traditional education
model is resistant to change and difficult to adapt to
students’ needs, for example one challenge related to
traditional pedagogical method is that students have to
master the difficulties to manage a coherent perspective
between their proper proprioceptive feedback and teachers’
suggestions. Traditional music teaching, indeed, is mostly
based on a dyadic relationship between teacher and student,
in which the time lag between students’ performance and
teachers’ feedback makes the second to be dissociated from
the auditory perception of the student, as it can be read
in [5]. Since, often, the time in which this relation occurs
is limited to weekly lectures, this element is even more
important [6]. The long period of self-studying of students
can be harsh and lead to a solitary process that often
can also cause a high rate of abandonment [7]. In order
to best address these challenges of music learning, it is
particularly useful to reflect on reflective thinking and the
cognitive dimension of learning. In [8], the author analyzed
“how we think,” distinguishing four forms of thinking that
are naturally present in the human mind. The fourth type
highlighted was identified as reflective thinking, which
became a pillar of what we actually indicated as part of
metacognition, the self-regulated thinking [9]. Using the
words of [8]:

Reflection involves not simply a sequence of ideas, but
a consequence — a consecutive ordering in such a way
that each determines the next as its proper outcome,
while each outcome in turn leans back on, or refers to,
its predecessors. (Dewey 1933, p. 4)

Metacognition is generally understood as “thinking about
one’s own thoughts” [10], involving “active monitoring and
consequent regulation and orchestration” [11] to complete
a task. So, metacognition as part of the learning process
can help identify what students are thinking while they
engage in learning a task. In music educational curricula,
traditionally, only overt behaviors were outlined as a means

of assessment, e.g., the final performance of a given
repertoire. The evaluation in this way is based on students’
ability to perform correctly the repertoire, taking care
of pitches, rhythms, articulations, dynamics, accentuation,
expressive phrasing, and so on. Rarely, the student is asked
to demonstrate her/his musical understanding of music, or
how s/he came to be able to perform a given repertoire.
Nevertheless, it is important for students to be aware of
what they know and self-assess their learning process. This
important aspect of music teaching is often neglected and
students are used to practice something on their own without
understanding how to organize and evaluate their progress
while rehearsing alone [12]. Research demonstrated that
when students have the change to foster metacognitive
skills, learning outcomes improve [12, 13]. In music
education research, self-regulation strategies have been
investigated as well, given new insights on how students
learn and master music materials. Nielsen [14] studied
how two college musicians used self-regulation strategies
to monitor their learning outcomes. The author used
observation of practice behaviors, verbal reports during
practice session, and retrospective debriefing reports after
the practice session to analysis of self-learning. With the
same purpose of studying practice habits, Hallam [1]
collected interviews of master musicians and beginners.
The novice ones were also recorded playing a new piece
after 10 min of practice session. Both these authors in
their researchers identified students’ application of self-
learning strategies during their practice sessions. Also, the
frequent use of repetition of segments or single notes during
practice was reported. In [2], the authors examined practice
strategies used by beginner instrumental students, from 7 to
9 years old, over a 3-year period. The studies here briefly
presented provide useful insights into self-learning in music
practice. Nevertheless, one more aspect has to be taken
into account, investigating if and how music technology can
be efficiently applied to educational settings, meaning the
biomechanical aspect of music playing.

The biomechanical skills necessary for an accurate
and safety performance, indeed, are often limited to
subjective and vague perception and based on oral content
transmission between the teacher and the students [15].
It seems, then, to be reasonable to suppose that more
quantitative methodologies already tested and useful in
other contexts, such as in sport medicine, could be
applied and be useful also in understanding and teaching
biomechanical skills of music performance [16].

In particular, the background knowledge that can be
helpful in understanding motor skills needed in music
performance, includes the motor learning theory and
technology-based systems for analysis, monitoring, and
evaluating learning efficiency [17]. In motor learning
theories [18], three elements are presented as essential to
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success: the characterization of the skills to be acquired,
skills transfer between dissimilar systems, and skills
acquisition without injuries. For an acquisition of the
characterizing skills is necessary a scientific analysis
to identify motor patterns, such as the coordination of
neural and muscoloskeletal systems. Moreover, the motor
behaviors of professional players can be used as a reference
model to facilitate the understanding of the essential skills
to be transferred to music students. By directing attention
to specific motor behaviors, learners can assimilate in an
efficient and effective way the skills adequate to their
technique. Following these findings, an emerging literature
is more and more interested in investigating how full-
body and motion analysis technologies may enhance music
performance and learning outcomes, minimizing at the same
time the risk of injuries [19-21].

An emerging literature is focusing on how movement
analysis technologies can be used to inform music perfor-
mance by enhancing learning outcomes and preventing risk
of injuries [19, 22]. People are often prone to making mis-
takes during analysis or, possibly, when trying to establish
relationships between multiple features. Machine learning
(ML) can often be successfully applied to these problems to
enhance these cognitive processes.

In this study, we present a system able to perform auto-
mated classification of highly professional musicians’ and
students’ performance recordings, based on motion fea-
tures analysis of selected violin techniques and repertoire.
Our aim is to understand which motion features can be
exploited to efficiently distinguish a professional perfor-
mance and to use such information for real-time student
assistive technologies. In literature, many ML models are
able to classify information from time series and, in particu-
lar, from motion capture (MOCAP) data. These data provide
a representation of the complex spatio-temporal structure of
human motion. During a traditional MOCAP session, the
locations of characteristic parts on the human body such
as joints are recorded over time using appropriate devices.
In the literature, it is possible to find several ways to han-
dle MOCAP data. In particular, it is possible to identify
two families of approaches [23, 24]. The first one, compris-
ing traditional ML methods, needs an initial phase where
the features must be manually and carefully extracted from
the data [25-29]. The second family, which includes deep
learning methods, automatically learns both features and
models from the data [30, 31]. MOCAP data studies use
both families of methods based on the cardinality of the
sample size. For small cardinality dataset, deep learning—
based methods cannot be employed since they require a
huge amount of data to be reliable and to outperform tra-
ditional ML models with context-specific experience—based
engineered features. For this reason, in most studies, tradi-
tional ML techniques are employed. These techniques have
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already shown in the past to be successfully applied in the
field of cognitive computation, in many applications [32-
35]: from sequential learning [36] to sentiment analysis, as
well as data management [37] and classification [38, 39].

In this work, we exploited the recording of four
internationally renowned violin performers, selected by
the Royal College of Music of London, and three novice
students. The music selected encompassed 41 exercises,
chosen by teachers of the Royal College of Music of
London, from various sources of classical violin pedagogy
literature. The exercises focused on several techniques,
typical of a traditional pedagogical violin program, such
as: handling the instrument, technique of the right and left
hands, articulations studies, and repertoire pieces. Then,
we propose the combination of carefully crafted features
in combination with random forest (RF) to distinguish
between the two skill levels of the violinist. RF [40]
is considered a state-of-the-art learning algorithm for
classification purposes since it has shown to be one of
the most effective tools in this context [41, 42]. From a
cognitive point of view, RF implements the wisdom of
crowds principle, namely the aggregation of information
in groups, resulting in decisions that are often better than
could have been made by any single member of the group
[43—-45]. The main requirement behind this principle, which
yields better results, is that there should be significant
differences or diversity among the models. Many examples
of the use of this principle in cognitive computation exist
in the literature [44-50]. In accordance with the intrinsic
hierarchy present in the data set, we will study two different
scenarios: extrapolation with respect to different exercises
and violinists. Furthermore, we will study which features
are the most predictive ones of the quality of a violinist to
corroborate the significance of the results. Results, both in
terms of accuracy and insight on the problem, will support
the proposal and the use of the proposed technique as a
support tool for students to monitor and enhance their home
study and practice.

The rest of the paper is organized as follows. The
description of the problem and related data is reported in
“Data Description”. The description of the proposed data-
driven methodology is presented in “Methods.” The results
of applying the methods presented in “Methods” on the
problem described in “Data Description” are reported in
“Experimental Results”. Finally, “Conclusions” concludes
the paper.

Data Description

The data employed in the present work were collected dur-
ing H2020 ICT-TELMI Project!. The project studied how

Uhttp://telmi.upf.edu/
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Fig.1 The violinist MOCAP
setup: markers are placed over
subject, bow, and violin

we learn violin playing and how technology should be
designed to effectively support and enhance music instru-
ment learning outcomes. For this reason, the collected
corpus of data was designed as a collection of exercises
to follow the learning path of classical violin conserva-
toire programs. It included several sources of data: MOCAP
of the performer, violin, and bow (see Fig. 1), ambient
and instrument audio and video, physiological data (elec-
tromyography) captured with Myo sensor?, and Kinect data.
The recordings took place at the Casa Paganini - InfoMus
research center of the University of Genova’.

The recorded material was post-processed and uploaded
into the repoVizz repository and made publicly available*.
For a comprehensive description of the entire TELMI
multimodal archive, refer to [51].

As previously mentioned, we recorded four internation-
ally famous soloists, selected by the Royal College of Music
of London, and three beginner violinists. For what con-
cerns the chosen literature, modern violin students have
hundreds of years of pedagogical material at their disposal,
much of which is freely available online, via school and
public libraries, and through their teachers. This explains
the reason why the music selected for the TELMI project
encompassed different exercises, chosen by teachers of the
Royal College of Music of London, from various sources of
classical violin pedagogy literature. The exercises focused
on different techniques concerning the following: handling
the instrument, technique of the right and left hands, articu-
lations study, and repertoire pieces. The exercises take three
forms: (1) those sourced from the standard published cat-
alog of exercises, including those of Schradieck, §evéﬂ<,
and Kreutzer, which the survey the TELMI consortium did
during the project found to be the most popular; (2) those
sourced or adapted from the Associated Board of the Royal
Schools of Music (ABRSM) examination syllabus; and (3)

Zhttps://support.getmyo.com/hc/en-us/articles/
202648103-Myo-Gesture-Control- Armband-tech-specs

3www.casapaganini.org

“http://telmi.upf.edu/opendatabase/

customized exercises developed by Madeleine Mitchell to
address specific techniques with specific focus on the capa-
bilities offered by non-notated feedback (e.g., the bowing
exercises). The use of both custom and pre-existing exer-
cises was deliberate. Due to the national and international
popularity of the ABRSM system, a subset of TELMI exer-
cises was drawn from the scales and exercises for Grades 6
to 8 to represent the intermediate level of technical devel-
opment and allow students to prepare for exams in which
they may already be involved. Intonation, or tuning of the
individual notes, is a core technique of violin playing. This
skill will be tested in every exercise that involves a notated
score, and especially in the scales for the beginning and
intermediate students. As a supplement to this material,
one of the most popular exercises comes from Schradieck’s
School of Violin Technics (1899), and in particular the first
exercise from Book I: Exercises for Promoting Dexterity
in the Various Positions. This exercise comprises a series
of repeating scale patterns designed for careful and even
control of note production. For shifting of the left hand
between the seven positions on the neck of the violin, Yost’s
Exercises for Changes of Position (1928) was chosen. This
collection systematically tests changes of every interval on
every possible shift between the seven positions (1st to 2nd,
1, etc.) on each of the four strings. The transition from one
string to the next requires a rotational motion of the bow
in the right hand and shift of the fingers in the left. A clas-
sic exercise to develop this technique is Kreutzer’s String
Crossing from Etude No. 13 for Solo Violin. Kreutzer’s
Etude No. 14 for Solo Violin was chosen as a represen-
tative of the trill technique exercise. For the articulation
exercises, the TELMI repertoire list proposed Martelé from
Kreutzer’s Etude No. 7 Sautillé technique is emphasized in
several of Sev&ik’s Violin Studies, Op. 3. For TELMI, Vari-
ation No. 16 was chosen. Spiccato articulation is again a
technique emphasized in several of Sev&ik’s Violin Stud-
ies, Op. 3. For TELMI, Variation No. 34 was chosen. For
the Staccato was selected Kreutzer, Etude N. 4. Finally, for
the Arpeggios Flesch’s System of Scales was chosen and as
repertoire pieces one piece from Romantic literature and one

@ Springer
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Table 1 Description of the available dataset

Violinists Exercises
Experts 11 (3 scales, 4 repertoires, and 4 techniques)
Beginners 3 8 (3 scales, 3 repertoires, and 2 techniques)
Total 7 19 (6 scales, 7 repertoires, and 6 techniques)

from a contemporary composer were chosen, namely they
were Elgar’s (1889) Salut d’Amour, Op. 12, and Michael
Nymann’s (2007) Taking it as Read.

From this archive of data, we selected one scale, one
study, and one repertoire piece, namely a ABRSM Scale
in G Major played detaché on 3 octaves, String Crossing
from Kreutzer Violin Study op.13, Salut d’Amour, Op.12
by Edgar, to start to investigate automatic classification
from motion capture data. On this data, we computed 14
low-level features using the EyesWeb XMI platform® [52].
The computed features are as follows: mean shoulders’
velocity, shoulder low back asymmetry, upper body
kinetic energy, left/right, bow—violin incidence, distance
low/middle/upper bow-violin, hand—violin left/right head
inclination, and left/right wrist roundness [21]. These
features fully describe, based on the knowledge of expert
players and teachers, the movements of the violinists. The
final dataset included the 14 raw features described above
of the 3 exercises played by each of the violinists. In
particular, 7 violinists are recorded, of which 4 are experts
and 3 are beginners. Nineteen files were made available
containing information on the exercise performed by each
musician (one exercise per class was missing). The dataset
is summarized in Table 1.

In order to avoid noise due to the initial and final
moments of the recording where musicians do not play, only
timestamps where a piece of music is played are chosen.

Methods

The problem described in the previous sections can be easily
mapped into a binary classification problem [23]. Let X C
R be the input space (namely the features engineered from
the different measurements), consisting of d features (see
“Features Engineering”), and let )V = {0, 1} (namely expert
and beginner) be the output space. Let D,, = {(X1, Y1), ...,
(X,,Y,)}, where X; e XYand Y; € Y Vi e {1, ---, n}, be
a sequence of n € N* samples drawn from X x ). Let us
consider a model (function) f : X — ) chosen from a set
F of possible hypotheses. An algorithm <3 : D, x F — f
characterized by its hyperparameters 7{ selects a model
inside a set of possible ones based on the available dataset.

>http://www.infomus.org/eyesweb_eng.php
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Note that many algorithms for solving binary classification
problems exist in literature [23] but random forest (RF) has
shown to be one of the most powerful ones [40—42] (see
“Random Forests” and Appendix A). The error of f in
approximating P{Y | X} is measured by a prescribed metric
M : F — R. Note also that many different metrics are
available in literature for binary classification which may
provide insights on the performance of the model [53] but
the confusion matrix together with the accuracy (since in
our case classes are balanced) is surely the most informative
ones. In order to tune the performance of the 2%, namely
to select the best set of hyperparameters, and to estimate
the performance of the final model according to the desired
metrics, model selection (MS) and error estimation (EE)
phases need to be performed [54] (see “Model Selection
and Error Estimation”). Moreover, in order to understand,
from a cognitive point of view, how the algorithm exploits
the derived features to make a prediction, a feature ranking
phase is also performed (see “Feature Ranking”). The
entire violinist skill-level classification process pipeline is
as shown in Fig. 2.

Features Engineering

In this section, we describe how the features have been
extracted and engineered from the raw data described in
“Data Description”.

The time series of the different measurements (left
head inclination, left wrist roundness, etc.) were sampled
in fixed-width sliding windows of 10 s. One second in
the original time series acquired from MOCAP contains
1000 rows. Then, the fixed-width sliding windows contain
information about 1000 rows times 10 s for a total of
10,000 rows, which is sufficient to capture cycles in
human activities. Note that the fixed-width sliding windows
have 50% of overlap in time. This heuristic has been
already successfully employed in many different works in
literature [55-57]. In order to analyze clear data and avoid
noise due to the initial and final moments of recording,
only timestamps where a piece of music is played are
chosen. From each sampled window, a vector of features
was obtained by computing standard measures previously
employed in literature to describe human actions [57-
60] such as the mean, the signal-pair correlation, and the
signal magnitude area for both the time and frequency
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Fig.2 The violinist skill-level
classification pipeline

Features
Engineering

domains (see Table 2). The fast Fourier transform was
employed to find the frequency components for each
window. A new set of features was also employed in
order to improve the learning performance, including energy
of different frequency bands, frequency skewness, and
frequency kurtosis. Table 2 contains the list of all the
measures applied to the time and frequency domain signals.
This results in a total of 332 features. The resulting dataset
has been made freely available for the research community®.

Random Forests

A powerful algorithm, both in terms of theoretical properties
and practical effectiveness [41, 42], for classification is RF
developed in [40] for the first time. In order to be able
to fully understand RF, we need to recall how a binary
decision tree (DT) [61] is defined and constructed. A binary
DT for classification is a recursive binary three-structure
in which a node represents a check on a particular feature,
each branch defines the outcome of the check, and the
leaf nodes represent the final classification. A particular
path of exploration from the root of the tree to one of its
leaves represents a classification rule. Based on a recursive
schema, a DT is grown until it reaches a desired depth n,.
Each node of the DT (both root and nodes) is constructed
by choosing the features and the check that most effectively
separates the data satisfying the partial rule into two subsets
based on the information gain (or possible other metrics like
the classification accuracy). Given this definition of DT, it
is then possible to understand RF and the learning phase of
each of the n; DT which composes the forest. From D,
a bootstrap sample (sample with replacement) D’ of ny, is
extracted. Then, a DT is learned based on D’, but the best
check/cut is selected among a subset of n, features over the
possible n s features randomly chosen at each node. ng is
set to infinite, namely the DT is grown until every sample of
D' is correctly classified. In the forward phase, namely the
phase in which a previously unseen X needs to be labeled,

Shttps://www.dropbox.com/sh/uwdvihjfyeOuw13/AAD_
IXsn-HsH5JOPZ9dGgtK4a

Features
Ranking

each DT composing the RF is exploited to classify X; the
final classification is taken with majority vote. Note that
np, Ny, ng, and n; are the hyperparameters of the RF. If
np = n, N, = Jd, and ng = 00, we obtain the original
RF formulation [40], where n; is usually chosen to trade-off
accuracy and efficiency [62] since the larger it is the better.

The Metrics

For what concerns the metrics M(f) exploited for
evaluating the performance of a model f learned from
the data based on the methods described above, we have
to recall that many different metrics are available in
literature [53]. In this work, we will report just the most
common ones. In order to define them, let us first consider
a subset of the available data 7;, also called test set, coming
from p but different form D,, since the data that have been
used to learn f should be different from the ones exploited

Table 2 List of measures for computing feature vectors

Function Description

mean Mean value

var Variance

mad Median absolute value

max Largest value in array

min Smallest value in array

sma Signal magnitude area

energy Average sum of squares

iqr Interquantile range

entropy Signal entropy

correlation Correlation coefficient

kurtosis Signal kurtosis

skewness Signal skewness

maxFreqlnd Largest frequency component
argMaxFreqInd Index largest frequency component
meanFreq Frequency signal weighted average
skewnessFreq Frequency signal skewness
kurtosisFreq Frequency signal kurtosis
ampSprec Amplitude spectrum of the frequency signal
angle Phase angle of the frequency signal

@ Springer
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to evaluate its performance so to avoid overfitting [54].
Let us define the element in the confusion matrix, the true
positive (TP(f) = Z(X,Y)eTm:Yzl 1{f(X) = 1}), the true
negative (TN(f) = Z(X,Y)e?j,l:Y:O 1{f(X) = 0}), the false
positive (FP(f) = Z(X,Y)en:Y:() 1{f(X) = 1}), and the
false negative (FN(f) = Z(X,Y)e’/Z,,:Y:l 1{f(X) = 0}), on
this data. Then, we can also define the accuracy as:

TP(f) + TN(f)

aceuracy(f) = T iy TENG) + TN <Py
the precision as

o TP()
precision( f) = TP L FP() (2)
the recall as
recall(f) = TP(/) 3

TP(f)+ FN(f)’
and the area under the receiver operating characteristic
curve (ROC-AUC), which is the area under the T P( f) rate
against the F P ( f) rate curve.

Model Selection and Error Estimation

MS and EE face and address the problem of tuning and
assessing the performance of a learning algorithm [54]. In
this work, we will exploit the resampling techniques which
leverage on a simple idea: D, is resampled many (n,) times,
with or without replacement, and three independent datasets
called learning, validation, and test sets, respectively Elr ,
Vi, and 7, with r € {1,.--,n,} are defined. Note that
LNy, =0, LiNnT = o V,NT" = @, and
LUV UT =Dy, forallr e {l,---,n.}.

Then, to select the optimal configuration of hyperpa-
rameters H of the algorithm 27, in a set of possible ones
9 = {H1, Ha, - - - }, namely to perform the MS phase, the
following procedure has to be applied:

H* o argmingen Y M(H(L]), V), )

where o7 (L]) is a model learned by ./ with the
hyperparameters # based on the the data in £} and where
M(f, V) is a desired metric. Since the data in L] are
independent from the ones in V], the intuition is that
‘H* should be the configuration of hyperparameters which
allows achieving optimal performance, according to the
desired metric, on a set of data that is independent, namely
previously unseen, with respect to the training set.

Then, in order to evaluate the performance of the
optimal model, namely the model learned with the optimal
hyperparameters based on the available data, whichis f7, =
@/« (Dy) or, in other words, to perform the EE phase, the
following procedure has to be applied:

r

1 n
M) =—3 " ML UV, T). )

@ Springer

Since the data in £; U V; are independent from the ones in
T, M(at3+(L] U Vy) will be an unbiased estimator of the
true performance of the final model [54].

In this paper, the complete k-fold cross-validation
is exploited [54, 63] since, together with bootstrap, it
represents a state-of-the-art approach to the problem of MD
and EE. Then, we need to set n, < (7) (";%), I=(k—2)%,
v = 7,and t = 7 and the resampling must be done without
replacement [63].

Feature Ranking

Once a model is built, namely we perform the learning,
MS, and EE phases, it is often required to understand
how these models exploit, combine, and extract information
in order to understand if the learning process has also
cognitive meaning, namely it is able to capture the
underlying phenomena and does not just capture spurious
correlations [64, 65] by comparing the knowledge of the
experts with the information learned by the models. One
way to reach this goal is to perform the feature ranking
(FR) phase which allows detecting if the importance of
those features that are known to be relevant from a physical
perspective is also appropriately taken into account, namely
ranked as highly important, by the learned models. The
failure of the learned model to properly account for the
features, which are relevant from a cognitive point of view,
might indicate poor quality in the measurements, poor
learning ability of the model, or spurious correlations. FR
therefore represents a fundamental phase of model checking
and verification, since it should generate results consistent
with the available knowledge of the phenomena under exam
provided by the experts.

FR methods based on RF are one of the most effective
FR techniques as shown in many researches [66, 67].
Several measures and approaches are available for FR in
RF. One method is based on the permutation test combined
with the mean decrease in accuracy (MDA) metric, where
the importance of each feature is estimated by removing
the association between the feature and outcome of the
model. For this purpose, the values of the features are
randomly permuted [68] and the resulting increase in error
is measured. This way also the influence of the correlated
features is also removed. Note that, in our case, as feature we
do not intend a particular engineered feature but a particular
raw feature (left head inclination, left wrist roundness,
etc.), namely all the the features coming from a particular
raw feature. More rigorously, for every DT, two main
quantities are evaluated: the error on the out-of-bag samples
as they are used during prediction and the error on the
out-of-bag samples after randomly permuting the values
of the features coming from a particular raw feature. The
difference between these two values are then averaged
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over the different trees in the ensemble and this quantity
represents the raw importance score for the variable under
exam.

Scenarios

In our experiments, two modelization scenarios have been
studied in order to understand the extrapolation capability
of the data-driven models:

— Leave One Person Out (LOPO): In this scenario, the
model has been trained with all the subjects except one
that will be exploited to test the resulting model;

— Leave One Exercise Out (LOEO): In this scenario, the
model has been trained with all the the exercises except
one that will be exploited to test the resulting model;

Basically the two scenarios just differ in the definitions of
L;, Vy, and T;, that are the subset of data exploited for
building, tuning, and testing the models.

In the LOEO scenario, £;, V,, and 7, have been created
by randomly selecting data from one exercise to be inserted
in 7;, from another exercise to be inserted in V,, and from
the remaining ones to be inserted into £;.

For the LOPO scenario, we have the same procedure of
the LOEO scenario but where the people are considered
instead of the exercises.

Experimental Results

This section reports the results of exploiting the method-
ology presented in “Methods” on the problem described
in “Data Description” using the data described in the very
same section. In all the experiments, we set: n, = 100, n, =
1000, ngy = oo, np = n, and n, € { Yy, JIf, 3/\4/@}.
Experts (violinists 1 to 4) are labeled with ¥ = 0 and
beginners (violinists 5 to 7) with ¥ = 1.

Recognition Performances for LOEO and LOPO

Let us present first the recognition performance for the
LOPO scenario. Table 3 reports the accuracy on each of
the violinists, the overall accuracy, precision, recall, ROC,
and ROC-AUC, and the overall confusion matrix. Table 3a
shows that some violinists are easier to classify as beginner
or experts with respect to the others. Nonetheless, on
average, the recognition results are quite high (>70%).
More in detail, violinists 1, 2, and 5 are mostly correctly
classified having a mean accuracy score very close to 100%.
Other violinists, such as violinists 3 and 6, are seldom
wrongly classified. Violinists 4 and 7, instead, are mostly
wrongly classified. In “A Comment on the Recognition
Performances”, we will give more insights on the reason of

this behavior. The confusion matrix of Table 3b is reported
for completeness.

Let us present now the recognition performance for the
LOEO scenario. Table 4a, b, ¢, and d are the counterparts,
for the LOEO scenario, of Table 3a, b, ¢, and d for the LOPO
scenario. As one can expect, recognition accuracies in the
LOEO scenario are higher than the LOPO ones. In fact, the
training phase of the LOEO scenario has more information
available with respect to the LOPO one, namely we have
to predict if an exercise was performed by an expert or
beginner violinist but having the same violinists play other
exercises. In particular, it is possible to notice how the scale
exercises of violinist 3 are very hard to correctly predict
while, for the other two exercises, we obtain a very high
accuracy. The expert violinist 4 is easy to be classified when
analyzing the scale exercise but it is very hard to distinguish
him from beginners in the other two exercises. The accuracy
of the scale exercise of violinist 6, instead, has a wide
variance. Violinist 7 accuracy predictions are improved with
respect to the LOPO scenario but low accuracy scores are
achieved in the technique exercise.

A Comment on the Recognition Performances

As we have just observed in “Recognition Performances for
LOEO and LOPO”, some violinists are much more difficult
to be correctly classified than others. Experts violinists
1 and 2 are always well classified as expert musicians.
The same happens for violinist 5 who is mostly correctly
classified as a beginner musician. Instead, we have a very
low accuracy for violinist 4 and for violinist 7 in both
LOPO and LOEOQO scenarios. In order to understand these
results, we performed a further analysis. The latter consists
in observing the original video data with an expert checking
what and how the violinist is doing when the algorithm
correctly or wrongly classifies the specific violinist.

From the videos, it is possible to observe that the two
experts violinists 1 and 2 are often in the same position,
with small movements of the pelvis, and with controlled
breathing. This behavior led the classifier to perceive
that expert violin players have this particular style in the
execution of the tracks. The beginner violinist 5, instead, has
some hesitations and incertitude during the performance.

From the videos, it is possible to see also that expert
violinists 3 and 4 have a different style with respect to
the other experts. In fact, they provide much interpretation
in their performance, accentuated body sway, and strong
breaths exploited to emphasize the beginning of the musical
verse. Moreover, violinist 4 has a very peculiar style: he
goes up and down on his toes with noticeable vibrations
of the head. Violinist 7, on the other side, is a really novel
violin player when compared with the other 2 beginners.
Difficulties on its prediction are due to the fact that he is
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Table 3 (a) Accuracy

Exp/Beg
0

(b) Average confusion matrix (in %) between all exercises and violinists

Prediction

(c) Average accuracy (%), precision (%), recall (%), and ROC-AUC between all exercises and violinists

Measure

Accuracy
Precision
Recall
ROC-AUC

(d) Average ROC between all exercises and violinists

1.0 2
0.9
0.8 &7
0.7 77

0.6 P

0.5 7

0.4 P4

0.3 27

0.2 s
0.1 7

TP Rate

0-80 01 02 03 04 05 06 0.7 0.8 0.9 1.0

FP Rate

Violinist mean std min max

1 100.00 0.00 100.00 100.00
2 99.22 0.86 97.10 100.00
3 81.72 4.40 72.00 90.00
4 48.33 6.37 31.48 64.81
5 98.05 2.40 89.19 100.00
6 75.75 9.11 54.16 95.83
7 10.36 5.44 3.39 32.20
Mean 73.34 3.22 63.31 83.27
Actual

TP 50.12 FP 10.32

FN 17.92 TN 21.64

mean std min max

73.34 3.22 63.31 83.27

67.72 2.80 61.02 74.31

54.69 3.70 45.83 63.89

0.69 0.03 0.62 0.78

concerned about playing the song correctly. From the video,
in fact, it is possible to observe how much he is focused
on the tracks’ execution, with no presence of body sway,
with controlled breathing, and with small neck and pelvis
movements.

Therefore, the final classifier captures fragility, uncer-
tainties, and hesitations in movements, associating these
phenomena with a class of less experienced musicians.
Although this is reasonable, the algorithm presents diffi-
culties in understanding what are the essential properties in
the execution of a repertoire piece such as, for example,
breathing and the emphasis on the strong beats of the music

@ Springer

piece—characteristics that distinguish a more experienced
musician. Despite this, an analysis without including sound
information can also induce an expert user to not understand
the difference between these actions. These differences very
well explain the mistakes of the algorithm and the videos
have been made freely available’ for the convenience of the
reader.

Further considerations that can be made observing
Table 4a are that there is not an exercise type more

7https://www.dropbox.com/sh/uwdvihjfyeOuw13/AAD_
1Xsn-HsH5JOPZ9dGgtK4a
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Table4 (a) LOEO scenario

Exp/Beg
0

(b) Average confusion matrix (in %) between all exercises and violinists

Prediction

Violinist

1

Mean

Actual

Exercise

Technique
Repertoire
Technique
Scale

Repertoire
Technique
Scale

Repertoire
Scale

Technique

Repertoire

Scale
Repertoire
Technique
Scale
Repertoire
Scale
Technique
Repertoire

TP 50.85 FP 9.58
FN /1.13 TN 28.44

(c) Average accuracy (%), precision (%), recall (%), and ROC-AUC between all exercises and violinists

Measure
Accuracy
Precision
Recall
ROC-AUC

(d) Average ROC between all exercises and violinists

1.0
0.9
0.8
0.7
0.6
0.5
F 0.4

0.3

0.2

0.1

(]
)
©
(a'd

080 01 02 03 04 05 06 0.7 0.8 0.9 1.0

FP Rate

mean
80.16
74.80
71.87
0.86

std

7.53
2.46
4.07
0.02

mean

100.00
100.00
100.00
91.00
100.00
100.00
50.41
99.93
97.00
52.71
33.63

98.57
100.00
100.00
85.00
81.57
60.60
26.61
46.11
80.16

min
66.34
68.09
64.58
0.82

std

0.00
0.00
0.00
19.31
0.00
0.00
12.99
0.48
5.41
15.25
6.67

4.30
0.00
0.00
23.02
7.67
14.89
8.29
14.15
7.53

max
91.60
79.59
81.25
0.90

min
100.00
100.00
100.00
50.00
100.00
100.00
11.76
96.55
80.00
17.65
14.81

85.71
100.00
100.00
50.00
56.67
40.00
0.00
19.44
64.34

max

100.00
100.00
100.00
100.00
100.00
100.00
82.35

100.00
100.00
82.35

51.85

100.00
100.00
100.00
100.00
93.33
100.00
50.00
80.56
91.60

@ Springer
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difficult than others to predict correctly or, in other
words, to better distinguish experts or beginners. In fact,
the accuracies achieved considering only one exercise—
technique, repertoire, or scales—are significant enough
to allow us to conclude that none of these is better to
lead to a more precise classification between experts and
beginners. This may seem counter-intuitive because the
analysis of the most technical tracks should be alone able
to allow this distinction. However, since the analysis only
includes movement features, this observation is no longer so
restrictive and all types of exercises have the same weight in
the final prediction.

Feature Ranking

In both LOPO and LOEO scenarios, we trained our model
with features extracted and engineered from the 14 raw
data sources discussed in “Data Description”. In order
to understand which feature is more relevant in the skill
classification of violin players, we applied the method
discussed in “Feature Ranking”. Table 5 reports the results
of this process and it is easy to notice that the upper
body kinetic energy is the most informative feature for our
model. This result makes sense since this feature contains
information on the whole kinetic part of the upper body,
incorporating a lot of information inside it (see “Data
Description” for detail). The remaining features are more
and more related to parts of the body far away with
respect to the influence on the violin, as expected from
the comments we reported in the introduction. Observing
Table 5, another interesting consideration can be drawn.
The left part of the body provides less information with
respect to the right one. For example, the right wrist

Table 5 Feature ranking of the original raw features (from top to least
importance)

Rank Raw feature

Upper body kinetic energy
Left shoulder height

dist lower bow violin

Mean shoulder’s velocity
Right head inclination
Shoulder low back asymmetry
Right wrist roundness

Right shoulder height

dist upper bow violin

O 0 9 N kWD~

—
(=)

dist middle bow violin

—
—_

Bow-violin incidence

—
N

Hand-violin incidence

—_
w

Left wrist roundness

—_
~

Left head inclination

@ Springer

roundness is more informative than the left wrist roundness.
Furthermore, this happens for all features except the left
shoulder height. This fact is quite reasonable since the right
part of the body is the one involved with the movement
of the bow, namely the most dynamic part, while the left
side is the one more responsible for the quality of the
sound but it has less dynamic. In fact, the bow—violin
incidence, which provides further information on the angle
that is formed between the two parts of the instrument
and has low dynamic but large effect on the quality of
the sound, is not considered very important. Furthermore,
bow-violin incidence is much more music-dependent than
skills-dependent, as it is directly affected by the notes that
have to be played. Since in this work we try to understand
the violin players’ skill level based on their movements,
completely ignoring the sound, it is quite reasonable that
parts of the body with higher dynamic are more easy to
exploit for this scope with respect to the ones with reduced
dynamic. These results support our proposal indicating that
the model is not just leaning spurious correlation but is
actually understanding the process under exam. A further
consideration is that the feature ranking highlights features
more sensible to fragilities, uncertainties, and hesitations.
This corroborates the considerations discussed in Section 1
on the appropriateness of the algorithm.

Conclusions

In this work, we present a computational approach applied
to music education. In particular, a method for classifying
the skill level of 7 violinists starting, from data collected
from their performances in three exercises properly chosen,
in order to better distinguish skill and familiarity in playing
the musical instrument. We based our approach on the state-
of-art of music education literature and cognitive theories
on self-learning, metacognition, and motor learning theory.
This approach lets us address the use of a computational
approach in a real context. We exploited a state-of-the-art
machine learning pipeline including a feature engineering
phase guided by the experts of the subject combined with
random forests, a state of the art algorithm for classification.
Exploiting the intrinsic hierarchy in the dataset, we
considered two different extrapolation scenarios, namely on
exercises and on violinists, to understand the potentiality of
the method. Results show the potentiality of the method but
also the necessity of increasing the cardinality of the dataset
in terms of both exercises and violinists. In fact, even if
the method works as expected and perceives the peculiar
characteristics of each exercise and violinist, it sometimes
fails and gets deceived by the violinists’ interpretation or
focus. We observed how this difficulty is due to a different
way to play the musical instrument by each player or simply
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Table 6 Average accuracy (%), precision (%), recall (%), and ROC-AUC between all exercises and violinists for the LOPO and LOEO scenarios

and for different models

Scenario Method Accuracy (%) Precision (%) Recall (%) ROC-AUC

LOPO RF 7334 £3.22 67.72 £2.80 54.69 £ 3.70 0.69 £0.03
Naive Bayes 68.34 £4.34 59.98 £+ 4.31 51.98 £4.92 0.61 £0.05
SVM 70.14 £ 3.98 63.22 +£3.42 52.12 £ 4.13 0.64 + 0.04
Lasso 69.38 £ 4.74 60.19 £+ 4.31 50.99 £+ 4.35 0.62 £0.05
GSVM 71.54 +£3.56 65.98 £+ 3.38 53.03 £3.91 0.67 £0.03
NN 70.65 £ 3.67 64.01 £ 3.85 52.61 £4.12 0.65 + 0.04

LOEO RF 80.16 £ 7.53 74.80 £+ 2.46 71.87 £4.07 0.86 + 0.02
Naive Bayes 74.04 £9.12 66.87 £ 4.15 62.15 £ 5.61 0.78 £0.05
SVM 76.01 £ 8.78 67.82 £ 4.01 64.11 £5.32 0.80 + 0.04
Lasso 75.64 £ 8.92 67.12 £ 3.95 63.03 £5.42 0.79 £ 0.04
GSVM 78.96 £+ 8.93 69.98 £+ 3.17 66.75 £5.01 0.82 + 0.04
NN 77.01 £9.03 68.12 £+ 3.87 65.10 £5.63 0.81 £0.03

by atypical movements in the execution. Moreover, a bigger
dataset can allow us to better capture these peculiarities in
movements of each person, improving the final prediction
and providing knowledge about the motor signature of
each individual. Increasing the cardinality would also allow
the use of more sophisticated tools like the deep learning
models able to extract automatically the best set of features
needed to lead this classification task.

Nevertheless, this is a first step forward in understand
which motion features can be exploited to efficiently
distinguish a professional performance and to use such
information for real-time student assistive technologies.
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Appendix 1: Comparison of the Accuracy of
Different Algorithms

For completeness, in Table 6, we reported, for both LOPO
and LOEO scenarios, the accuracy, the precision, the recall,
and the ROC-AUC of different models to show that RF is
the best performing algorithm for this problem. In particular,
we tested (using the same MS and EE procedures described
previously for RF): naive Bayes, linear support vector
machines (SVM), SVM with Gaussian kernel (GSVM),
lasso, and a multilayer perceptron network trained with
stochastic gradient descent (NN). For this purpose, we
exploited the R® package care’ which contains all the
previous models: Table 6 shows how RF overperforms all
other methods.

8https://www.r-project.org/
“http://topepo.github.io/caret/index.htm]
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