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Abstract
Human movement studies and analyses have been fundamental in many scientific domains, ranging from neuroscience to 
education, pattern recognition to robotics, health care to sports, and beyond. Previous speech motor models were proposed 
to understand how speech movement is produced and how the resulting speech varies when some parameters are changed. 
However, the inverse approach, in which the muscular response parameters and the subject’s age are derived from real con-
tinuous speech, is not possible with such models. Instead, in the handwriting field, the kinematic theory of rapid human move-
ments and its associated Sigma-lognormal model have been applied successfully to obtain the muscular response parameters. 
This work presents a speech kinematics-based model that can be used to study, analyze, and reconstruct complex speech 
kinematics in a simplified manner. A method based on the kinematic theory of rapid human movements and its associated 
Sigma-lognormal model are applied to describe and to parameterize the asymptotic impulse response of the neuromuscular 
networks involved in speech as a response to a neuromotor command. The method used to carry out transformations from 
formants to a movement observation is also presented. Experiments carried out with the (English) VTR-TIMIT database 
and the (German) Saarbrucken Voice Database, including people of different ages, with and without laryngeal pathologies, 
corroborate the link between the extracted parameters and aging, on the one hand, and the proportion between the first and 
second formants required in applying the kinematic theory of rapid human movements, on the other. The results should drive 
innovative developments in the modeling and understanding of speech kinematics.

Keywords  Speech processing · Kinematic theory of rapid human movements · Sigma-lognormal model · Speech 
kinematics · Aging · Modeling of the neuromotor system

Introduction

For decades, human movement studies and analyses have 
been fundamental in many scientific domains, ranging from 
neuroscience to education, pattern recognition to robotics, 
health care to sports, and beyond. The primary goal of 
these studies has always been to parameterize and assess 
human movements, providing information on the basic 
processes involved in fine motor control and their vari-
ability. In speech, computational systems that synthesize 
and assess speech motor control provide answers to some 
questions regarding the articulator movements used by 
humans to produce speech sounds, speech rate effects, or 
for example, how infants acquire the motor skills needed 
to produce the speech sounds of their native language [1]. 
However, many questions regarding the modeling and auto-
matic assessment of natural neuromotor decline in healthy 
speech or the parameterization of neuromotor commands 
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and muscular responses from fast continuous speech are 
still open.

Many neurocomputational models have been proposed 
to understand how speech movement is produced and how 
the resulting speech varies when changing some parameters 
[2]. To this end, motor control models inspired by computer 
programs have often been used. Under this paradigm, motor 
commands are generated based on a central motor plan [2] 
and executed by a speech generator. Several speech motor 
models, such as the GEPETTO [3, 4], ACT [5], DIVA [6] 
and Task Dynamics [7], State Feedback [8], and FACTS [9] 
models, have been developed in this context in recent years. 
These models start from an action plan (planner) and then 
adjust a set of parameters, moving a set of articulators, to get 
the ideal output (feedforward models). In some of them, the 
acoustic output signal is then compared with the reference 
input signal from the planner to generate an error signal that 
allows to correct the movement (feedback models).

Previous works have been oriented toward the modeling 
of learned speech of healthy speakers. Some of the above 
models (DIVA, FACTS, and ACT) can, following adjust-
ments of some parameters, model certain aspects of devel-
opment and aging. However, to the best of our knowledge, 
neuromotor decline has never been modeled by such systems 
[2]. Moreover, the inverse approach, in which the muscu-
lar response parameters are derived from real continuous 
speech, is not possible with such models.

Among the models that study human movement produc-
tion in general [10], the kinematic theory of rapid human 
movements and its associated Sigma-lognormal model 
[11–13] have been applied successfully in several fields [14] 
to model numerous human movements such as handwriting 
and signatures, as well as eye, finger, wrist, hand, head, and 
trunk movements [14–17]. It has also been used to evaluate 
the effect of exercise on global neuromotor control [18], 
on the detection and monitoring of neuromuscular disor-
ders, and to study and synthesize handwriting motor control 
changes in humans with age [19–21]. The Sigma-lognormal 
model has thus demonstrated its capacity to obtain a mus-
cular response and neuromotor command parameters from 
online handwriting, to assess neuromotor aging and synthe-
size new handwriting samples.

In handwriting, the Sigma-lognormal model decomposes 
a complex movement, obtained from the temporal trajectory 
captured with a digital tablet, into a sum of simple time-
overlapped primitives with a lognormal velocity profile. 
This method provides information about how every single 
movement is generated and synchronized, modeling the end 
effector (set of muscles involved in the movement) as a black 
box. Thus, the lognormal-shaped impulse response of the 
end effector, used as a primitive, is not linked to any specific 
articulation, but rather, to a large number of coupled subsys-
tems. Moreover, the movement primitive is not necessarily 

confined to movements with a single velocity peak, as is still 
often assumed in many models [22].

Given the above advantages, in this paper, we propose a 
novel methodology based on the Sigma-lognormal model 
to parameterize the speech kinematics and the muscular 
response produced by the complex set of muscles involved 
in achieving the target sound, as well as to study aging 
effects. One question that does arise though is how the 
kinematic theory can be applied to speech modeling. The 
answer to this question is by no means straightforward. As 
a first proof of concept, preliminary works directly applied 
the kinematic theory of rapid human movements to diph-
thongs and sustained vowels uttered in neuromotor disease 
analysis [23–26], suggesting the possibility of applying the 
Sigma-lognormal model to speech. However, obtaining a 
general model would require a representation of a target’s 
map, a trajectory mapping, and a velocity representation, all 
assuming a lognormal impulse response that would need to 
be related to some speech features. To address these issues, 
we assume a high-level goal as the target map (a map of 
sound that can be discriminated between them), inspired by 
the work on the spatial model proposed by Moser et al. [27, 
28], instead of a fixed desired position of each individual 
speech articulator. As such, the velocity representation can 
be obtained from the sound transitions (trajectory map). 
The model is explained in detail in “Sigma-Lognormal 
Parameterization Method”.

To test the validity of the proposed method, we present 
two sets of experiments. The first one aims to illustrate the 
meaning of the lognormal decomposition in simple move-
ments in a continuous speech signal. In the second one, the 
goal is to evaluate the model’s ability to identify significant 
differences in some parameters when modeling aging in the 
speech of subjects with or without laryngeal pathologies. 
In certain studies related to handwriting [19], it has been 
observed that the time between lognormals and their number 
increases with age. Timing effects have also been reported 
in speech, where an fMRI study suggested that the motor 
control of timing during speech production declines with age 
[29]. So, if the proposed Sigma-lognormal model describes 
the speech kinematics well, then we should expect results 
obtained in speech to be similar to those obtained in hand-
writing [19] if proper experiments are run. Moreover, since 
laryngeal dysfunction only affects the sound source (glottis), 
and not the global end effector movements, the time between 
lognormals should not be affected in this case, unlike in the 
case of aging. In the experiment section, these hypotheses 
will also be tested.

The present work is structured as follows. After an 
overview of the kinematic theory of rapid human move-
ments in “Overview of the Sigma-Lognormal Model”, 
“Sigma-Lognormal Parameterization Method” describes 
the method for estimating speech kinematics and how it 
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is parameterized. “Evaluation, Results, and Discussion” 
evaluates the model and discusses the results obtained. 
Finally, we summarize our findings in “Conclusions”.

Overview of the Sigma‑Lognormal Model

The Sigma-lognormal model explains how an action plan 
comprised a sequence of circumference arcs between vir-
tual target points (VTP) can be activated to generate a spati-
otemporal trajectory. Virtual target points are defined as the 
positions targeted by a lognormal, but that are not necessar-
ily reached because of the temporal overlapping of the next 
lognormal [30]. Virtual targets are thus related to the learn-
ing process and how the movement is programmed by the 
brain. A starting and an ending angle define each arc linking 
virtual target points. Each ending VTP is the starting VTP 
of the next arc. To generate smooth movements from this 
discontinuous action plan, the instantiation of a command 
at a given VTP must start before the previous stroke reaches 
that VTP. In other words, each arc has a starting time but fin-
ishes later than the starting time of the next one. Therefore, 
successive resulting strokes are temporally overlapped. Each 
arc is executed following a lognormal-shaped velocity curve, 
and the whole trajectory is made up of the vector summation 
of the individual strokes.

Mathematically, the lognormal velocity profile of a sim-
ple movement is defined by [7]

where Dj is the length of the movement, toj is the time 
occurrence of the movement command, �j is the log time 
delay, �j is the log response time, and j indicates the index of 
the movement. The velocity profile of a complex movement 
��⃗v
r
(t) is given by the time superposition of NbLog lognormals 

[9] as follows:

where �j(t) is the angular position, defined as

and Θsj(t) and Θej(t) are the starting and the end angular 
directions of the jth simple movement or stroke, and erf is 
the error function.
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Finally, the trajectory is worked out as

This expression converts angles into arcs of circumfer-
ences that are temporally overlapped. Specifically, the jth 
term of the summation represents the arc that links con-
secutive virtual target points, VTPj-1 and VTPj, which are 
defined by

with T being the total temporal duration of the spatiotem-
poral sequence.

A sequence of virtual target points, along with their 
starting and ending angles and their lognormal velocity 
parameters, can be analytically extracted through reverse 
engineering (Fig. 1). Using the extracted action plan, the 
corresponding spatiotemporal sequence can be reconstructed 
from its set of parameters:

Classically, these parameters are calculated from the 
sampled 2D spatiotemporal sequence with software such as 
ScriptStudio [31] or iDeLog [32].

Once the original velocity vo(t) has been reconstructed as 
a summation of lognormals ( ��⃗v

r
(t) ), the quality of the recon-

struction can be evaluated using the signal-to-noise-ratio 
(SNR) between them. Specifically, the SNR is defined as [30]

It is commonly accepted that when SNR < 15 dB, the 
reconstruction is not appropriate due to either ScriptStudio 
[31] or iDeLog [32] not having managed to find an adequate 
solution or to the spatiotemporal sequence not correspond-
ing to the model [30]. In the latter case, as the lognormal is 
accepted as a neuromotor model, we could also say that the 
spatiotemporal sequence does not correspond to the timing 
conditions under which lognormals emerge, as predicted by 
the central limit theorem [33].

Sigma‑Lognormal Parameterization Method

The scheme for applying the Sigma-lognormal model 
in speech is presented in Fig.  2. The model divides 
the speech generation into two steps: planning of the 
sequence of sounds (effector-independent) and execution 
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of the sequence via the end effector (effector-dependent) 
[20, 21, 34]. Firstly, in the effector-independent step, a 
sound map (higher-level goal) is defined, assuming that 
each simple learned sound has a corresponding position 
on a hexagonal grid. Note that in this map (different for 
each person), the targets are sounds, and not phonemes, 
since a phoneme can be defined either as a simple sound 
or as a group of different sounds. Processing a sequence 
of sounds (for example, [uiau] in (Fig. 2) involves mov-
ing through different positions on the grid and generating 
a trajectory through the selected sounds from a series of 
commands. Secondly, the effector-dependent module is 
linked to the neuromuscular system itself (end effector) 
and is defined by its impulse response to each command. 
The end effector movement causes the vocal track shape 
to vary, thus changing the resonance frequencies, and 
therefore, the formants (resonant frequencies of the oro-
nasopharyngeal tract) over time [35–37].

In this work, we use a reverse engineering approach, 
starting from the formants and moving up to the sound tra-
jectory; from variations in the formant, we estimate both 
the parameters that model the commands that determine the 
transition from one grid position to another (simple move-
ment) and the muscular response to each command. Thus, 

we will model neither the initial positions on the grid nor 
the physical constraints of the vocal track.

To perform a Sigma-lognormal analysis of speech, 
a spatiotemporal sequence that globally represents the 
speech kinematics is required, as previously depicted in 
Fig. 2. To this end, we rely on the resonance tube model. 
Indeed, in speech synthesis, the vocal tract (from the 
glottis to lips) can be represented as a concatenation of 
lossless acoustic tubes, where the shape and the volume 
of the vocal tract vary for each sound [36, 38]. An incre-
ment or decrement of the section and length of the tubes 
produces a change in the resonance frequencies, and 
accordingly, a change of formants in the output speech, 
as we can see in Fig. 3. This means that each motor com-
mand that the brain produces to generate synchronous 
muscle movement required to go from one acoustic posi-
tion to another changes the resonant cavities. Thus, a 
relationship can be established between an increment of 
the formant and the increment of the resonant areas or 
between the formant tracks and the movements of mus-
cles [39]. Then, if the estimated velocity is integrated, a 
kinematic trajectory to be analyzed by our model can be 
obtained. Note that the resonant cavities of each subject 
are different, depending on the morphology and length of 

Fig. 1   Sigma-lognormal reverse engineering of a signal. Decomposition of the velocity profile into a sum of lognormals and the analyzed trajec-
tory for each lognormal
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the organs that comprise it. Therefore, when a language 
is learned, the articulatory position of each sound is set 
as a function of the resonant cavities needed to produce 
the sound closest to the ideal one the person is trying to 
learn, and of how the sound is perceived [40–42].

This kinematic trajectory of the formants can be con-
sidered as the movement of a reference center (RC) of a 
speech end effector over the acoustic space, much the same 
as the movement of the pencil tip over paper represents the 
movement produced by the end effector during handwriting.

Fig. 2   Scheme of the proposed 
model

Fig. 3   Variations in the areas of 
the tube with time (left) produce 
a change in formant space 
(right)
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According to this analogy, the model parameters could 
be recovered from a speech signal in three steps: (1) track-
ing of the formants; (2) from the formant sequence, obten-
tion of the end effector kinematics, and (3) parameteriza-
tion of the resulting trajectory using the Sigma-lognormal 
model.

Formant Estimation

To estimate the speech kinematics from the acoustic space 
in a non-invasive fashion, the formants are evaluated from 
the speech recorded with a microphone. This procedure is 
similar to the one used in handwriting, where the movements 
of the pencil tip are captured with a digitizing tablet.

Formants can be tracked using many methods proposed 
in the literature. In this paper, we use some of the methods 
implemented in the PRAAT software [43] to ensure experi-
mental repeatability and to test the dependence of the pro-
posed methodology on the formant estimation procedure.

Since there are no clear formants for unvoiced conso-
nants, in fluent speech, they are usually co-articulated with 
a voiced sound [35], and so we assume that the missing 
formant information can be interpolated as a movement from 
the positions of the previous and posterior voiced phonemes.

Formants to End Effector Kinematics

A speech kinematics can be computed from its speech for-
mants since the formant track is related to the movement in 
the tube resonance model and its velocity. Usually, the first 
two formants of the voice (F1 and F2) can give a spatial rep-
resentation of the most frequent sounds and can be used to 
estimate the movement of the end effector needed to go from 
one sound to another. As can be seen in Fig. 4 (left), incre-
ments or decrements in the first or the second formant are 
related to changes in the pronounced sound. These changes 
can be represented as a trajectory drawn on an imaginary 

axis (Fig. 4 (right)). Since the proportion of the contribution 
of the first and second formants to the kinematic space is 
an ill-posed problem [39, 44–46], a transfer coefficient ci is 
added to the mapping equation. Hence, the conversion from 
the acoustic space to the kinematics space can be approxi-
mated by a linear transform such as

where F1(t) and F2(t) are the tracks in the first and sec-
ond formants, ci are the transfer coefficients, x(t) and y(t) 
are the trajectories along the two imaginary axes in the 
kinematic space, �x(t)∕�t denotes the derivative of the 
generic sequence x(t), and �y(t)∕�t denotes the derivative 
of the generic sequence y(t).

Once x(t) and y(t) are calculated from the formants, 
the approximate velocity vf(t) is estimated as

The end effector reference center (RC) trajectory can thus 
be obtained by integrating Eq. 8, which leads to:

We assume that the initial conditions, which are irrelevant for 
the Sigma-lognormal analysis, are equal to zero. Then, x(t) and 
y(t) refer to the spatiotemporal sequence that represents the end 
effector movement. Thus, c1 and c2 can be seen as the weights 
that map the formants F1 and F2 into their spatial representation. 
To allow evaluating the proportion between F1 and F2 that can 
give more information regarding the articulatory movement to 
which the kinematic theory of rapid human movements should 
be applied, in this work, we novelly calculate these weights 
using

(8)
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Fig. 4   Space transformation. 
Left: acoustic space, right: 
kinematic space
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where k is the scale constant and α is the proportion 
parameter that defines the relative contribution of F1 and 
F2 to the kinematic space. It depends on the shape of the 
vocal tract.

To calculate α and k, we assume that the acoustic 
space could be transformed into a hexagonal kinematic 
space (Fig. 4, right). Based on previous handwriting syn-
thesis studies [20], and inspired by the hexagonal grid 
cell distribution proposed by Moser et al. [27, 28], the 
vowel triangle limits are fitted with an equilateral trian-
gle. In this work, we hypothesize that α can be approxi-
mated as the value that keeps L1 = L2, with L1 being 
the distance between the /i/ position and /a/, and L2, the 
distance between the /i/ and /u/ (Fig. 4, right).

To this end, as the external vowels of the kinematic 
space are usually /a/, /i/, and /u/ (see Fig. 4), we define F1a, 
the first formant of the vowel /a/, F1i and F2i, the first and 
second formants of the vowel /i/, respectively, and F2u, the 
second formant of the vowel /u/.

The height of the triangle can be calculated as

Considering the triangle as an equilateral triangle, it 
means that

And

As L1 = L2,

Replacing c1 and c2 by their values:

Obtaining α (the proportion between F1 and F2):

It should be noted that both the value of α and the 
formant values are speaker-dependent. Table 1 shows the 
α values obtained with Eq. 17 using the formant values 
given by Hillenbrand et al. in [47] (English vowels) and 

(11)
{

c1 = k(1 − �)

c2 = k�
0 ≤ � ≤ 1

(12)h = c1(F1a − F1i)

(13)L1 =
2√
3
h =

2√
3
c1(F1a − F1i)

(14)L2 = c2(F2i − F2u)

(15)
2√
3
c1(F1a − F1i) = c2(F2i − F2u)

(16)
2√
3
k(1 − �)(F1a − F1i) = k�(F2i − F2u)

(17)� =
(F1a − F1i)

(F1a − F1i) +
√
3

2
(F2i − F2u)

by Pätzold et al. [48] (German vowels). We can see that 
the values range from 0.25 to 0.33.

The constant k is a scale factor that converts the esti-
mated values of x(t) and y(t) to centimeters. Unlike with 
the proportion parameter α, this constant is not necessary 
for the Sigma-lognormal model. However, a reasonable 
value of k facilitates understanding of the model.

To find this reasonable value, we can use the already 
known relationship between L2 and k given by:

k is thus obtained as

To calculate the k value associated with a real movement, 
the L2 value can be obtained from the results presented by 
Whitfield et al. [49], where the movement needed to utter the 
sentence “It’s time to shop for two new suits” was measured 
in 20 subjects with sensors. We take the values obtained with 
the tongue front marker (TF) in mm, the mean of the range 
of F2, and the parameter α rounded to 0.3. This leads to a k 
factor of about 0.04 mm/Hz, which keeps the peak velocities 
similar to the ones presented in [50].

Sigma‑Lognormal Analysis

Once the trajectory has been estimated, it is modeled with 
the kinematic theory of rapid human movements through 
the Sigma-lognormal model, as is explained in “Overview 
of the Sigma-Lognormal Model”. The kinematic theory is 
applied in an attempt to model the speech kinematics as a 
synchronized summation of simple overlapped movements, 
inspired by how the brain issues time-spaced commands 
to the articulatory organs. As such, speech is modeled as 
a global movement instead of a single muscle or group of 
muscles modeled independently.

The hypothesis underlining the application of this model 
to speech posits that a lognormal in speech has a similar 
meaning as in handwriting, a primitive that has been widely 
tried and tested. Therefore, in the case of speech, the num-
ber of lognormals would be related to the number of simple 

(18)L2 = c2(F2i − F2u) = k�(F2i − F2u)

(19)k =
L2

�(F2i − F2u)

Table 1   Value estimated from different previous works

Reference Gender �mean �min �max

Hillenbrand et al. in (47) (English) Male 0.27 0.25 0.33
Female 0.258 0.25 0.33

Pätzold (48) (German) Male 0.28 0.26 0.30
Female 0.29 0.25 0.31
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articulatory movements for a natural and healthy speech. 
Hence, the number of lognormals should be related to the 
number of speech sounds uttered and their timing. Obvi-
ously, it is expected that a neuromotor dysfunction will affect 
the number, shape, and time of occurrence of the lognor-
mals, as is the case in handwriting [19]. These neuromotor 
dysfunctions can be due to normal aging or neurodegenera-
tive diseases. In the special case of laryngeal pathologies, 
which affect only the closing of the glottis and voice source, 
they should not affect the timing parameters and the lognor-
mal shape for subjects of the same age, but they could result 
in more simple movements due to the effort needed to talk 
and to the pauses in the pronunciation of a sentence.

Beyond the sequence of lognormal parameters 
P =

{
Dj, toj�j, �j,Θej,Θsj,VTPj - 1

}NbLog

j=1
 , it makes sense to 

define and use supplementary parameters related to the tim-
ing intervals between lognormals and lognormal shapes. 
Such parameters can help improve our understanding of 
some diseases. Examples of these parameters include:

•	 Δto : the mean of the time between successive lognor-
mals, that is, the mean of the time difference between the 
current lognormal and the previous one:

•	 Vp : the average of the maximum velocity of the Nblog 
lognormals:

•	 � : the mean of the log time delay:

•	 � : the mean of the lognormal response time:

•	 D : the mean of the lognormal distance covered in the 
kinematic space:
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∑NbLog
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NbLog
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NbLog
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NbLog

(23)� =
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j = 1
�j

NbLog

(24)D =

∑NbLog

j=1
�Dj�

NbLog

Evaluation, Results, and Discussion

The evaluation of the model is aimed at answering the fol-
lowing three questions:

1.	 What is the meaning of each lognormal in speech?
2.	 Which range of α (the proportion between F1 and F2) is 

adequate to apply the Sigma-lognormal model?
3.	 Do the speech lognormal parameters model aging phe-

nomena in speech?

Databases

In handwriting, a lognormal expresses a primitive move-
ment, related to a simple stroke. If a lognormal in speech 
retains a similar meaning, strokes should be associated 
with simple speech movements that are linked to the move-
ments needed to pronounce a speech sound. To check this 
hypothesis, we used the VTR-TIMIT database [51, 52]. 
The advantage of this database is that the formants it con-
tains have been manually annotated and the phonemes 
labeled, providing the background that allows correlating 
lognormals to phonemes.

The VTR-TIMIT [51] database is composed of 538 
English utterances from the TIMIT corpus [52], with pho-
netically compact sentences (SX) and phonetically diverse 
sentences (SI). The VTR-TIMIT database is labeled by 
phonemes. In this experiment, we use the complete dataset 
of 197 speakers and 538 utterances in total. The database 
is balanced in terms of speakers, dialects, gender, and pho-
nemes [51].

Furthermore, as the Sigma-lognormal model links log-
normals to the impulse response of a neuromotor system, it 
is assumed that only neurodegenerative or neuromotor dis-
eases will affect the lognormal parameters in fluent speech. 
To assess this premise, we used the Saarbruecken Voice 
Database [53]. This database contains healthy speakers as 
well as speakers with laryngeal pathologies. The database 
is labeled with the speaker’s age and the kinds of patholo-
gies they have.

The Saarbruecken Voice Database [53] is a collection 
of German speech recordings from more than 2000 speak-
ers. The sentence recorded is “Guten Morgen, wie geht es 
Ihnen?” (“Good morning, how are you?”). For our experi-
ments, we divided this database into three groups:

•	 Young speakers’ group, which encompassed speak-
ers aged between 20 and 30. It included both healthy 
speakers and speakers with laryngeal pathologies. 
There was a total of 609 speakers, with 236 males and 
373 females.
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•	 Middle speakers’ group, which encompassed speakers 
aged between 40 and 50, containing healthy speakers and 
speakers and with laryngeal pathologies. There were a 
total of 352 speakers: 177 males and 175 females.

•	 Older speakers’ group, which included all speakers aged 
60 to 80 years old. All in all, there were 466 speakers in 
this group: 262 males and 204 females.

All the recordings were made in a controlled environment 
at a sampling frequency of 50 kHz and a 16-bit resolution. 
The recordings contained 71 different laryngeal pathologies, 
including some organic and functional members.

The term laryngeal pathologies (LP) comprises a wide 
range of disorders, the most frequent ones being organic, 
and affecting the morphology of the excitation organs and 
producing irregular vibration patterns [54]. Some examples 
of these disorders are polyps, nodules, edemas, and carcino-
mas. The phonation in these cases is characterized by noisy 
bands in the spectrogram, instability in the vibration fre-
quency of the vocal cords, irregular airflow, and the presence 
of turbulent noise.

Experiment 1: Meaning of Lognormal in Speech 
and ̨  Empirical Estimation

To assess the meaning of a lognormal in speech, the first 
experiment aimed to study the relationship between lognor-
mals and phonemes. Additionally, as the velocity is a func-
tion of α (the proportion between formants), the optimum 

values of this constant are estimated in this experiment to 
be compared with the theoretical estimation in “Formants 
to End Effector Kinematics.”

For this assessment, we employed the publicly avail-
able VTR-TIMIT database of continuous speech, which is 
labeled by phonemes, thus providing the number of pho-
nemes (Np) in each sentence. All the sentences of this data-
base were analyzed by ScriptStudio [31] and decomposed 
into a sequence of lognormals. The number and timing of 
lognormals were compared with the phonemic labels of the 
database. The velocity was obtained from the formant track 
provided by the dataset.

An example of such an analysis is shown in Fig. 5. It cor-
responds to an excerpt (“Their records”) from the sentence 
“How permanent are their records?” in English. In this fig-
ure, we can observe the speech waveform, the spectrogram 
with its formant track, and the lognormal decomposition of 
the velocity. In Fig. 5, it can be seen that there are almost as 
many phonemes as there are lognormals. Besides, the log-
normals are temporally ahead of the phoneme as the move-
ment between two phonemes precedes the sound. This is 
shown in Fig. 6, which is zoomed in Fig. 5. Further, we can 
observe how the velocity peak usually appears alongside 
the phoneme transition, since a fast change in the resonance 
cavities is required to pronounce the next sound. As well, we 
can see that when the duration of the phonemes is long or 
the articulation of the phoneme requires the pronunciation of 
more than one simple movement, more than one lognormal 
appears, as is the case between 1.1 and 1.2 s in Fig. 5.

Fig. 5   Relationship between 
phonemes and lognormals. 
Figure at the top: speech signals 
(“their records”) segmented by 
phonemes, figure in the middle: 
spectrogram, and figure at the 
bottom: lognormal decomposi-
tion (color changes for even 
and odd lognormals), velocity 
profile (dotted line), and TIMIT 
phoneme segmentation (blue 
bars)
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To illustrate how the correspondence between the pho-
nemes and lognormals is obtained from a sentence, a study 
was carried, looking at one phoneme after the other. For 
each phoneme, four possibilities were considered:

1.	 True positive (TP): A lognormal of the sentence that 
overlaps the phoneme is assigned to it. In this case, 
TPi  = 1, with i being the index of the phoneme.

2.	 False positive (FP): Other lognormals of the sentence 
that overlap the phoneme in study. In this case, FPi is set 
to the number of lognormals that overlap the phoneme 
minus 1.

3.	 False negative (FN): If no one lognormal overlaps the 
phoneme, FNi is set to 1.

4.	 True negative (TN): The set of lognormals that belong 
to the sentence do not overlap the phoneme. In this case, 
TNi is set to the number of lognormals that do not over-
lap the phoneme.

Note that TPi + FPi + TNi is equal to the number of 
lognormals of the sentence. The bounds of the lognormals 
are considered at 5% of its peak value. The measurements 
of the matching between the phonemes of the sentence and 
the lognormals obtained with the sentence are given in 
terms of the true positive rate and true negative rate of the 
sentence and are calculated as TPRs =

�∑Np

i=1
TPi

��
Np and 

TNRs =
�∑Np

i=1
TNi

��
(NbLog − 1) , respectively. The TPR 

and TNR of the VTR-TIMIT dataset are obtained by aver-
aging the TPRs and TNRs of all the sentences in it. 

Figure 7 shows TPR and TNR curves per gender and the 
mean value of both as a function of α. Although this α 
value used to work out the velocity from the formant track 
Eqs. 9-11 was obtained theoretically in Eq. 17, it can be 
empirically validated to obtain the TPR and TNR for dif-
ferent α values.

Moreover, to see the correlation between the velocity 
peak occurrence (tv) and the phoneme transition (tp), the 
relationship between them, as seen in Fig. 8, is obtained 
through the error rate ( �t ) as:

Fig. 6   Room-in of Fig. 5 to 
show the exact correspond-
ence between phoneme and 
lognormal

Fig. 7   TPR and TNR curves across the VTR-TIMIT database as a 
function of F1-F2 proportion value α. The value of the lognormal is 
greater than the 5% of its peak value
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For the experiments, although the value of k (see Eq. 19) 
does not affect the velocity profile shape or the result, it 
is approximated to 0.04 to keep a velocity peak close to 
200 mm/s as measured by the sensors in [50].

We can see in Fig. 7 that the TPR curves get the maxi-
mum values of α around to 0.35. Further, as seen in Fig. 8, 
the �t gets minimum values for α lying between 0.2 and 0.4, 
which means that the lognormal peak is closest to the pho-
neme in healthy adults. These results show that for both 
males and females, this procedure is effective and not overly 
sensitive to the value of α in the 0.2 ≤ α ≤ 0.4 range, which 
is similar to the value proposed in “Formants to End Effec-
tor Kinematics.”. Note that to pronounce some phonemes, 
more than one simple movement is required, and each sub-
ject could need a different α value.

Experiment 2: Speech Lognormals, Aging, 
and Laryngeal pathologies

As speakers get older, their neuromotor systems deterio-
rate and movements require additional effort and become 
slower. In handwriting, this implies additional short strokes 
and slow handwriting. The same should apply to speech: a 
greater number of short movements or small lognormals 
and more time between these lognormals than in young 
speakers.

In this context, to gain insights into the meaning of a 
lognormal representation in speech, the second experiment 

(25)�t =

√√√√ 1

Np

Np∑
i=1

(tvi − tpi)
2 compared the lognormals detected in young and older speak-

ers, including subjects with laryngeal pathologies.
The experiment was run with the Saarbruecken Voice 

Database, which labels recorded sentences with the age of 
the speakers and allows comparisons between the results 
obtained with the groups of young and older speakers. In 
the cases where result shows a significant difference (NbLog, 
Δto,� , SNR) the experiments were repeated in order to eval-
uate the evolution of the parameters along three age groups 
(young, middle, and older) (Table 5). Gender is omitted in 
the analyses that follow since the experiments in “Experi-
ment 1: Meaning of Lognormal in Speech and Empirical 
Estimation” show similar results for males and females. 

Fig. 8   Error rate across the VTR-TIMIT database as a function of F1-
F2 proportion value α 

Fig. 9   Comparison of the number of lognormals obtained with the 
young, middle, and older groups of speakers obtained from the Saar-
bruecken Voice Database, obtaining the formants with “To formants 
(sl)” method

Fig. 10   Comparison of the number of lognormals obtained from 
healthy young speakers (C) and speakers with laryngeal pathology 
(LP)
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Moreover, gender is reasonably balanced in the database, 
and the effect of age and gender cannot be confounded [19].

As the Saarbruecken Voice Database does not provide 
formant tracks, these were obtained with the following two 
formant estimation methods (available in the Praat software 
package [43]):

- “From speech to formant (sl)”: This algorithm is based 
on the implementation of the Split Levinson algorithm pro-
posed by Willems [55]. It always finds the requested num-
ber of formants in every frame, even if they do not exist.

- “From speech to formant (keep all)”: In this case, Praat 
applies a Gaussian-like window and computes the formant 
from the LPC spectrum obtained through the Burg algorithm 
[56, 57].

The following settings were used in the Praat software 
for both methods to determine the first two formants in all 
the sentences of the Saarbruecken Voice Database: time step 
of 0.01 s, maximum number of formants of 5, and window 
length of 0.025 s.

To calculate the speech kinematics, based on the previ-
ous result, the parameter α was set to 0.3 and k to 0.04. The 
speech trajectory was processed with ScriptStudio® [30] to 
decompose the speech kinematics into lognormals.

The results are graphically shown in Figs. 9 and 10, 
and numerically in Tables 2-5. These tables also include 
the averaged values and the standard deviation of all the 
lognormal parameters, along with a one-way ANOVA 
(analysis of variance) [58]. Multiple comparison tests with 
Bonferroni correction are used when three classes (young, 
middle, and older) are analyzed. In this type of analysis, 
two groups are considered as statistically different if the 
residual p value is below 0.05 and statistically similar if 
the p value is above 0.05 [58].

The findings can be summarized as follows:

1.	 Δto is sensitive to the speaker’s age. While there is a 
significant difference between the young versus the older 
speakers (p value <0.001), there is no significant statisti-
cal variation between healthy speakers and speakers with 
laryngeal pathologies for this parameter (Tables 3-5). 
This means that the time between commands increases 
with age [19], due to the increase in Δt0 , but not with 
laryngeal pathologies. This is consistent with the well-
known fact regarding slower reaction times in these con-
ditions.

2.	 The number of lognormals (NbLog) is greater for the 
group of older speakers than for the group of young 

Table 2   Averaged and 
standard deviation value of the 
lognormal parameters for young 
and older groups (parameter 
with statistically significant 
difference in italic)

Formant estimation method

“To formant (keep all)” “To formant (sl)”

Parameter Young (20–30) Older (60–80) p value Young (20–30) Older (60–80) p value

Δto 0.066 ± 0.008 0.068 ± 0.008  < 0.001 0.067 ± 0.007 0.07 ± 0.007 < 0.001

NbLog 25 ± 6.03 33 ± 9.48 < 0.001 24 ± 6.2 34 ± 9.4 < 0.001
� 0.12 ± 0.04 0.12 ± 0.03 0.22 0.14 ± 0.05 0.13 ± 0.04 0.0623
� − 1.55 ± 0.16 − 1.52 ± 0.14 0.16 − 1.6 ± 0.17 − 1.56 ± 0.14 < 0.001

Vp
23.17 ± 4.3 23.84 ± 5 0.06 14.2 ± 2.19 13.87 ± 2.1 0.055

D 1.22 ± 0.22 1.24 ± 0.24 0.23 0.8 ± 0.12 0.78 ± 0.04 0.14

SNR 19.95 ± 3.4 19.23 ± 3.7 < 0.001 18.27 ± 3.58 17.55 ± 3.54 0.002

Table 3   Averaged value of the 
lognormal parameters for young 
healthy speakers and speakers 
with laryngeal pathologies 
(parameter with statistically 
significant difference in italic)

Formant estimation method

“To formant (keep all)” “To formant (sl)”

Parameter Control (20–30) LP (20–30) p value Control (20–30) LP (20–30) p value

Δt
o

0.067 ± 0.008 0.066 ± 0.008 0.06 0.067 ± 0.0077 0.067 ± 0.007 0.97
NbLog 24 ± 4.5 26 ± 7.6  < 0.001 23 ± 4.7 26 ± 8  < 0.001
� 0.12 ± 0.05 0.118 ± 0.05 0.32 0.15 ± 0.04 0.15 ± 0.05 0.71
� − 1.55 ± 0.18 − 1.54 ± 0.14 0.46 − 1.60 ± 0.17 − 1.60 ± 0.17 0.5

Vp
23.68 ± 4.81 23.38 ± 4.04 0.74 14.2 ± 2.18 14.14 ± 1.93 0.98

D 1.25 ± 0.25 1.22 ± 0.2 0.33 0.79 ± 0.12 0.79 ± 0.1 0.84

SNR 20 ± 3.2 19.5 ± 3.5 0.01 18.98 ± 3.56 17.62 ± 3.65 0.04
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speakers (Tables 2 and 5; Fig.  9). The p value is 
lower than 0.001 with both formant estimation algo-
rithms. This is consistent with the results observed 
in handwriting, where the kinematic theory was used 
to evaluate aging. The results might suggest that the 
deterioration of motor control with aging is associ-
ated with the development of compensatory strate-
gies such as emitting more motor commands to gen-
erate an adequate movement for a given task [19]. A 
significant difference is also observed between young 
healthy and LP speakers in the number of lognor-
mals Fig. 10, Table 3). This type of disease should, 
therefore, influence the number of lognormals due to 
increases in the number of simple movements follow-
ing necessary pauses and silences in a sentence.

3.	 The SNR parameter decreases and the number of log-
normals (NbLog) increases in both older people and 
the LP group in young people (Table 3), with the 
difference being more significant with age than with 
laryngeal disease.

4.	 The � parameter increases with age, indicating that 
the impulse response of the system is slower in the 
case of older speakers. This difference is only appre-
ciated with the “from speech to formant (sl)” method 
(Table 2), and this could be because this formant 
extraction method always gives the requested num-
ber of formants in every frame, allowing the best 

interpolation of the complete movement in the case 
of consonants.

5.	 Regarding the parameters � , Vp , and D , in Tables 2-4, 
no significant difference can be seen between the two 
age groups.

6.	 If we compare the three age groups (Table 5) only with 
the NbLog parameter, significant differences are found 
between the three classes (Fig. 9).

Discussion

The results show how the Sigma-lognormal model can be 
applied to model neuromuscular aging in speech. When 
the speech is modeled, each of the lognormals obtained 
reflects a group of commands and their end muscular 
response shapes. Neurological diseases, learning pro-
cesses, or aging can affect this command sequence, chang-
ing the proportion of final movements, the speech rate, or 
the muscular response shape, which is consistent with the 
lognormality principle [19].

In the above results, the parameters related to the time 
between commands ( Δto ) and the delay in the muscular 
response ( � ) are longer in older people, as the movements 
become slower with age. Moreover, the experiments show 
a clear relationship between the number of simple move-
ments found by the model and the number of pronounced 
phonemes. This relationship is conditional on the propor-
tion between the first and second formants used to estimate 

Table 4   Averaged value of the 
lognormal parameters for older 
healthy speakers and speakers 
with laryngeal pathologies

Formant estimation method

“To formant (keep all)” “To formant (sl)”

Parameter Control (60–80) LP (60–80) p value Control (60–80) LP (60–80) p value

Δto 0.069 ± 0.009 0.068 ± 0.008 0.64 0.068 ± 0.007 0.069 ± 0.007 0.50
NbLog 30 ± 8.8 33 ± 8.5 0.05 30 ± 8.2 33 ± 9.5 0.13
� 0.10 ± 0.04 0.12 ± 0.04 0.17 0.13 ± 0.04 0.14 ± 0.04 0.39
� − 1.47 ± 0.17 − 1.52 ± 0.14 0.18 − 1.58 ± 0.14 − 1.56 ± 0.14 0.53

Vp
23.81 ± 4.5 23.82 ± 5 0.34 14.3 ± 1.95 13.86 ± 2.1 0.40

D 1.20 ± 0.24 1.25 ± 0.25 0.39 0.76 ± 0.1 0.78 ± 0.1 0.71

SNR 18.58 ± 3.1 19.3 ± 3.7 0.52 18.14 ± 3.7 17.74 ± 3.5 0.88

Table 5   Averaged and STD values of the lognormal parameters for young, middle, and older speakers with laryngeal pathologies (“To formant 
(sl)”)

Parameter Young (40–30) Middle (40–50) Older (60–80) p value Y vs M p value Y vs O p value M vs O

Δt
o

0.067 ± 0.007 0.069 ± 0.007 0.07 ± 0.007 0.02  < 0.001 1
NbLog 24 ± 6.2 39.31 ± 7.8 34 ± 9.4  < 0.001  < 0.001  < 0.001
� − 1.6 ± 0.17 − 1.59 ± 0.15 − 1.56 ± 0.14 1  < 0.001 0.007
SNR 18.27 ± 3.58 18.17 ± 3.46 17.55 ± 3.54 1  < 0.001 0.05
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the trajectory, as we tested with the experiments. Also, the 
method used to detect the formants can affect the param-
eters obtained, providing the Sigma-lognormal method with 
information on how the formant extractor is able to follow 
muscular movements.

The model was tested with two different languages (English 
and German) and seems to be language-independent, as has 
also been observed when the lognormal model is applied in 
handwriting [59].

Conclusions

A Sigma-lognormal representation for modeling speech 
kinematics has been presented. The speech kinematics is 
estimated from the formant tracks and decomposed into 
simple lognormal movements by applying the kinematic 
theory of rapid human movements. Moreover, besides the 
Sigma-lognormal parameters, a set of derived parameters 
is proposed to describe the timing and the neuromotor 
impulse response.

The experiments conducted illustrate the lognormal mean-
ing in speech and indicate the adequate relation between first 
and second formants in order to get the kinematic information. 
The first experiment shows the link between a lognormal and 
a transition between phonemes, where the number of the log-
normals is similar to that of phonemes. In this experiment, that 
the optimum proportion between the first and second formants 
was also verified. The second experiment links the lognormal 
to the generation of each end effector movement, showing that 
the parameter Δto , as in handwriting, increases significantly 
from young to older speakers, and that it is independent of 
dysfunction, such as problems in the larynx or glottis closure. 
This allows modeling aging in speech production as a delay 
between commands and the end effector responses.

The results show that it is possible to model speech with 
the kinematic theory, which provides biological informa-
tion about the simple movements involved in speech.

As future lines of research, the model could be applied 
to speech synthesis, speech recognition, speech rehabili-
tation, as well as to the design of systems to help in the 
screening and monitoring of some neurodegenerative dis-
eases. The model could also permit the use of features 
similar to those obtained from studying other human 
movements, such as handwriting. Moreover, investigating 
the use of more formants to estimate speech kinematics is 
an unresolved issue that is yet to be addressed.
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