Skip to main content
Log in

Cognitively Inspired Multi-attribute Decision-making Methods Under Uncertainty: a State-of-the-art Survey

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

In the last decades, the art and science of multi-attribute decision-making (MADM) have witnessed significant developments and have found applications in many active areas. A lot of research has demonstrated the ability of cognitive techniques in dealing with complex and uncertain decision information. The purpose of representing human cognition in the decision-making process encourages the integration of cognitive psychology and multi-attribute decision-making theory. Due to the emergence of research on cognitively inspired MADM methods, we make a comprehensive overview of published papers in this field and their applications. This paper has been grouped into five parts: we first conduct some statistical analyses of academic papers from two angles: the development trends and the distribution of related publications. To illustrate the basic process of cognitively inspired MADM methods, we present some underlying ideas and the systematic structure of this kind of method. Then, we make a review of cognitively inspired MADM methods from different perspectives. Applications of these methods are further reviewed. Finally, some challenges and future trends are summarized. This paper highlights the benefits of the synergistic approach that is developed based on cognitive techniques and MADM methods and identifies the frontiers in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Figueira J, Greco S, Ehrgott M. Multiple criteria decision analysis: state of the art surveys. New York: Springer; 2005.

    Book  MATH  Google Scholar 

  2. Roy B. The outranking approach and the foundations of ELECTRE methods. Theor Decis. 1991;31(1):49–73.

    Article  MathSciNet  Google Scholar 

  3. Brans JP, Vincke PH. A preference ranking organization method (the PROMETHEE method for multiple criteria decision-making). Manage Sci. 1985;31(6):647–56.

    Article  MATH  Google Scholar 

  4. Onari MA, Rezaee MJ. A fuzzy cognitive map based on Nash bargaining game for supplier selection problem: a case study on auto parts industry. Oper Res. 2020.

  5. Jacquetlagreze E, Siskos J. Assessing a set of additive utility-functions for multicriteria decision-making, the UTA method. Eur J Oper Res. 1982;10(2):151–64.

    Article  MATH  Google Scholar 

  6. Saaty TL. A scaling method for priorities in hierarchical structures. J Math Psychol. 2000;15(3):234–81.

    Article  MathSciNet  MATH  Google Scholar 

  7. Saaty TL. Decision making - the analytic hierarchy and network processes (AHP/ANP). J Syst Sci Syst Eng. 2004;13(1):1–35.

    Article  Google Scholar 

  8. Costa BE. MACBETH — an interactive path towards the construction of cardinal value functions. Int Trans Oper Res. 2010;1(4):489–500.

    Article  MATH  Google Scholar 

  9. Ahmadi K, Ebrahimi M. A novel algorithm based on information diffusion and fuzzy MADM methods for analysis of damages caused by diabetes crisis. Appl Soft Comput. 2019;76:205–20.

    Article  Google Scholar 

  10. Azimi SAZ, Makui A. Prioritizing the components affecting patient’s satisfaction with healthcare services using multiple attribute decision making technique. Ind Eng Manag Syst. 2017;16(4):479–85.

    Google Scholar 

  11. Baykasoglu A, Kaplanoglu V, Durmusoglu ZDU, Sahin C. Integrating fuzzy DEMATEL and fuzzy hierarchical TOPSIS methods for truck selection. Expert Syst Appl. 2013;40(3):899–907.

    Article  Google Scholar 

  12. Poh KL, Ang BW. Transportation fuels and policy for Singapore: an AHP planning approach. Comput Ind Eng. 1999;37(3):507–25.

    Article  Google Scholar 

  13. Soner O, Celik E, Akyuz E. Application of AHP and VIKOR methods under interval type 2 fuzzy environment in maritime transportation. Ocean Eng. 2017;129:107–16.

    Article  Google Scholar 

  14. Tzeng GH, Lin CW, Opricovic S. Multi-criteria analysis of alternative-fuel buses for public transportation. Energy Policy. 2005;33(11):1373–83.

    Article  Google Scholar 

  15. Chou S-Y, Chang Y-H. A decision support system for supplier selection based on a strategy-aligned fuzzy SMART approach. Expert Syst Appl. 2008;34(4):2241–53.

    Article  Google Scholar 

  16. Kannan D, Khodaverdi R, Olfat L, Jafarian A, Diabat A. Integrated fuzzy multi criteria decision making method and multi-objective programming approach for supplier selection and order allocation in a green supply chain. J Clean Prod. 2013;47:355–67.

    Article  Google Scholar 

  17. Kim GT, Park CS, Yoon KP. Identifying investment opportunities for advanced manufacturing systems with comparative-integrated performance measurement. Int J Prod Econ. 1997;50(1):23–33.

    Article  Google Scholar 

  18. Yang T, Hung C-C. Multiple-attribute decision making methods for plant layout design problem. Robot Comput Integr Manuf. 2007;23(1):126–37.

    Article  Google Scholar 

  19. Yao Y. Three-way decisions and cognitive computing. Cogn Comput. 2016;8(4):543–54.

    Article  Google Scholar 

  20. Shen K-Y, Yan M-R, Tzeng G-H. Combining VIKOR-DANP model for glamor stock selection and stock performance improvement. Knowl-Based Syst. 2014;58:86–97.

    Article  Google Scholar 

  21. Ustinovichius L, Zavadskas EK, Podvezko V. Application of a quantitative multiple criteria decision making (MCDM-1) approach to the analysis of investments in construction. Control Cybern. 2007;36(1):251–68.

    MATH  Google Scholar 

  22. Chen M, Herrera F, Hwang K. Cognitive computing: architecture, technologies and intelligent applications. IEEE Access. 2018;6:19774–83.

    Article  Google Scholar 

  23. Farhadinia B. Determination of entropy measures for the ordinal scale-based linguistic models. Inf Sci. 2016;369:63–79.

    Article  MathSciNet  MATH  Google Scholar 

  24. Farhadinia B, Xu ZS. Distance and aggregation-based methodologies for hesitant fuzzy decision making. Cogn Comput. 2017;9(1):81–94.

    Article  Google Scholar 

  25. Farhadinia B, Herrera-Viedma E. Entropy measures for hesitant fuzzy linguistic term sets using the concept of interval-transformed hesitant fuzzy elements. Int J Fuzzy Syst. 2018;20(7):2122–34.

    Article  Google Scholar 

  26. Kushniruk AW, Patel VL. Cognitive evaluation of decision making processes and assessment of information technology in medicine. Int J Med Informatics. 1998;51(2–3):83–90.

    Article  Google Scholar 

  27. Shapiro MJ, Bonham GM. Cognitive process and foreign policy decision-making. Int Stud Quart. 1973;17(2):147–74.

    Article  Google Scholar 

  28. Baykasoglu A, Golcuk I. Comprehensive fuzzy FMEA model: a case study of ERP implementation risks. Oper Res Int Journal. 2020;20(2):795–826.

    Article  Google Scholar 

  29. Newell BR, Broeder A. Cognitive processes, models and metaphors in decision research. Judgm Decis Mak. 2008;3(3):195–204.

    Article  Google Scholar 

  30. Bisdorff R. Cognitive support methods for multi-criteria expert decision making. Eur J Oper Res. 1999;119(2):379–87.

    Article  MathSciNet  MATH  Google Scholar 

  31. Baykasoglu A, Golcuk I. Development of a novel multiple-attribute decision making model via fuzzy cognitive maps and hierarchical fuzzy TOPSIS. Inf Sci. 2015;301:75–98.

    Article  Google Scholar 

  32. Atanassov K, Gargov G. Interval valued intuitionistic fuzzy-sets. Fuzzy Sets Syst. 1989;31(3):343–9.

    Article  MathSciNet  MATH  Google Scholar 

  33. Farhadinia B. A cognitively inspired knowledge-based decision-making methodology employing intuitionistic fuzzy sets. Cogn Comput. 2020;12(3):667–78.

    Article  MathSciNet  Google Scholar 

  34. Luna-Urquizo J. Learning management system personalization based on multi-attribute decision making techniques and intuitionistic fuzzy numbers. Int J Adv Comput Sci Appl. 2019;10(11):669–76.

    Google Scholar 

  35. Meng F, Wang C, Chen X. Linguistic interval hesitant fuzzy sets and their application in decision making. Cogn Comput. 2016;8(1):52–68.

    Article  Google Scholar 

  36. Zhao N, Xu ZS, Liu F. Group decision making with dual hesitant fuzzy preference relations. Cogn Comput. 2016;8(6):1119–43.

    Article  Google Scholar 

  37. Meng F, Tan C, Zhang Q. An approach to multi-attribute group decision making under uncertain linguistic environment based on the Choquet aggregation operators. J Intell Fuzzy Syst. 2014;26(2):769–80.

    Article  MathSciNet  MATH  Google Scholar 

  38. Liu P, Tang G. Multi-criteria group decision-making based on interval neutrosophic uncertain linguistic variables and Choquet integral. Cogn Comput. 2016;8(6):1036–56.

    Article  Google Scholar 

  39. Han CH, Kim JK, Choi SH. Prioritizing engineering characteristics in quality function deployment with incomplete information: a linear partial ordering approach. Int J Prod Econ. 2004;91(3):235–49.

    Article  Google Scholar 

  40. Tao Z, Liu X, Zhou L, Chen H. Rank aggregation based multi-attribute decision making with hybrid Z-information and its application. J Intell Fuzzy Syst. 2019;37(3):4231–9.

    Article  Google Scholar 

  41. Wang J-Q, Cao Y-X, Zhang H-Y. Multi-criteria decision-making method based on distance measure and Choquet integral for linguistic Z-numbers. Cogn Comput. 2017;9(6):827–42.

    Article  Google Scholar 

  42. Pei Z. Rational decision making models with incomplete weight information for production line assessment. Inf Sci. 2013;222:696–716.

    Article  MathSciNet  MATH  Google Scholar 

  43. Hajek P, Prochazka O. Interval-valued intuitionistic fuzzy cognitive maps for supplier selection, in Intelligent Decision Technologies,KES-IDT 2017, Pt I, I. Czarnowski, R.J. Howlett, and L.C. Jain, Editors. 2017;2018:207–17.

    Google Scholar 

  44. Frysak J, Bernroider EWN. Digital gamified effort feedback mechanism to enhance information coverage in multi-attribute decision-making. 8th International Conference on Information, Intelligence, Systems & Applications. 2017.

  45. Kosko B. Fuzzy cognitive maps. Int J Man Mach Stud. 1986;24(1):65–75.

    Article  MATH  Google Scholar 

  46. Dogu E, Albayrak YE. Criteria evaluation for pricing decisions in strategic marketing management using an intuitionistic cognitive map approach. Soft Comput. 2018;22(15):4989–5005.

    Article  Google Scholar 

  47. Ferretti V. From stakeholders analysis to cognitive mapping and Multi-Attribute Value Theory: an integrated approach for policy support. Eur J Oper Res. 2016;253(2):524–41.

    Article  MathSciNet  MATH  Google Scholar 

  48. Onari MA, Rezaee MJ. A fuzzy cognitive map based on Nash bargaining game for supplier selection problem: a case study on auto parts industry. Oper Res. 2020;(1–4).

  49. Han Y, Deng Y. A hybrid intelligent model for assessment of critical success factors in high-risk emergency system. J Ambient Intell Humaniz Comput. 2018;9(6):1–21.

    Article  Google Scholar 

  50. Mendoza GA, Prabhu R. Qualitative multi-criteria approaches to assessing indicators of sustainable forest resource management. For Ecol Manage. 2003;174(1–3):329–43.

    Article  Google Scholar 

  51. Franco LA, Lord E. Understanding multi-methodology: evaluating the perceived impact of mixing methods for group budgetary decisions. Omega. 2011;39(3):362–72.

    Article  Google Scholar 

  52. Montibeller G, Belton V, Ensslin FA. Reasoning maps for decision aid: an integrated approach for problem-structuring and multi-criteria evaluation. J Oper Res Soc. 2008;59(5):575–89.

    Article  MATH  Google Scholar 

  53. Hajek P, Froelich W. Integrating TOPSIS with interval-valued intuitionistic fuzzy cognitive maps for effective group decision making. Inf Sci. 2019;485:394–412.

    Article  Google Scholar 

  54. Atanassov KT. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986;20(1):87–96.

    Article  MATH  Google Scholar 

  55. Atanassov KT. Operators over interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 1994;64(2):159–74.

    Article  MathSciNet  MATH  Google Scholar 

  56. Bose U, Paradice DB. The effects of integrating cognitive feedback and multi-attribute utility-based multicriteria decision-making methods in GDSS. Group Decis Negot. 1999;8(2):157–82.

    Article  Google Scholar 

  57. Harmon J. Electronic meetings and intense group conflict: effects of a policy-modeling performance support system and an audio communication support system on satisfaction and agreement. Group Decis Negot. 1998;7(2):131–53.

    Article  Google Scholar 

  58. Westenberg MRM, Koele P. Multi-attribute evaluation processes: methodological and conceptual issues. Acta Physiol (Oxf). 1994;87(2–3):65–84.

    Google Scholar 

  59. Wang D, Liu D, Ding H, Singh VP, Wang Y, Zeng X, Wu J, Wang L. A cloud model-based approach for water quality assessment. Environ Res. 2016;148:24–35.

    Article  Google Scholar 

  60. Bröder A, Schiffer S. Bayesian strategy assessment in multi-attribute decision making. J Behav Decis Mak. 2010;16(3):193–213.

    Article  Google Scholar 

  61. Zhou J, Sun L, Liu Y, Xia R. Secure routing algorithm based on link multi-attribute decision for cognitive radio network. 2011 International Conference on Intelligent Computation and Industrial Application, ed. J. Hu. 2011:386–389.

  62. Liang DC, Wang M, Xu ZS, Liu D. Risk appetite dual hesitant fuzzy three-way decisions with TODIM. Inf Sci. 2020;507:585–605.

    Article  MathSciNet  MATH  Google Scholar 

  63. Abosuliman SS, Abdullah S, Qiyas M. Three-way decisions making using covering based fractional orthotriple fuzzy rough set model. Mathematics. 2020;8(7).

  64. Liang DC, Xu ZS, Liu D, Wu Y. Method for three-way decisions using ideal TOPSIS solutions at Pythagorean fuzzy information. Inf Sci. 2018;435:282–95.

    Article  MathSciNet  MATH  Google Scholar 

  65. Luo C, Ju Y, Giannakis M, Dong P, Wang A. A novel methodology to select sustainable municipal solid waste management scenarios from three-way decisions perspective. J Clean Prod. 2021;280.

  66. Ma W, Lei W, Sun B. Three-way group decisions under hesitant fuzzy linguistic environment for green supplier selection. Kybernetes. 2020;49(12):2919–45.

    Article  Google Scholar 

  67. Ma W, Lei W, Sun B. Three-way group decisions based on multigranulation hesitant fuzzy decision-theoretic rough set over two universes. J Intell Fuzzy Syst. 2020;38(2):2165–79.

    Article  Google Scholar 

  68. Ye J, Zhan J, Xu ZS. A novel decision-making approach based on three-way decisions in fuzzy information systems. Inf Sci. 2020;541:362–90.

    Article  MathSciNet  Google Scholar 

  69. Alberto CE, Antonio CJ, Cerrada C, Javier CF. Group decision making based on a framework of granular computing for multi-criteria and linguistic contexts. IEEE Access. 2019;7:54670–81.

    Article  Google Scholar 

  70. Sheikhian H, Delavar MR, Stein A. A GIS-based multi-criteria seismic vulnerability assessment using the integration of granular computing rule extraction and artificial neural networks. Trans GIS. 2017;21(6):1237–59.

    Article  Google Scholar 

  71. Singh P, Huang Y-P, Wu S-I. An intuitionistic fuzzy set approach for multi-attribute information classification and decision-making. Int J Fuzzy Syst. 2020;22(5):1506–20.

    Article  Google Scholar 

  72. Zhang C, Li D, Liang J. Interval-valued hesitant fuzzy multi-granularity three-way decisions in consensus processes with applications to multi-attribute group decision making. Inf Sci. 2020;511:192–211.

    Article  MathSciNet  MATH  Google Scholar 

  73. Zhang C, Li D, Kang X, Liang Y, Broumi S, Sangaiah AK. Multi-attribute group decision making based on multigranulation probabilistic models with interval-valued neutrosophic information. Mathematics. 2020;8(2).

  74. Zhou D, Dai X. A granulation analysis method for cutting tool material selection using granular computing. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science. 2016;230(13):2323–36.

    Article  Google Scholar 

  75. Ziegler L, Lewis K. Many-attribute decision making using iterative attribute subsets. In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. 2015.

  76. Niu J, Huang C, Li J, Fan M. Parallel computing techniques for concept-cognitive learning based on granular computing. Int J Mach Learn Cybern. 2018;9(11):1785–805.

    Article  Google Scholar 

  77. Pinson S. Multi-expert systems and the evaluation of business risks: the CREDEX system. 8th International Workshop. Expert Syst Appl. 1989:517–538.

  78. Liu J, Fang M, Jin F, Wu C, Chen H. Multi-attribute decision making based on stochastic DEA cross-efficiency with ordinal variable and its application to evaluation of banks sustainable development. Sustainability. 2020;12.

  79. Thuong NTH, Zhang R, Li Z, Hong PTD. Multi-criteria evaluation of financial statement quality based on hesitant fuzzy judgments with assessing attitude. Int J Manag Sci Eng Manag. 2018:1–11.

  80. Tu J, Sun C, Zhang X, Pan H, Cheng R. Maintenance strategy decision for avionics system based on cognitive uncertainty information processing. Eksploatacja I Niezawodnosc-Maintenance and Reliability. 2015;17(2):297–305.

    Article  Google Scholar 

  81. Cooper GJ, Hawkins GE. Investigating consumer decision strategies with systems factorial technology. J Math Psychol. 2019.

  82. Shafia MA, Teimoury E, Rahimi Moghaddam M. Fuzzy Cognitive Map based scenarios using ELECTRE III: applied on housing market. Expert Syst Int J Knowl Eng. 2016;33(5):417–31.

    Google Scholar 

  83. Dabrowski M, Acton T. Modelling preference relaxation in e-commerce. In Fuzzy Systems (FUZZ), 2010 IEEE International Conference on. 2010.

  84. Ji P, Zhang HY, Wang JQ. A projection-based outranking method with multi-hesitant fuzzy linguistic term sets for hotel location selection. Cogn Comput. 2018;10(5):737–51.

    Article  Google Scholar 

  85. Alsarhan A, Kilani Y, Al-Dubai A, Zomaya AY, Hussain A. Novel fuzzy and game theory based clustering and decision making for VANETs. IEEE Trans Veh Technol. 2020;69(2):1568–81.

    Article  Google Scholar 

  86. Yang C, Wang Q, Peng W, Zhang J, Zhu J. A normal wiggly Pythagorean hesitant fuzzy bidirectional projection method and its application in EV power battery recycling mode selection. IEEE Access. 2020;8:62164–80.

    Article  Google Scholar 

  87. Wu Q, Xian YJ, Xu CB, Qin HZ. Study on handover channel selection in cognitive radio based on multi-attribute making decision. Comput Eng Appl. 2011;47(27):158–60.

    Google Scholar 

  88. Xu D. Sustainability prioritization of energy systems by developing an integrated decision support framework with hybrid-data consideration. Sustain Energy Technol Assess. 2020;39.

  89. Cid-Lopez A, Hornos MJ, Alberto CR, Herrera-Viedma E, Chiclana F. Linguistic multi-criteria decision-making model with output variable expressive richness. Expert Syst Appl. 2017;83:350–62.

    Article  Google Scholar 

  90. Pei Z. Rational decision making models with incomplete weight information for production line assessment. Inf Sci. 2013;222:696–716.

    Article  MathSciNet  MATH  Google Scholar 

  91. Yuen KKF. Combining compound linguistic ordinal scale and cognitive pairwise comparison in the rectified fuzzy TOPSIS method for group decision making. Fuzzy Optim Decis Making. 2014;13(1):105–30.

    Article  MathSciNet  MATH  Google Scholar 

  92. Xie WY, Xu ZS, Ren ZL, Herrera-Viedma E. The probe for the weighted dual probabilistic linguistic correlation coefficient to invest an artificial intelligence project. Soft Comput. 2020;24:15389–408.

    Article  Google Scholar 

  93. Cao G. A multi-criteria picture fuzzy decision-making model for green supplier selection based on fractional programming. Int J Comput Commun Control. 2020;15(1).

  94. Wang S, Qu S, Goh M, Wahab MIM, Zhou H. Integrated multi-stage decision-making for winner determination problem in online multi-attribute reverse auctions under uncertainty. Int J Fuzzy Syst. 2019;21(8):2354–72.

    Article  MathSciNet  Google Scholar 

  95. Xie WY, Xu ZS, Ren ZL, Herrera-Viedma E. A new multi-criteria decision model based on incomplete dual probabilistic linguistic preference relations. Appl Soft Comput. 2020;91. https://doi.org/10.1016/j.asoc.2020.106237

  96. Yue C. Attribute normalization approaches to group decision-making and application to software reliability assessment. Cogn Comput. 2020;3:1–25.

    Google Scholar 

  97. Sok-Chul K, Durk-Hun L, Jong-In L, Hyun-Jang K. Development and evaluation of decision guideline in SGTR mitigation process. Proceedings of the International Topical Meeting on Advanced Reactors Safety. 1997;2:695–700.

    Google Scholar 

  98. Bose U. Design and evaluation of a group support system supported process to resolve cognitive conflicts. Comput Hum Behav. 2015;49(aug):303–12.

    Article  Google Scholar 

  99. Wulf D, Bertsch V. A natural language generation approach to support understanding and traceability of multi-dimensional preferential sensitivity analysis in multi-criteria decision making. Expert Syst Appl.  2017.

  100. Yuen KKF. Enhancement of ELECTRE I using compound linguistic ordinal scale and cognitive pairwise comparison. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, USA, 11–14 October 2009.

  101. Ben Zineb A, Ayadi M, Tabbane S and IEEE.QoE-based vertical handover decision management for cognitive networks using ANN. 2017 Sixth International Conference on Communications and Networking. 2017.

  102. Peng Y, Hou Y, Long H, Li H.Improved scaling of spectrum decision mechanism in cognitive radio networks. International Conference on Cyberspace Technology. 2014.

  103. Wen J, Sheng M, Zhang Y. Dynamic hierarchy resource management for heterogeneous cognitive network. J Commun. 2012;33(1):107–13.

    Google Scholar 

  104. Jianqiang Y, Pengyu W. An idle spectrum selection algorithm and its clonal optimization implement in cognitive internet of things. Comp Meas Control. 2013;1631–1633.

  105. Yan J, Zhao L, Li J, Wang Y and IEEE. A network selection strategy in resources mobility environment. 2010 5th International Icst Conference on Communications and Networking in China. 2010.

  106. Mohdiwale S, Sahu M, Sinha GR, Bajaj V. Automated cognitive workload assessment using logical teaching learning-based optimization and PROMETHEE multi-criteria decision making approach. IEEE Sens J. 2020;20:13629–37.

    Article  Google Scholar 

  107. Loganathan J, Janakiraman S, Dumka A. Optimal spectrum-hole detection scheme for cooperative CRN using dynamic weighted VIKOR. Int J Enterp Inf Syst. 2020;16:108–31.

    Article  Google Scholar 

  108. Kim KY, Lee KC, Kwon O. The role of the fuzzy cognitive map in hierarchical semantic net-based assembly design decision making. Int J Comput Integr Manuf. 2008;21(7):803–24.

    Article  Google Scholar 

  109. Della Spina L, Lore I, Scrivo R, Viglianisi A. An integrated assessment approach as a decision support system for urban planning and urban regeneration policies. Buildings. 2017;7(4).

  110. Della Spina L. A multi-level integrated approach to designing complex urban scenarios in support of strategic planning and urban regeneration, In New metropolitan perspectives: local knowledge and innovation dynamics towards territory attractiveness through the implementation of Horizon/E2020/Agenda2030 - vol 1, F. Calabro, L. DellaSpina, and C. Bevilacqua, Editors. 2019;226–237.

  111. Medeiros DFKL, Urtiga MM, Morais DC. Integrative negotiation model to support water resources management. J Clean Prod. 2017;150:148–63.

    Article  Google Scholar 

  112. Moglia M, Sharma AK, Maheepala S. Multi-criteria decision assessments using Subjective Logic: methodology and the case of urban water strategies. J Hydrol. 2012;452:180–9.

    Article  Google Scholar 

  113. Akgun I, Kandakoglu A, Ozok AF. Fuzzy integrated vulnerability assessment model for critical facilities in combating the terrorism. Expert Syst Appl. 2010;37(5):3561–73.

    Article  Google Scholar 

  114. Tikkanen J, Hujala T, Kurttila M. Potentials of collaborative decision support methodologies to enhance reconciliation of competing forest uses—an action research on Regional Forest Programme in Finland. Land Use Policy. 2016;55:61–72.

    Article  Google Scholar 

  115. Afsordegan A, Sanchez M, Agell N, Zahedi S, Cremades LV. Decision making under uncertainty using a qualitative TOPSIS method for selecting sustainable energy alternatives. Int J Environ Sci Technol. 2016;13(6):1419–32.

    Article  Google Scholar 

  116. Sun L, Wang Y. A multi-attribute fusion approach extending Dempster-Shafer theory for combinatorial-type evidences. Expert Syst Appl. 2018;96:218–29.

    Article  Google Scholar 

  117. Dursun M, Karsak EE, Karadayi MA. Assessment of health-care waste treatment alternatives using fuzzy multi-criteria decision making approaches. Resour Conserv Recycl. 2011;57:98–107.

    Article  Google Scholar 

  118. Ozsahin I, Abebe ST, Mok GSP. A multi-criteria decision-making approach for schizophrenia treatment techniques. Arch Psychiatry Psychother. 2020;22(2):52–61.

    Article  Google Scholar 

  119. Marsh K, Caro JJ, Zaiser E, Heywood J, Hamed A. Patient-centered decision making: lessons from multi-criteria decision analysis for quantifying patient preferences. Int J Technol Assess Health Care. 2018;34(1):105–10.

    Article  Google Scholar 

  120. Han Y, Lu Z, Du Z, Luo Q, Chen S. A YinYang bipolar fuzzy cognitive TOPSIS method to bipolar disorder diagnosis. Comput Methods Programs Biomed. 2018;158:1–10.

    Article  Google Scholar 

  121. Su C, Gao Y, Jiang B, Li H. An affective cognition based approach to multi-attribute group decision making. J Intell Fuzzy Syst. 2018;35(1):11–33.

    Article  Google Scholar 

  122. Mohanty PP, Mahapatra SS, Mohanty A, Sthitapragyan A. novel multi-attribute decision making approach for selection of appropriate product conforming ergonomic considerations. Oper Res Perspect. 2018;5:82–93.

    Google Scholar 

  123. Martinez L, Herrera F. An overview on the 2-tuple linguistic model for computing with words in decision making: extensions, applications and challenges. Inf Sci. 2012;207:1–18.

    Article  MathSciNet  Google Scholar 

  124. Liang QL, Mendel JM. Interval type-2 fuzzy logic systems: theory and design. IEEE Trans Fuzzy Syst. 2000;8(5):535–50.

    Article  Google Scholar 

  125. Karnik NN, Mendel JM. Centroid of a type-2 fuzzy set. Inf Sci. 2001;132(1–4):195–220.

    Article  MathSciNet  MATH  Google Scholar 

  126. Torra V. Hesitant fuzzy sets. Int J Intell Syst. 2010;25(6):529–39.

    MATH  Google Scholar 

  127. Yager RR.Pythagorean fuzzy subsets. Proceedings of the 2013 Joint Ifsa World Congress and Nafips Annual Meeting, ed. W. Pedrycz and M.Z. Reformat. 2013:57–61.

  128. Xu ZS, Wang H. On the syntax and semantics of virtual linguistic terms for information fusion in decision making. Inf Fusion. 2016;34:43–8.

    Article  Google Scholar 

  129. Liu PD, Xu HX, Geng YS. Normal wiggly hesitant fuzzy linguistic power Hamy mean aggregation operators and their application to multi-attribute decision-making. Comput Ind Eng. 2020;140:21.

    Article  Google Scholar 

  130. Rodriguez RM, Martinez L, Herrera F. Hesitant fuzzy linguistic term sets for decision making. IEEE Trans Fuzzy Syst. 2012;20(1):109–19.

    Article  Google Scholar 

  131. Pang Q, Wang H, Xu ZS. Probabilistic linguistic term sets in multi-attribute group decision making. Inf Sci. 2016;369:128–43.

    Article  Google Scholar 

  132. Xie WY, Xu ZS, Ren ZL and IEEE. Dual probabilistic linguistic term set and its application on multi-criteria group decision making problems, In 2017 IEEE International Conference on Industrial Engineering and Engineering Management. 2017;1469–1474.

  133. Herrera F, Martinez L. A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans Fuzzy Syst. 2000;8(6):746–52.

    Article  Google Scholar 

  134. Tsadiras AK. Comparing the inference capabilities of binary, trivalent and sigmoid fuzzy cognitive maps. Inf Sci. 2008;178(20):3880–94.

    Article  Google Scholar 

  135. Kottas TL, Boutalis YS, Christodoulou MA. Fuzzy cognitive network: a general framework. Intell Decis Technol. 2007;1(4):183–96.

    Article  Google Scholar 

  136. Mateou NH, Andreou AS. A framework for developing intelligent decision support systems using evolutionary fuzzy cognitive maps. J Intell Fuzzy Syst. 2008;19(2):151–70.

    MATH  Google Scholar 

  137. Wang XZ, Hong JR. On the handling of fuzziness for continuous-valued attributes in decision tree generation. Fuzzy Sets Syst. 1998;99(3):283–90.

    Article  MathSciNet  MATH  Google Scholar 

  138. Bruen M. Systems Analysis - a new paradigm and decision support tools for the water framework directive. Hydrol Earth Syst Sci. 2008;12(3):739–49.

    Article  Google Scholar 

  139. Hajiagha SHR, Daneshvar M, Antucheviciene J. A hybrid fuzzy-stochastic multi-criteria ABC inventory classification using possibilistic chance-constrained programming. Soft Comput. 2020;(1).

  140. Xu ZS. Multiple-attribute group decision making with different formats of preference information on attributes. IEEE Transactions on Systems, Man, and Cybernetics-Part B. 2007;37(6):1500–11.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Hangyao Wu and Zeshui Xu. The first draft of the manuscript was written by Hangyao Wu, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zeshui Xu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Informed Consent

This paper does not involve human participants and/or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Xu, Z. Cognitively Inspired Multi-attribute Decision-making Methods Under Uncertainty: a State-of-the-art Survey. Cogn Comput 14, 511–530 (2022). https://doi.org/10.1007/s12559-021-09916-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-021-09916-8

Keywords

Navigation