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Abstract
Since electroencephalogram (EEG) signals can directly provide information on changes in brain activity due to behaviour 
changes, how to assess visual discomfort through EEG signals attracts researchers’ attention. However, previous assess-
ments based on time-domain EEG features lack sufficient consideration of the dependence among EEG signals, which may 
affect the discrimination to visual discomfort. Although the copula model can explore the dependence among variables, 
the EEG-based copula models still have the following deficiencies: (1) the methods ignoring the fine-grained information 
hidden in EEG signals could make the estimated marginal density function improper, and (2) the approaches neglecting the 
pseudo-correlation among data may inappropriately estimate the correlation matrix parameter of the copula density function. 
The mixture kernel density estimation (MKDE) and remedied correlation matrix (RCM) on the EEG-based copula model 
are proposed to mitigate the mentioned shortcomings. The simulation experiments show that MKDE can not only better 
estimate the marginal density function but also explore fine-grained information. The RCM can be closer to the real cor-
relation matrix parameter. With the favourable quality of the proposed EEG-based model, it is used to extract time-domain 
EEG features to assess visual discomfort further. To our best knowledge, the extracted features present better discrimination 
to visual discomfort compared with the features extracted by the state-of-the-art method.

Keywords  Mixture kernel density function · Remedied correlation matrix · EEG-based copula model · Time-domain EEG 
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Introduction

Stereoscopic displays are prevalent in our daily lives, such 
as entertainment [1, 2], education [3] and medical treatment 
[4]. However, the further development of stereoscopic dis-
plays is limited by visual discomfort induced by stereoscopic 
devices [5]. The electroencephalogram (EEG) signals can 
not only directly provide real-time brain activities, but also 

have high-quality temporal resolution. Therefore, research-
ers try to assess visual discomfort through EEG signals and 
find the features closely related to visual discomfort [6–8].

The assessment quality highly depends on the extracted 
features from EEG signals. According to the research of 
Monteiro et al. [9], the methods used to extract the features 
in the field of assessing discomfort include power spectral 
density (PSD) [10–12], statistical analysis, entropy meas-
ures, etc. For methods to extract the time-domain EEG 
features, statistical analysis is generally used with event-
related potential (ERP) signals [13, 14], calculated from 
EEG signals. However, the strictly millisecond duration of 
the target stimulus in the ERP experiment may not induce 
visual discomfort. Thereby, researchers turn to other meth-
ods. Recently, Peng et al. [15] have proposed a multiscale 
entropy, a state-of-the-art method, to extract features highly 
related to visual discomfort caused by stimuli with different 
flickering frequencies. With support vector machine (SVM) 
as the classifier, the extracted features are more sensitive 
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to visual discomfort than the features extracted by sample 
entropy that is one of the conventional entropy measures.

Admittedly, the current methods have made progress in 
extracting the time-domain EEG features related to visual 
discomfort, whereas these methods ignoring the inter-signal 
dependence may affect the discrimination of existing fea-
tures for visual discomfort. Notably, the copula model is 
considered powerful to explore the dependence among vari-
ables, including the structure of dependence. It connects the 
marginal density functions with the copula density function 
to restore the joint density function that implicitly presents 
the dependence among variables [16]. Because the copula 
model can revive the dependence without assumptions of 
distributions or constraints on variables, it has been widely 
used in analysing the times series that being with strong 
dependence or complex dependence structures [17–19]. It 
is known that EEG signals from different channels could 
present complex dependence. Inspired by it, some research-
ers try to introduce the copula model in the analysis of EEG 
signals.

The key to establishing the EEG-based copula model 
(copula model for analysing EEG signals) is to estimate the 
marginal density functions and the parameters of the copula 
density function. Specifically, Iyengar et al. [20] used the 
EEG-based copula model to quantify the synchrony of EEG 
signals for assisting in the early diagnosis of Alzheimer’s 
disease, in terms of the high correlation among synchronized 
EEG signals. The multi-information and Kullback–Leibler 
(KL) divergence were introduced to estimate the correlation 
matrix and the degree of freedom parameters of the copula 
density function by finding the narrowest gap between the 
real and the estimated copula density function. The accu-
racy of the proposed EEG-based copula model to early 
diagnose Alzheimer’s disease presented 2% higher than 
conventional models. Qian et al. [21] proposed an EEG-
based copula Bayesian classifier to detect drowsiness during 
the short daytime nap, according to drowsiness signals pre-
senting the different dependence from the alertness signals. 
The kernel density estimation (KDE) and model selection 
criteria (Akaike information criterion (AIC) and Bayesian 
information criterion (BIC)) were used separately to esti-
mate marginal density functions and the correlation matrix 
parameter of the copula density function. The accuracy of 
the proposed classifier for drowsiness detection was 94.3%, 
which performed best among the list models. Fontaine 
et al. [22] adopted the EEG-based copula model to probe 
the changepoints of EEG signals for analysing the impact 
of stroke on the local field potential of rats, based on that 
the dependence of pre-changepoints would be different from 
the post-changepoints. The BIC was introduced to estimate 
marginal density functions. The model selection criteria 
(AIC, BIC, and correlation information criterion (CIC)) 
and Kullback–Leibler information criteria (KLIC) were 

applied to estimate the correlation matrix and the degrees 
of freedom parameters of the copula density function. The 
Kolmogorov–Smirnov test showed that the parameters of 
EEG-based copula on pre-changepoints were significantly 
different from that on post-changepoints. In other words, 
the proposed model could probe changepoints in the local 
field potentials of rats.

According to the previous studies, the EEG-based copula 
model is only in its infancy. Therefore, there is still room 
to improve the EEG-based copula model. For example, 
the KDE used to estimate marginal density functions with 
overall data may ignore potentially fine-grained information, 
which may cause a gap between the estimated and the real 
marginal density functions. Without considering the pseudo-
correlation among EEG signals caused by noise, distortion, 
etc., the parameters of the copula density function estimated 
by model criteria may deviate from the real parameters of the 
copula density function. Inspired by it, the mixture kernel 
density estimation (MKDE) and remedied correlation matrix 
(RCM) on the EEG-based copula model are proposed. The 
MKDE is used to estimate the marginal density function 
of the overall data by a mixture of the estimated marginal 
density function of each cluster clustered by K-means. The 
marginal density function of each cluster is estimated by 
KDE incorporated with the multiscale strategy. The MKDE 
cannot only better estimate the marginal density function 
but also explore the fine-grained information. The RCM is 
estimated by correlation analysis of the remedied EEG data 
equalling to the sparse matrix obtained by locality-sensitive 
dictionary learning. In terms of dictionary learning, the rem-
edied EEG data can use fewer elements of the dictionary 
matrix to restore the original EEG data. In other words, the 
remedied EEG data learning most of the original data is sup-
posed to contain less pseudo-correlation. The RCM may be 
closer to the real correlation matrix parameter of the copula 
density function.

The main contributions are outlined as:

–	 The MKDE employing the KDE combined with the 
K-means and the multiscale strategy can explore the fine-
grained information hidden in the original data and better 
estimate the marginal density function.

–	 The RCM estimated by correlation analysis based on the 
remedied data obtained by the dictionary learning may 
contain less pseudo-dependence, which could be closer 
to the real correlation matrix parameter of the copula 
density function.

–	 The proposed EEG-based copula model is used to assess 
visual discomfort induced by the stereoscopic display. 
Compared with the time-domain EEG features extracted 
by the state-of-the-art method, the features extracted 
by our proposed model present better discrimination to 
visual discomfort.
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This paper is organized as follows. Section 2 briefly covers 
the review of the theory of the copula model. Section 3 
explains the improved EEG-based copula model. Sec-
tion 4 shows the evaluation of the improved EEG-based 
copula model, and experimental results and discussions 
are reported in Section 5 and Section 6, respectively. Sec-
tion 7 gives the conclusions.

Primitive Copula Model

According to the theory of Sklar [23], the joint probability 
distribution of multivariate can be restored by a copula 
function with its marginal probability distributions as vari-
ables. The copula function is as follows:

where F(⋅) is the joint probability distribution, xi (i ∈ [1, N]) 
represents the variable, C(⋅) is the copula function, and Fi(⋅) 
(i ∈ [1, N]) is the marginal probability distribution of each 
variable.

If the joint probability distribution F(⋅) is continuous, 
and the marginal probability distribution Fi(⋅) is strictly 
increasing and continuous, equation (1) can be trans-
formed to:

where f (⋅) is the joint density function, c(⋅) is the copula 
density function, and fi(⋅) (i ∈ [1, N]) represents the mar-
ginal density function of each variable.

Equation (2) indicates that the joint density function 
can be restored by the product of the marginal density 
functions and the copula density function. The marginal 
density function of each variable does not have to follow 
the same distribution. The choice of copula density func-
tion depends neither on the marginal density functions 
nor on the marginal probability function used as a vari-
able. Better than traditional correlation analysis, such as 
Pearson correlation and Spearman correlation, the copula 
density function can estimate the correlation relationship 
without any restrictions on the distribution of variables.

(1)F(x1, x2, ..., xN) = C(F1(x1),F2(x2), ...,FN(xN))

(2)f (x1, x2, ..., xN) = c(F1(x1),F2(x2), ...,FN(xN))

N
∏

i=1

fi(xi)

Improved EEG‑Based Copula Model

In this section, the proposed MKDE and RCM on the EEG-
based copula model are illustrated in detail. As Fig. 1 shows, 
the MKDE and RCM aim to estimate the marginal density 
function and be closer to the real correlation matrix of the 
copula density function. There is no interference between 
the MKDE and RCM.

Mixture Kernel Density Estimation

The marginal density function of an arbitrary variate can be 
estimated by KDE with smooth kernel functions. Based on 
Scott’s research [24], the quality of KDE greatly depends on 
the smoothing parameters of the kernel functions. Assuming 
there are N d−dimensional samples X = [x1, x2, ..., xN] , the 
marginal density function of the variate X can be smoothly 
estimated by:

where K
H
(⋅) is the non-negative kernel function. The H is 

d × d symmetric and positive definite matrix which deter-
mines the smoothness of the estimated marginal density 
function [25]. Once the d equals to 1, the matrix H will 
degenerate to a scalar h.

As the number and the dimension of samples increase, 
the complexity and the cost of KDE can be relatively high. 
Therefore, KDE combined with binning strategy [26] or 
with K-means [27], reduced set density estimator [28], finite 
mixture model [29], etc., are proposed to reduce the scale 
of data to mitigate the mentioned problem. However, these 
methods or models ignore the fine-grained information hid-
den in the overall samples, affecting the estimated marginal 
density function. Based on the assumption that the overall 
data may be composed of several subcomponents [25, 27], 
the MKDE employing the KDE with the K-means and mul-
tiscale strategy is proposed to explore fine-grained informa-
tion for better estimation. Concretely, the whole data are 
firstly clustered into several clusters by K-means, which is a 
classic unsupervised method in the field of clustering. After 
that, to dig out the fine-grained information, KDE with dif-
ferent smoothing parameters, hereinafter multiscale strategy, 

(3)f̂h(x) =
1

N

N
∑

i=1

K
H
(x − xi)

Fig. 1   The illustration of the 
proposed EEG-based copula 
model
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is used to estimate the marginal density function of each 
cluster. In terms of the theory of the KDE, the larger and 
smaller smoothing parameters separately focus on global 
data and regional data. Therefore, with the multiscale strat-
egy, smaller smoothing parameters can explore fine-grained 
information. Meanwhile, the other larger smoothing param-
eters can compensate for the non-smoothness of estimated 
marginal density function caused by the smaller smoothing 
parameters. The concrete equations are as follows:

where f ∗(⋅) represents the marginal density function of the 
N 1−dimensional samples data X = [x1, x2, ..., xN] . The k is 
the kth cluster in C clusters. The coefficient �k represents 
the contribution of the marginal density function of the kth 
cluster to the marginal density function of the overall data, 
which is the ratio of the number of data in the kth cluster to 
the entire data. The f̂k(⋅) is the estimated marginal density 
function of the kth cluster.

where j means the jth smoothing parameter among m 
smoothing parameters. The coefficient �j represents the 
contribution of the jth smoothing parameter to the esti-
mated marginal density function of the kth cluster, which 
is the reciprocal of m smoothing parameters. The f̂j(⋅) is the 
marginal density function estimated by KDE with the jth 
smoothing parameter.

where Nk represents the number of data in the kth cluster. 
And xi is the ith data in the kth cluster. The hj and Khj

(⋅) 

(4)f ∗(X) =

C
∑

k=1

�kf̂k(x)

(5)f̂k(x) =

m
∑

j=1

�j f̂j(x)

(6)f̂j(x) =
1

Nk

Nk
∑

i=1

Khj
(
x − xi

hj
)

are the value of and the kernel function of the jth smooth-
ing parameter.

The framework and procedure of MKDE are, respec-
tively, shown in Fig. 2 and Alg. 1. As Fig. 2 shows, the over-
all EEG data are grouped into several clusters by K-means. 
The candidates for the number of clusters should be set in 
advance. The GridSearch algorithm is introduced to find 
the best result, a general exhaustive method for finding the 
optimal parameters. Although the smaller smoothing param-
eter can explore fine-grained information, too small param-
eters may be easily disturbed by noise. Thereby, the Grid-
Search algorithm is also used to find the optimal number 
of smoothing parameters. With different smoothing param-
eters, the estimated marginal density function of a single 
cluster may present some differences, as the dashed blue 
rectangle in Estimation with multiscale part shows. The final 
marginal density function of a single cluster is obtained by 
the weighted summation of the estimated marginal density 
function by different smoothing parameters, as the dashed 
blue rectangle in Estimation of each cluster part shows. The 
estimated marginal density function of the overall data is 
weighted mixed by the estimation results of clusters, as the 
final estimation with cluster part depicts.
Remedied Correlation Matrix

There are several candidates for the copula density func-
tion, such as Gaussian copula, Student’s t copula, and Clay-
ton copula [30–32]. The Gaussian copula is selected in this 
paper for its wide applications on time series. Each variate 
in the Gaussian copula density function is assumed to fol-
low the Gaussian distribution for simplifying the Gaussian 
copula density function. The Gaussian copula density func-
tion is expressed as:

(7)
c(X) =cN(�,Σ)(FN(�1,Σ1)

(x1),FN(�2,Σ2)
(x2), ...,

FN(�N ,ΣN )
(xN))

Fig. 2   The framework of the 
MKDE on the EEG-based 
copula model
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�i and Σi can be obtained from the sample mean and sample 
variance. The data sampled from the estimated Gaussian dis-
tribution are concatenated in the order of the columns of the 
remedied data. The RCM is finally estimated by correlation 
analysis of the concatenated data. The process of estimating 
the RCM is shown in Fig. 3.

Evaluation of the Improved EEG‑based 
Copula Model

The improved EEG-based copula model is evaluated by 
simulated EEG data and real EEG data, respectively. Due 
to a lack of public EEG datasets on visual discomfort, two 
experiments (the behaviour experiment and the EEG experi-
ment) are elaborately designed to collect real EEG data. The 
framework of assessing visual discomfort by the proposed 
model is illustrated at last.

Simulation Experiment

Five kinds of simulated EEG data are generated to evaluate 
MKDE, namely clean data, data with signal to noise (SNR) 
of 5dB, data with SNR of 10dB, data with SNR of 15dB, 
data with SNR of 20dB. Simulated EEG data induced by 
auditory and visual stimuli are generated to evaluate RCM. 
All simulated EEG data are generated by the MNE-Python 
package.

where c(⋅) is the Gaussian copula density function. The 
parameters � and Σ are separately the mean and the correla-
tion matrix of c(⋅) . The parameters �i and Σi (i = 1, ...,N) are 
the mean and the correlation matrix of the Gaussian distribu-
tion of variate xi.

Because this paper focuses on better extracting the time-
domain EEG features by the EEG-based copula model, 
estimating the correlation matrix Σ is crucial. The local-
ity-sensitive dictionary learning is introduced to mitigate 
the pseudo-correlation among EEG data caused by noise, 
distortion, etc., for better estimating the correlation matrix. 
Specifically, based on the theory of the dictionary learn-
ing, the original data can be decomposed into a dictionary 
matrix that learns the essence of the original data, and a 
sparse matrix (hereinafter remedied data) that learns the 
most important information of the original data [33, 34]. 
Because the remedied data can keep the most relevant 
information to original data, it is considered to contain less 
pseudo-correlation. In the conventional dictionary learning, 
only considering the constraints on coefficients, locality-
sensitive dictionary learning has the advantage of exploring 
the local information of data for data construction [35–39]. 
Therefore, locality-sensitive dictionary learning is used to 
obtain remedied data. The columns in the remedied data 
are considered as variables to estimate RCM. As equation 
(7) indicates, the marginal probability distribution of each 
variable xi is required to be estimated. Assuming that each 
variable xi follows a Gaussian distribution, the parameters 
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Behaviour Experiment

The behaviour experiment aims to subjectively assess visual 
discomfort induced by the designed stereoscopic stimuli to 
assist in selecting reasonable stimuli that can be used in the 
EEG experiment. In terms of previous studies [7, 40], the 
symptom questionnaire is chosen to be the subjective ques-
tionnaire. The question in the subjective questionnaire is 
whether the stimulus that just appeared makes you visual 
discomfort. Participants need to select one from the five 
choices (no fatigue, mild fatigue, moderate fatigue, serious 
fatigue, and extreme fatigue) to rate the degree of visual dis-
comfort according to their feelings. These five choices are, 
in turn, quantified as five levels (1, 2, 3, 4, 5). The rounded 
average level from all participants is regarded as a label of 
the stimulus. Referring to the studies of other researchers 
and our previous research [5, 40–42], disparity images with 
disparities ranging from ±0.1◦ to ±1◦ are used as stimuli. 
The designed stimuli are presented by the LG D2343P 

display with 1920 × 1080 resolution. Seventeen participants 
aged from 23 to 27 with normal stereo vision were recruited 
from Beijing Normal University.

EEG Experiment

The EEG experiment is designed to record the EEG sig-
nals of participants when facing stimuli for objectively 
assessing visual discomfort. With the results of the 
behaviour experiment, ten disparity images are selected 
that can effectively induce visual discomfort or maintain 
visual comfort. Forty-three participants were recruited 
from Beijing Normal University, including 22 males 
and 21 females. Before the experiment, each participant 
was suggested to stay healthy, avoid staying up late and 
excessive stress. The EEG signals were recorded by the 
128-channel EGI system. The sampling frequency is 500 
Hz. Each participant has a chance to practice several times 
before the formal experiment starts. In Fig. 4, the ‘Cross’ 
image is presented to fix the participant’s vision. Once the 

Fig. 3   The framework of the 
RCM on the EEG-based copula 
model

Fig. 4   The procedure of the 
EEG experiment
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stimulus disappears, the judgment image will be presented 
to encourage each participant to determine whether the 
stimulus just appeared in front of or behind the screen. 
The judgment part aims at keeping the participant’s atten-
tion on the current experiment. The repetition times are 
set to 150 to balance the trade-off between recording the 
EEG data as much as possible and preventing the long 
experimental time from inducing extra visual discomfort.

Framework of Assessing Visual Discomfort

Because raw EEG data are easily disturbed by irrelevant 
components, such as eye movement and head movement, 
independent component analysis (ICA) is introduced to 
eliminate the first two or three components.

Inspired by researches [43, 44], the autoregressive 
model (AR model) is introduced to extract rough EEG 
features, one of the classic methods for roughly extract-
ing time-domain EEG features. The coefficients of the 
AR model (the extracted rough EEG features) are deter-
mined by AIC. For each participant, since the dimension 
of rough EEG features is high ([number of channels × 
number of AR coefficients]), the dimension reduction is 
required for reducing the computation cost. The Random 
Forest is adopted as it not only keeps valuable features 
but also shows the importance of these features [45]. 
Concretely, the importance of channels can be ranked by 
Random Forest following the Gini coefficient when chan-
nels of rough EEG features are considered as the nodes of 
Random Forest. Based on the results of all participants, 
the top 40 most important and frequent channels are kept. 
The reduced dimension of rough EEG features is [number 
of selected channels × number of AR coefficients].

As Fig.  5 presents, the extracted EEG features by 
our proposed model are the linear concatenation of the 
smoothing parameters from MKDE and the RCM accord-
ing to the order of selected channels. The smoothing 
parameters can be obtained by MKDE used to estimate 

the marginal density function of the overall data from an 
individual channel. The RCM is obtained by the remedied 
data from a specific stimulus. Based on the extracted EEG 
features, SVM with radius basis function (RBF) kernel 
is used to assess visual discomfort. The parameters C 
and gamma of SVM are determined by the GridSearch 
algorithm.

Experimental Results

Simulation Experiments on MKDE

As Fig. 6(a) shows, with the SNR increases, simulated EEG 
data are gradually close to clean data. In Fig. 6(b), the grey, 
green and blue lines individually represent the real marginal 
density function, the estimated marginal density function 
by KDE and the estimated marginal density function by 
MKDE. The estimation results of the clean data or the data 
with high SNRs by MKDE are much closer to the real mar-
ginal density functions. However, the estimation results of 
the heavily contaminated data (as the second and third sub-
plots in Fig. 6(a) presents) by MKDE deviate from the real 
marginal density functions.

The mean-squared error (MSE) is used to evaluate the 
differences between the real and the estimated marginal den-
sity functions for objectively testifying MKDE. In Fig.7, 
the grey and blue lines separately represent the estimation 
results by KDE and MKDE. As SNR increases, the MSE of 
the estimation by both methods is gradually stable. However, 
the MSE of the estimation by MKDE is smaller. For heav-
ily contaminated data, the gap between the performance of 
MKDE and the performance of KDE is narrowed. But if the 
number of clusters is set to one, the performance of MKDE 
is the same as KDE.

The details of MKDE exploring the fine-grained informa-
tion hidden in the overall data are shown in Fig. 8. Better 
than KDE with only one smoothing parameter, MKDE not 

Fig. 5   The framework of assess-
ing visual discomfort by the 
proposed model
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only uses the best smoothing parameter to estimate the mar-
ginal density function but also employs several smoothing 
parameters to ensure that hidden information at different 
fine-grained can be explored. Fig. 8(c) shows that the mar-
ginal density function of the data from one cluster estimated 
by selected smoothing parameters present apparent differ-
ences, which further indicates that these parameters can 
mine the fine and different-grained information. The mar-
ginal density function of one cluster, showing in Fig. 8(d), 
is obtained by the weighted summation of the estimation 
with selected smoothing parameters. Repeating the process 
presented in Fig. 8(c) and Fig. 8(d), the marginal density 
function of each cluster can be estimated, as Fig. 8(e) shows. 
The final marginal density function of the overall data is 

estimated by a weighted mixture of the estimated results 
from each cluster.

Simulation Experiments on RCM

Figure 9 shows the heatmap results of the correlation matrix 
parameters of the copula density functions obtained by 
original data and remedied data. The presented heatmap 
results are randomly selected from the heatmap results of 
all correlation matrices. In Fig. 9(a) and 9(b), the left and 
the right subfigures present correlation matrices obtained 
by the original data and the remedied data. According to 
Chen et al. [46], channels in the fronto-central region and 
occipital region are highly sensitive to hearing and vision, 

Fig. 6   The results of real and 
estimated marginal density 
functions of simulated EEG 
data: (a) the time-domain 
diagrams of clean data, data 
with SNR of 5dB, data with 
SNR of 10dB, data with SNR of 
15dB, data with SNR of 20dB 
from left to right; (b) the real 
marginal density function, esti-
mated marginal density function 
by KDE and estimated marginal 
density function by MKDE cor-
responding to (a)

Fig. 7   The MSE of estimated 
marginal density functions by 
KDE and MKDE
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respectively. Hence, channel Fz is selected to be an exam-
ple of further analysis because it is sensitive to the audi-
tory stimulus. As the white rectangle in Fig. 9(a) shows, 
the correlation value between the channels FC1 and Fz, and 

channels C4 and Fz in RCM gets increased. Both correlation 
values between channels T7 and Fz, and channels P3 and Fz 
in RCM get decreased. The correlation relationship between 
channels O1 and Fz in RCM remains stable. All findings 

Fig. 8   The details of MKDE 
exploring the fine-grained infor-
mation: (a) the time-domain 
diagram of simulated EEG data 
with SNR of 50dB; (b) the clus-
tering result of simulated EEG 
data; (c) the marginal density 
function of a single cluster, 
respectively, estimated with 
different smoothing parameters. 
Sp represents the smoothing 
parameter; (d) the marginal 
density function of a single 
cluster estimated by weighted 
summation of estimated results 
with smoothing parameters; (e) 
the estimated marginal density 
function of each cluster; (f) 
the estimated marginal density 
function of the overall data

Fig. 9   The heatmap results 
of correlation matrices of the 
copula density function: (a) the 
heatmap results of correlation 
matrices obtained by simulated 
original data and remedied 
data corresponding to the 11th 
auditory stimulus; (b) the 
heatmap results of correlation 
matrices obtained by simulated 
original data and remedied data 
corresponding to the first visual 
stimulus
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are consistent with the results of Chen et al. The channel Oz 
highly related to visual stimuli is taken as an example. The 
correlation value between channels PO3 and Oz in RCM 
presents mild increases, which follows the findings in the 
study of Chen et al. The correlation relationship between 
channels C5 and Oz, and channels C6 and Oz in RCM both 
remain relatively stable. The correlation value between chan-
nels F3 and Oz in RCM shows significant changes, which 
may be explained by the fact that the frontal region has a 
connection to the visual process [47]. Therefore, the dif-
ferences between the correlation matrices indicate that the 
RCM contains less pseudo-correlation.

Experiments on Assessing Visual Discomfort

To find the EEG features extracted by our proposed model 
highly related to visual discomfort, various linear con-
catenations of the smoothing parameters from MKDE 

and the RCM are implemented. In Fig. 10, the horizontal 
coordinate presents different linear concatenations. The 
details of these extracted features are shown in Table 1. 
In Fig. 10, the top three highest accuracies of the SVM 
classifiers on different features are marked. The standard 
deviations of these three accuracies are also shown to 
verify the stability. The leftmost rectangle represents the 
accuracy of the SVM classifier based on feature K_O. The 
remaining rectangles present the accuracies of SVM on 
the features extracted by the proposed model. As Fig. 10 
shows, the features extracted by the proposed model per-
form better. In other words, no matter how concatenated, 
these features have better discrimination to visual discom-
fort. The differences between the accuracies of the SVM 
classifiers on feature K_O and feature K_R indicate that 
RCM could greatly improve the discrimination of features 
to visual discomfort. As the differences in the remain-
ing rectangles depict, although the number of smoothing 

Fig. 10   The classification 
accuracy of SVM classifier 
based on features extracted by 
EEG-based copula model

Table 1   The details of various extracted time-domain EEG features

Features Linear concatenation

K_O Smoothing parameter from the KDE and the correlation matrix parameter of the copula function obtained by the original data
K_R Smoothing parameter from the KDE and the RCM
1C_M_R Optimal smoothing parameter from one cluster with the largest numbers of data and the RCM
1C_3P_M_R First three smoothing parameters from one cluster with the largest numbers of data and the RCM
2C_M_R Optimal smoothing parameters from two clusters with the first two largest numbers of data and the RCM
2C_2P_M_R First two optimal smoothing parameters from two clusters with the first two largest numbers of data and the RCM
2C_3P_M_R Three smoothing parameters from two clusters with the first two largest numbers of data and the RCM
3C_M_R Optimal smoothing parameters from three clusters of data and the RCM
3C_3P_M_R All the smoothing parameters from three clusters of data and the RCM
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parameters may contribute little to improving the accu-
racy of the classifier, it can keep the classifier stable. And 
the increased number of smoothing parameters may not 
always contribute to the accuracy of the SVM classifier. 
This may be explained by that the smoothing parameters 
corresponding to the cluster with the smallest data may 
be disturbed by redundant or irrelevant information. The 
SVM classifier based on feature K_R presents the highest 
accuracy among the three marked features, whereas the 
standard deviation is the largest. The feature 2C_M_R 
is considered the most promising feature to balance the 
trade-off between accuracy and stability, which has high 
discrimination to visual discomfort. The accuracy of the 
SVM classifier based on the feature 2C_M_R is 81.63%.

The receiver operating characteristic curve (ROC 
curve) to evaluate the extracted features further is shown 
in Fig. 11. The area under curve (AUC) value of fea-
ture K_O or features extracted by the proposed model 
is larger than 0.8. It means that features extracted by the 

EEG-based copula model have high discrimination to 
visual discomfort. Compared to the remaining lines, the 
discrimination of features represented by orange, yellow, 
and dark green lines for visual discomfort is more pre-
cise, consistent with the results shown in Fig. 10. There-
fore, the proposed model can extract the time-domain 
EEG features closely related to visual discomfort.

To testify the performance of the feature 2C_M_R 
extracted by the proposed model, the multiscale entropy 
(the state-of-the-art method) and sample entropy to 
assess discomfort are introduced. The AR model is also 
adopted to extract time-domain EEG features to compare 
with the feature 2C_M_R. Although the AR model has 
not been introduced into assessing visual discomfort, 
it is widely used to extract time-domain EEG features 
in other tasks, such as evaluating mental load [43] and 
classifying seizure [44]. Additionally, the statistics are 
performed on the features extracted by the AR model 
(hereinafter rough EEG features), such as the mean of 
rough EEG features and the standard deviation of rough 
EEG features, to explore the practical usefulness of the 
feature 2C_M_R. The results of the comparisons are 
shown in Table 2. The first column shows the method 
to extract the features. The second column presents the 
concrete features. The last column indicates the mean 
and standard deviation of the accuracy of the SVM clas-
sifiers based on extracted different features. The rough 
EEG features are not sensitive to visual discomfort. And 
the statistical features of rough EEG features do not show 
better discrimination to visual discomfort. All features 
extracted by entropy measures are less sensitive to visual 
discomfort compared with statistical features of rough 
EEG features. The features extracted by the proposed 
model perform better in discriminating visual discomfort 
despite the larger standard deviation. However, the value 
of the standard deviation is still much smaller than the 
mean value. Thereby, the features extracted by the pro-
posed model present acceptable stability.

Fig. 11   The ROC curves of extracted features

Table 2   The comparison of 
classification results based 
on the features extracted by 
different methods. mean and 
SD are the mean and standard 
deviation of the accuracy

Method of feature extraction Features Accuracy (mean ± SD)

AR model coefficients (rough EEG features) 0.4856 ± 0.0018
median of coefficients 0.5060 ± 0.0075
mean of coefficients 0.4947 ± 0.0065
standard deviation of coefficients 0.5049 ± 0.0082
kurtosis of coefficients 0.5098 ± 0.0055
skewness of coefficients 0.5073 ± 0.0055
combined statistics of coefficients 0.5059 ± 0.0024

Entropy measures sample entropy 0.4873 ± 0.0863
multiscale entropy (state-of-the-art method) 0.4562 ± 0.0945

Proposed model 2C_M_R 0.8163 ± 0.0108
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Discussion

Parameter Selection for MKDE

For MKDE, three parameters are needed to tune: the 
number of clusters C, the number of smoothing param-
eters m, and the coefficient �j . Given the candidates of C, 
the GridSearch algorithm can exhaust all the clustering 
results of K-means. The C is selected according to the 
smallest within-cluster sum of squares. Given ranges of 
the number of smoothing parameters m, the GridSearch 
algorithm can exhaust all the results of estimated mar-
ginal density function with smoothing parameters. The 
m is selected according to the top several smallest mean 
error between the samples from the estimated marginal 
density function and the real data. Two strategies are 
used to find the coefficient �j . The first strategy is to 
set the coefficient �j equal the reciprocal of the number 
of smoothing parameters m. The second strategy is to 
determine the coefficient �j is determined by the impor-
tance of each smoothing parameter to the estimated mar-
ginal density function. The importance of the smooth-
ing parameters is determined by the reverse order of the 
sequence of error ratio, which is obtained by the ratio 
of the error of the estimated marginal density function 
by each smoothing parameter to the summation of the 
errors of the estimated marginal density function by all 
smoothing parameters. The coefficient �j of each smooth-
ing parameter equals to its importance value. According 
to a simulation experiment, there is no significant differ-
ence between the estimated marginal density functions 
based on the two strategies. To reduce the computation 
cost, the coefficient �j is set to be the reciprocal of the 
number of smoothing parameters m.

Comparisons of Extracted Time‑Domain EEG 
Features by Different Methods

In terms of Table  2, the time-domain EEG features 
extracted by the proposed method perform better than 
the features extracted by other methods, especially by the 
multiscale entropy (state-of-the-art method) proposed by 
Peng et al. Unlike the stereoscopic stimulus to induce the 
visual discomfort in this paper, Peng et al. designed the 2D 
stimuli with different flicking frequencies to cause visual 
discomfort. The differences between the designed stimuli 
may lead to different brain activities, which could explain 
that the features extracted by the multiscale entropy are 
less sensitive to visual discomfort induced by stereoscopic 
displays than the features extracted by the proposed model.

Conclusions

In this paper, the MKDE and RCM on the EEG-based 
copula model are proposed to improve the current perfor-
mance of the EEG-based copula model and extract time-
domain EEG features to assess visual discomfort better. 
As the simulation results present, the MKDE combined by 
the KDE with the K-means and the multiscale strategy can 
explore the fine-grained information in the data and better 
estimate the marginal density function. The RCM esti-
mated by correlation analysis based on the remedied data 
obtained through the locality-sensitive dictionary learning 
can be closer to the real correlation matrix parameter of 
the copula density function. With the verified quality, the 
proposed method is used to extract time-domain EEG fea-
tures, which are supposed to present high discrimination 
to visual discomfort for better assessing the visual discom-
fort. Compared with features extracted by other methods, 
the extracted features by the proposed method can be the 
more promising indicator for assessing visual discomfort. 
These findings may encourage more researchers to intro-
duce the copula model into the analysis of EEG signals.

Although some progress has been made, this paper 
still has some limitations. Compared with KDE, current 
MKDE provides a less precise estimation of the marginal 
density function of heavily contaminated data compared 
to KDE. Additionally, waveforms of the time-domain dia-
gram of coefficients of the AR model presents regularity 
with time. Therefore, the regularity of the waveforms can 
be considered during clustering instead of just the mag-
nitude of the amplitudes. To reduce the computation cost, 
the Gaussian copula density function is introduced for 
its wide applications on time series, especially the finan-
cial time series. However, few investigations have shown 
which kinds of copula density functions are suitable to 
analyse EEG signals. Thereby, the types of copula density 
functions may contribute to the extraction of the time-
domain EEG features. All the limitations encourage us to 
study further the application of the copula model on the 
analysis of EEG signals.
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