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Abstract Features of different scales contain distinct

information. Integrating multi-scale features in an ap-

propriate way is significant for salient object detection.

However, direct concatenation or addition taken by most

methods ignores the distinctions of contribution among

multi-scale features. Besides, most salient object detec-

tion models fail to dynamically adjust receptive fields to

fit objects of various sizes. To tackle these problems, we

propose a Progressive Selection Network (PS-Net). First,

we propose a Pyramid Feature Dynamic Extraction mod-

ule to dynamically select appropriate receptive fields to

extract high-level features by Feature Dynamic Extrac-

tion modules step by step. Besides, a Self-Interaction

Attention module is designed to extract detailed infor-

mation for low-level features. Finally, we design a Scale

Aware Fusion module to fuse these multiple features
for adequate exploitation of high-level features to refine

low-level features gradually. Experimental results have

demonstrated that the proposed method performs excel-

lently in both qualitative and quantitative experiments

compared with 19 methods and achieves state-of-the-art

performance on four datasets.
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1 Introduction

Salient Object Detection (SOD) aims to locate the most

obvious regions in an image. As a preprocessing step,

it has been widely applied in various computer vision

tasks, such as object recognition [1], image editing [2],

image retrieval [3], semantic segmentation [4,5] and vi-

sual tracking [6]. Earlier SOD algorithms mainly used

conventional methods to generate saliency maps [7],

which often rely on heuristic priors (e.g., color [8] and

texture [9]). However, these hand-crafted features are of

great difficulty to capture the latent semantic informa-

tion in images, thus they fail to yield satisfactory results

for images with complex backgrounds. Recently, with

the development of deep learning, SOD has made promi-

nent progress. Due to the powerful capability to extract

low-level information and high-level information simul-

taneously [10,11], CNNs have emerged as an important

trend for SOD, especially in complicated cases.

Despite CNNs have achieved excellent performance

in SOD, there are still many challenges. (1) Many salien-

cy studies have revealed that multi-scale features are

essential for SOD [11,12,13]. Specifically, low-level fea-

tures contain abundant details but full of background

noise (Fig.1 (b)). On the contrary, high-level features

have rich semantic information, which is helpful in locat-

ing the salient objects and suppressing the background

noises (Fig.1 (c)). Therefore, it is critical to properly

aggregate these features to generate satisfactory saliency

maps. Existing approaches tackle the problem by inte-

grating multiple features layer-by-layer [10,13,14]often

by direct concatenation [14] or addition [15,16], which
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Fig. 1 Motivating examples for the proposed PS-Net. (a) Image. (b) Original low-level feature. (c) Original high-level
feature. (d) Features extracted after the PFDE module. (e) Features extracted after the SAF module. (f) Features of fusion
between the SIA module and the SAF module. (g) Saliency result. (h) Ground truth.

ignores the guidance relationship using semantic infor-

mation to optimize details and the differences of their

contributions. (2) Besides, there is no effective extrac-

tion and utilization of multi-scale context information in

every single block. When extracting high-level features,

saliency objects and their surroundings are necessary
to generate the final saliency maps [17]. Recently, some

methods have been proposed to integrate multi-scale

context information [15,18]. However, the receptive field-

s fail to be dynamically adjusted to fit the objects of

different sizes in their methods, resulting in poor sensi-

tivity to the change of sizes of saliency objects.

Since the attention mechanism [19,20] has been wide-

ly and successfully used for improving model perfor-

mance, many networks based on the attention mecha-

nism have been widely proposed in SOD. Therefore, to

deal with the problem, we proposed a salient model PS-

Net that selects features progressively at multiply levels.

PS-Net emphasizes the attention mechanism to effective-

ly integrate selected low-level appearance features and

high-level semantic features to generate saliency maps

in a supervised way. First, in order to extract more

abundant low-level detail features, we propose a Self-

Interaction Attention module (SIA) for pixel-level fusion,

which fuses the global information and local information

of low-level features to ensure that the attention score of

each pixel is calculated both globally and locally, espe-

cially boundary-focused. Besides, due to the sizes of the

salient objects that vary greatly, we propose a Pyramid

Feature Dynamic Extraction module (PFDE) for the

effective utilization of multi-scale context information

in every single block. Different from direct concatena-

tion or addition, the PFDE module takes advantage

of the attention mechanism, named Feature Dynamic

Extraction module (FDE), to dynamically adjust the

receptive field in every single block to adapt to distinct

sizes of salient objects (Fig.1 (d)). Finally, considering

the guidance relationship using semantic information to

optimize details and the different contributions between

high-level features and low-level features, we propose

the Scale Aware Fusion module (SAF). A spatial atten-

tion mechanism is introduced to encourage high-level

features to guide low-level features and fuse them by

self-learning to suppress the background response of the

original features (Fig.1 (e)).

To verify the performance of PS-Net, we indicate

experiment results on 6 popular SOD datasets and visu-

alize some saliency maps. We conduct a series of ablation

experiments to evaluate the effect of each module. The

experiment and visual results demonstrate that PS-Net

can obtain better saliency maps. We would like to high-

light our contributions as follows:

(1) We introduce a Self-Interaction Attention module

to extract more abundant detailed features, which
ensure that the attention score of each pixel is calcu-

lated both globally and locally, especially boundary-

focused.

(2) We proposed a Pyramid Feature Dynamic Extrac-

tion module to dynamically adjust the receptive

field in every single block to adapt to distinct sizes
of salient objects.

(3) Considering different contributions of high-level fea-

tures and low-level features, we design the Scale

Aware Fusion module for effective feature fusion. A

spatial attention mechanism is introduced to sup-

press the background response of the original fea-

tures.

(4) Compared with 19 start-of-the-art methods on 6

public benchmark datasets, the proposed method

achieves remarkable performance in both quanti-

tative and qualitative evaluation. We performed

a lot of ablation studies, and more discussions to

demonstrate the effectiveness and superiority of our

proposed method.

2 Related Works

In this section, we introduce related works from two

aspects. Firstly, we review several representative SOD

methods, and then we describe the applications of the

attention mechanisms in various visual fields.
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Fig. 2 The overall framework of the proposed model. Our model exploits VGG-16 blocks to extract features. The
low-level features are from vgg1-2 and 2-2. The high-level features are from vgg3-3, vgg4-3 and vgg5-3. Self-Interaction Attention
module(SIA) and Pyramid Feature Dynamic Extraction module(PFDE) select low-level and high-level features respectively.
Scale Aware Fusion module(SAF) utilizes high-level features to guide low-level features to generate the salient map surprised by
the ground truth.

2.1 Salient Object Detection

Early-stage saliency methods are mainly based on hand-

crafted priors to estimate saliency objects, such as color

contrast [8], local contrast [21], and background pri-

ors [9]. In recent years, deep learning has emerged as a

promising alternative for SOD, due mainly to the fact

that CNNs-based saliency models allow flexible feature

utilization and equip powerful end-to-end capabilities.

Zhao et al. [22] proposed to use a fully connected

CNN to integrate global context information for saliency

detection. Li et al. [23] extract multi-scale information

from images of different resolutions to estimate the

saliency maps. Liu et al. [24] generate prediction maps

by refining edges in low-level features. Wang et al. [25]

propose a model that adds low-level detail features to

predict images of different scales. Hu et al. [26] concate-

nate multi-layer features for saliency detection. Zhang

et al. [27] build a directional message-passing model

to better integrate multi-scale features. There are also

some methods that construct deep network architecture

to optimize saliency maps [28,29].

The above researches demonstrate that the extrac-

tion of effective features plays a crucial role in generating

a complete saliency map. Therefore, we propose a salien-

cy model PS-Net that selects features progressively at

multiple levels. It selectively integrates multi-scale in-

formation to generate low-level saliency feature maps

guided by high-level semantic information.

2.2 Attention Mechanism

The essence of the attention mechanism is to locate

obvious information and suppress useless information,

which is mainly divided into spatial attention and chan-

nel attention. Attention mechanisms have been proven

to be beneficial in visual tasks, such as image classifi-

cation [30], image captioning [31], and visual question

and answer [32].

Chen et al. [31] propose a SCA-CNN network that

combines spatial and channel attention for image cap-

tioning. Li et al. [33] focus on the global context to guide

target detection by using the attention mechanism. Liu

et al. [34] construct a pixel-level contextual attention

model to pay attention to the information context po-

sition of each pixel. Chen et al. [35] embed the reverse

attention module in the top-down approach to predic-
t saliency maps. Zhang et al. [36] build a progressive

attention model which sequentially generates attention

features for saliency detection through the channel and

spatial attention mechanisms.

The above studies demonstrate that the attention

mechanism is of great help in SOD. However, while
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integrating the convolutional features, most existing

methods treat multi-scale features without distinction.

On the contrary, PS-Net integrates global and pixel-

level attention guidance, fusing the feature extraction

capabilities of multi-scale information and the feature

selection capabilities of the attention mechanism.

3 Method

In this section, we illuminate how each component made

up and elucidate its effect on saliency detection. The
overall architecture of the proposed method is illustrated

in Fig.2.

3.1 Pyramid Feature Dynamic Extraction module

In the feature extraction module, convolution operations

of different levels correspond to features extraction of

different scales, which directly affects the representation

capability of the model. As discussed in the introduc-

tion, low-level features contain more detailed informa-

tion whilst high-level features contain affluent semantic

information. Therefore, in order to better extract the

semantic information in the high-level features, we pro-

pose the Pyramid Feature Dynamic Extraction module

(PFDE), inspired by Atrous Spatial Pyramid Pooling

(ASPP) [37].

For each convolutional layer containing deep seman-

tic information, combining multi-scale information can

produce more robust feature representations. ASPP pro-

poses to concatenate the feature maps generated by

the dilated convolution with different rates so that the

salient maps encode multi-scale information under dif-

ferent receptive fields without distinction, resulting in

information redundancy and even performance degrada-

tion. Consequently, it is necessary to mine multi-scale

information for more effective fusion.

Fig. 3 Detailed structure of Pyramid Feature Dynam-
ic Extraction (PFDE) module.

Fig. 4 The illustration of Feature Dynamic Extrac-
tion (FDE) module.

In the proposed PFDE module as shown in Fig.3,

we use four parallel dilated convolutions with different

dilation rates of 1, 3, 5 and 7 to capture information of

different scales. After this, we design a Feature Dynamic

Extraction module (FDE) to fuse differently scaled fea-

tures. As shown in Fig.4, the global and local attention

mechanisms are introduced to dynamically select the

appropriate scale features and fuse them by self-learning.

Given two features fh×w×c
1 and fh×w×c

2 with different

reception fields, h× w represents the spatial dimension

and c denotes the number of channels. First, the FDE

module applies element addition operation to merge

fh×w×c
1 and fh×w×c

2 to extract the mixed feature fm.

Then fm locates salient objects from different receptive

fields through global and local attention mechanisms

respectively, which can dynamically adapt to various

sizes of salient objects through self-learning. Specifical-
ly, fm passes through the global average pooling layer

and the fully connected layer followed by a repeat func-

tion respectively to obtain the global attention map

fg which has the same resolution as fm. On the other

hand, fm goes through the average pooling layer and

a convolution layer to get the local attention map fa.

Besides, the common feature fc is combined with fg and

fa by element addition operation respectively. Finally,

the fused feature map ff is obtained as a weighted sum

as detailed below:

fm = f1 + f2 (1)

fg = δ(FC(GAP (fm))) (2)

fa = θ(conv(AvP (fm))) (3)

fc = fg + fa (4)

ff = fc × f1 + fc × f2 (5)

where GAP refers to the global average pooling layer,

AvP donates the average pooling layer, FC is the full

connected layer, θ denotes Relu function and δ represents

the sigmoid operation.
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We employ three cascaded Feature Dynamic Extrac-

tion (FDE) modules to get the final fusion feature of

four branches.

3.2 Self-Interaction Attention module

Fig. 5 Examples of boundaries of several salient ob-
jects. From left to right are original images, boundaries of
Ground truth, boundaries of the proposed method, boundaries
of GateNet, boundaries of PAGE.

As seen in Fig.1, the saliency map of low-level fea-
tures comprises a lot of details, some of which are ben-

eficial for SOD but others are counterproductive. As

manifested in Fig.5 where several saliency images and

their corresponding boundaries are shown, the issue of

unclear boundaries of saliency objects still remains a

challenge, even for the latest methods with excellent per-

formance. In order to extract the detailed information

thoroughly from the low-level features and explicitly

learn salient object boundaries to better locate and

sharpen salient objects, we propose the Self-Interaction

Attention module.

In the SIA module, the score of each pixel is obtained

by comparing with all other positions. Specifically, for

the shallow feature fh×w×c
w , it is necessary to highlight

those channels which focus on foreground information

and suppress other channels with background noise since

each channel focuses on a different feature. Each channel

can be regarded as a boundary detector, so we calculate

the maximum value and the average value at the same

time to obtain soft attention:

fs = [σ(GAP (fw)) + σ(GMP (fw))]× fw (6)

where GMP refers to the global max-pooling layer, σ

denotes softmax function. GMP only pays attention

to the most significant part and GAP treats all pixels

equally which will inevitably introduce noise, so we train

fs to make a soft choice.

Fig. 6 Detailed structure of Self-Interaction Atten-
tion module.

In addition, in order to ensure that the attention

score of each pixel is calculated both locally and glob-

ally, we add two items for global and local information

extraction (Fig.6). The global item is the same as the

structure described above where the softmax function

is combined with global average pooling of the spatial

average matrix. For local item, we use average pooling

to figure out the local information similarity where a

2 × 2 pooling layer is applied to obtain the attention

score of each local pixel.

fo = [σ(GAP (fs)) + δ(AvP (fs))]× fs (7)

Considering that local information should be inde-

pendent of each other, we use the sigmoid function when

calculating local attention.

3.3 Scale Aware Fusion Module

Due to multiple downsampling, high-lever features have

a lot of semantic information, but they lose a lot of

detailed information. At the same time, the low-level

features retain rich details and background noise on

account of the limitation of the receptive field. In order

to refine the details of semantic features and suppress
the background noise of detail features, we propose the

Scale Aware Fusion (SAF) module.

Fig. 7 Detailed structure of Scale Aware Fusion Mod-
ule.

As shown in Fig.7, taking into account the attention

guidance relationship and their different contributions
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of multi-scale features, a spatial attention mechanism is

introduced to dynamically select the appropriate scale

features and fuse them. Specifically, this module first

applies element addition operation to merge the seman-

tic feature fh and the detailed feature fl to extract the

common feature ft. Then ft passes through a series of

convolution layers and obtains two feature maps fA and

fB. Finally, the fused feature map f is obtained as a

weighted sum:

fA, fB = D(conv(fl + fh)) (8)

f = fA × f1 + fB × fh (9)

where conv is cascaded by convolution, batchnorm and

relu, D represents the operation of channel splitting.

This attention fusion algorithm can effectively avoid

the pollution caused by background noise. We cascade

multiple SAF modules sequentially to make the semantic

features and detailed features fully merged. Finally, the
boundary of the high-level feature is sharpened and the

background noise of the low-level feature is suppressed.

3.4 Loss

In SOD tasks, binary cross entropy loss is usually used

as the loss function to evaluate the gap between the gen-

erated saliency map and the ground truth. The binary

cross entropy (BCE) loss function is given as follows:

l = −
H∑
i=1

W∑
j=1

[Gij log(Sij) + (1−Gij) log(1− Sij)] (10)

where H, W refer to the height and width of the image

respectively, Gij denotes the ground truth of the pixel

(i, j) and Sij represents the probability of belonging to

salient regions.

However, BCE cannot smoothly focus the foreground

fields and treat each pixel equally, which compound-

ings the imbalance issue of foreground and background

caused by multi-scale. To deal with the problem, two

conditions need to be met: (1) It is not sensitive to

changes in object size; (2) It pays more attention to the

foreground field. Therefore, we introduce the consistency

enhancement loss (CEL) [38]:

L =
|FP + FN |

|FP + 2TP + FN |
(11)

where TP , FP and FN represent true-positive, false-

positive and false-negative, respectively. FP+FN refers

to the difference between the union and intersection of

the predicted map and the ground truth, while FP +

2TP + FN represents the sum of the union and the

intersection.

4 Experiments

4.1 Datasets

We evaluate the proposed model on six public salien-

cy detection benchmark datasets: ECSSD [39], DUT-

OMRON [9], HKU-IS [23], PASCAL-S [40], DUTS [41]

and SOD [42], which are human-labeled with pixel-wise

ground truth for quantitative evaluations. DUTS is cur-

rently the largest SOD dataset, including 10553 training

images (DUTS-TR) and 5019 test images (DUTS-TE).

DUT-OMRON contains 5168 images of complex back-

grounds and high content variety. ECSSD consists of

1,000 natural-looking pictures with complex content.

HKU-IS is composed of 4447 challenging images with
multiple disconnected salient objects. PASCAL-S in-

cludes 850 challenging pictures. SOD contains 300 im-

ages with complex backgrounds and multiple foreground

objects.

4.2 Evaluation Criteria

To quantitatively evaluate the effectiveness of our pro-

posed model, we adopt precision-recall (PR) curves,

F-measure (Fm) score, Mean Absolute Error (MAE),

and mean E-measure (Em) score as our performance

measures.

MAE: defined as the average pixel-wise absolute d-

ifference between the prediction map and the ground
truth.

MAE =
1

H ×W

H∑
i=1

W∑
j=1

|P (i, j)−G(i, j)| (12)

where P refers to the predicted salient map and G

denotes the ground truth.

F-measure: a comprehensive evaluation criterion
calculated by a weighted combination of precision

and recall.

Fβ =
(1 + β2)× Precision×Recall
β2 × Precision+Recall

(13)

E-measure: combining the local pixel value with

the global mean to evaluate the similarity between

the predicted map and the ground truth.

Precision-Recall (PR) curve: under different thresh-

olds, the precision and recall values can be obtained

by using the predicted map and the ground truth,

the thresholds are from 0 to 255.
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Table 1 Performance comparison with 19 state-of-the-art methods over 6 datasets. MAE (smaller is better), mean
E-measure (E-m, larger is better) and F-measure (F-m, larger is better) are used to measure the model performance. The best
three results are shown in red, blue, and green.

DUT-OMRON PASCAL-S DUTS-TE ECSSD HKU-IS SOD
Methods

MAE E-m F-m MAE E-m F-m MAE E-m F-m MAE E-m F-m MAE E-m F-m MAE E-m F-m
UCF(2017 ICCV) 0.120 0.760 0.621 0.115 0.811 0.726 0.112 0.775 0.631 0.069 0.890 0.844 0.062 0.886 0.823 0.164 0.742 0.695
SBF(2017 ICCV) 0.108 0.763 0.608 0.131 0.778 0.695 0.107 0.763 0.622 0.088 0.850 0.809 0.075 0.855 0.801 0.156 0.734 0.711
WSS(2017 CVPR) 0.110 0.729 0.602 0.139 0.740 0.715 0.100 0.745 0.653 0.104 0.805 0.823 0.079 0.818 0.821 0.169 0.663 0.725
AMU(2017 ICCV) 0.098 0.793 0.647 0.100 0.837 0.757 0.085 0.817 0.678 0.059 0.909 0.868 0.047 0.852 0.788 0.141 0.786 0.752
FSN(2017 ICCV) 0.066 0.844 0.706 0.093 0.853 0.766 0.066 0.861 0.729 0.053 0.924 0.872 0.044 0.928 0.858 0.126 0.809 0.772

NLDF(2017 CVPR) 0.080 0.798 0.684 0.098 0.844 0.769 0.065 0.851 0.738 0.063 0.900 0.878 0.048 0.914 0.873 0.123 0.782 0.788
C2S(2018 ECCV) 0.072 0.824 0.682 0.081 0.872 0.762 0.062 0.863 0.717 0.053 0.919 0.865 0.046 0.921 0.853 0.123 0.789 0.761

PICA(2018 CVPR) 0.068 0.833 0.710 0.078 0.869 0.789 0.054 0.872 0.749 0.046 0.923 0.885 0.042 0.921 0.870 0.101 0.800 0.788
BDMP(2018 CVPR) 0.064 0.831 0.692 0.074 0.876 0.758 0.049 0.883 0.745 0.045 0.927 0.868 0.039 0.930 0.871 0.106 0.803 0.761
PAGRN(2018 CVPR) 0.071 0.772 0.711 0.089 0.834 0.798 0.056 0.842 0.783 0.061 0.893 0.894 0.047 0.898 0.886 0.145 0.708 0.770

HRS(2019 ICCV) 0.065 0.772 0.690 0.079 0.847 0.804 0.050 0.853 0.788 0.052 0.916 0.905 0.042 0.912 0.886 0.134 0.724 0.728
MWS(2019 CVPR) 0.109 0.729 0.609 0.133 0.735 0.713 0.091 0.743 0.684 0.096 0.791 0.840 0.084 0.787 0.814 0.166 0.660 0.734

CAPSAL(2019 CVPR) 0.104 0.669 0.563 0.075 0.871 0.810 0.062 0.846 0.743 0.082 0.843 0.819 0.055 0.885 0.843 0.147 0.698 0.688
deepCRF(2019 ICCV) 0.057 0.838 0.738 0.082 0.852 0.790 0.059 0.854 0.744 0.049 0.921 0.896 0.039 0.925 0.881 0.121 0.776 0.785
PAGE(2019 CVPR) 0.062 0.849 0.736 0.076 0.878 0.806 0.052 0.883 0.777 0.042 0.936 0.906 0.037 0.934 0.882 0.110 0.801 0.796

SS(2020 CVPR) 0.068 0.840 0.703 0.092 0.854 0.774 0.062 0.865 0.742 0.059 0.911 0.870 0.047 0.923 0.860 0.129 0.771 0.758
EDNS(2020 ECCV) 0.076 0.811 0.682 0.094 0.837 0.790 0.065 0.851 0.735 0.068 0.894 0.872 0.046 0.918 0.873 0.142 0.754 0.776
CSNet(2020 ECCV) 0.081 0.801 0.675 0.103 0.815 0.723 0.074 0.820 0.687 0.065 0.886 0.844 0.059 0.883 0.840 0.136 0.742 0.731

GateNet(2020 ECCV) 0.061 0.840 0.723 0.068 0.886 0.797 0.045 0.893 0.783 0.041 0.932 0.896 0.036 0.933 0.889 - - -
Ours 0.062 0.848 0.735 0.072 0.888 0.809 0.045 0.901 0.810 0.041 0.937 0.907 0.035 0.941 0.893 0.099 0.815 0.799

Fig. 8 Qualitative comparison of the proposed model with other state-of-the-art methods. Obviously, saliency
maps produced by our model are clearer and more accurate than others and our results are more consistent with the ground
truths.

4.3 Implementation Details

Following most existing state-of-the-art methods [36,

34,25,27], we use DUTS-TR as our training dataset.

We exclude those methods which use other datasets for

training, such as RADF [26] and RAS [35] which apply

MASA-10K [8] for training. During the training stage,

we crop the image to a size of 224 × 224. Besides, we

exploit random cropping and random rotation opera-

tions for data enhancement to avoid over-fitting. The

model applies the poly strategy, where the variable is

set to 0.9. To ensure model convergence, our model was

trained on NVIDIA GTX 1080 Ti GPU with a batshsize

of 8. Besides, we adopted a two-step training strategy

to train different components separately. Specifically, we

deploy VGG-16 trained on ImageNet as our backbone

and initialize other convolution layers at random. We

first freeze the backbone network to train other layers

for 50 epochs with a large initial learning rate, and then

we train the whole network for 50 epochs with a small

initial learning rate.

4.4 Performance Comparison

We compare the proposed PS-Net against 19 recent SOD

algorithms: WSS [41], SBF [43], UCF [44], NLDF [10],

AMU [11], FSN [45], C2S [46], BDMP [27], PAGRN [36],
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Fig. 9 Results of qualitative experiments on the salient objects with background disturbance.

PICA [34], MWS [47], CAPSAL [48], HRS [49], deep-

CRF [50], PAGE [51], CSNet [52], SS [53], EDNS [54]

and GateNet [55]. For fair, all the saliency maps of the

above methods are provided by the authors or predicted

through codes published by them.

4.4.1 Quantitative Comparison

In order to fully compare our proposed model with

the compared models, the experimental results under
different metrics are listed in Table 1. It can be seen

from the results that our method exhibits excellent

performance, which validates the effectiveness of the

proposed model. Besides, Fig.10 shows the PR curve

of the above algorithms on the 6 datasets. The results

reveal that our method is the most prominent in most

cases, indicating that our model is highly competitive.

4.4.2 Qualitative Evaluation

To further illustrate the advantages of the proposed

method, we provide some visual examples of different

methods. Some representative examples are shown in

Fig.8. These examples reflect various scenarios, including

large salient object (1st and 2nd row), small objects

(3rd and 4th row), multiple salient objects (5th and 6th

row), low contrast between salient object and image

background (7th and 8th row). Compared with other

methods, the saliency maps produced by our method

are more complete and more accurate. Additionally, our

Table 2 Ablation study for different modules on the
ECSSD dataset.

Base-C Baseline SIA-1 SIA-12 PFDE-w FDE SAF MAE
X 0.064

X 0.071
X X 0.066
X X X 0.064
X X X X 0.060
X X X X X 0.044
X X X X X X 0.041

method captures salient boundaries quite well due to

its use of the Self-Interaction Attention module.

As shown in Fig.9, our method performs very well

when dealing with salient objects with background dis-

turbance due to its use of the Scale Aware Fusion Mod-

ule, which takes into account the attention-guidance
relationship and their different contributions.

4.5 Ablation Study

To illustrate the effectiveness of each module designed

in the proposed model, we conduct the ablation study.

The ablation experiments are applied on the ECSSD

dataset, where VGG-16 is adopted as the backbone. As

shown in Table 2, the proposed model containing all

components (i.e. PFDE, SIA, and SAF) achieves the

best performance, which demonstrates the necessity of

each component for the proposed model to obtain the

best saliency detection results.

To verify that the performance improvement of our

proposed model is not caused by increasing the model
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Fig. 10 Precision-Recall curves on six common saliency datasets.

complexity, we design a network based on the Base-

line with similar complexity to the PS-Net by adding

channels, which is called Base-C in Table 2. The experi-

ment shows that our proposed PS-Net achieves notable

improvement than the Base-C (36% in terms of MAE).

We adopt the model which only uses high-level fea-

tures after up-sampling as the baseline model, then we

add each module progressively. First, in order to verify

the function of each part of the SIA module more accu-
rately, we extract low-level features after the first part

of the SIA module which is shown in Formula 6 and

after the whole SIA module respectively. Integrating

high-level features and low-level features by addition,

we improve the baseline from 0.071 to 0.066 and 0.064

respectively in terms of MAE. Furthermore, we add

the PFDE module where the FDE module is replaced

by the addition operation, which is called PFDE-w in

Table 2. The result shows that we get a decline of 15%

in MAE compared with the basic model. On this basis,

the MAE score is improved by 38% after adding FDE

to the PFDE module. Finally, the combination of SAF

achieves the best result.

5 Conclusion

In this paper, we propose a Progressive Selection Net-

work (PS-Net) for effective salient object detection. Tak-

ing into account the characteristics of multi-scale fea-

tures, we design the PFDE module to aggregate high-

level features dynamically. For refining the saliency edge,

we propose the SIA module to extract low-level features.

Besides, considering the different contributions of high-

level features and low-level features, we propose the

SAF module which exploits high-level features to guide

low-level features. Extensive experiments on 6 datasets

validate that the proposed model outperforms 19 state-

of-the-art methods under different evaluation metrics.

Acknowledgements The authors wish to acknowledge the
support for the research work from the National Natural
Science Foundation of China under grant Nos.[61772360]
,[61876125] and [62076180].

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. U. Rutishauser, D. Walther, C. Koch, P. Perona, in Pro-
ceedings of the 2004 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition, 2004.
CVPR 2004., vol. 2 (IEEE, 2004), vol. 2, pp. II–II

2. M.M. Cheng, F.L. Zhang, N.J. Mitra, X. Huang, S.M. Hu,
ACM Transactions on Graphics (TOG) 29(4), 1 (2010)

3. J. He, J. Feng, X. Liu, T. Cheng, T.H. Lin, H. Chung, S.F.
Chang, in 2012 IEEE Conference on Computer Vision
and Pattern Recognition (IEEE, 2012), pp. 3005–3012



10 Jianyi Ren et al.

4. W. Wang, J. Shen, F. Porikli, in Proceedings of the IEEE
conference on computer vision and pattern recognition
(2015), pp. 3395–3402

5. W. Wang, J. Shen, H. Sun, L. Shao, IEEE Transactions
on Circuits and Systems for Video Technology 28(8), 1727
(2017)

6. S. Hong, T. You, S. Kwak, B. Han, in International con-
ference on machine learning (2015), pp. 597–606

7. Z. Jiang, L.S. Davis, in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition
(2013), pp. 2043–2050

8. M.M. Cheng, N.J. Mitra, X. Huang, P.H. Torr, S.M. Hu,
IEEE transactions on pattern analysis and machine intel-
ligence 37(3), 569 (2014)

9. C. Yang, L. Zhang, H. Lu, X. Ruan, M.H. Yang, in Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition (2013), pp. 3166–3173

10. Z. Luo, A. Mishra, A. Achkar, J. Eichel, S. Li, P.M. Jodoin,
in Proceedings of the IEEE Conference on computer vision
and pattern recognition (2017), pp. 6609–6617

11. P. Zhang, D. Wang, H. Lu, H. Wang, X. Ruan, in Proceed-
ings of the IEEE International Conference on Computer
Vision (2017), pp. 202–211

12. L. Wang, H. Lu, X. Ruan, M.H. Yang, in Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition (2015), pp. 3183–3192

13. Q. Hou, M.M. Cheng, X. Hu, A. Borji, Z. Tu, P.H. Torr, in
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (2017), pp. 3203–3212

14. Z. Wu, L. Su, Q. Huang, in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(2019), pp. 3907–3916

15. J.J. Liu, Q. Hou, M.M. Cheng, J. Feng, J. Jiang, in
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (2019), pp. 3917–3926

16. J.X. Zhao, J.J. Liu, D.P. Fan, Y. Cao, J. Yang, M.M.
Cheng, in Proceedings of the IEEE/CVF International
Conference on Computer Vision (2019), pp. 8779–8788

17. Y. Qin, K. Kamnitsas, S. Ancha, J. Nanavati, G. Cot-
trell, A. Criminisi, A. Nori, in International Conference
on Medical Image Computing and Computer-Assisted
Intervention (Springer, 2018), pp. 603–611

18. L.C. Chen, G. Papandreou, F. Schroff, H. Adam, arXiv
preprint arXiv:1706.05587 (2017)

19. C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, N. Sang, in
Proceedings of the IEEE conference on computer vision
and pattern recognition (2018), pp. 1857–1866

20. J. Hu, L. Shen, G. Sun, in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition (2018),
pp. 7132–7141

21. D.A. Klein, S. Frintrop, in 2011 International Conference
on Computer Vision (IEEE, 2011), pp. 2214–2219

22. R. Zhao, W. Ouyang, H. Li, X. Wang, in Proceedings
of the IEEE conference on computer vision and pattern
recognition (2015), pp. 1265–1274

23. G. Li, Y. Yu, in Proceedings of the IEEE conference on
computer vision and pattern recognition (2015), pp. 5455–
5463

24. N. Liu, J. Han, in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (2016), pp.
678–686

25. T. Wang, A. Borji, L. Zhang, P. Zhang, H. Lu, in Proceed-
ings of the IEEE International Conference on Computer
Vision (2017), pp. 4019–4028

26. X. Hu, L. Zhu, J. Qin, C.W. Fu, P.A. Heng, in Thirty-
second AAAI conference on artificial intelligence (2018)

27. L. Zhang, J. Dai, H. Lu, Y. He, G. Wang, in Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (2018), pp. 1741–1750

28. J. Kuen, Z. Wang, G. Wang, in Proceedings of the IEEE
Conference on computer Vision and Pattern Recognition
(2016), pp. 3668–3677

29. H. Song, W. Wang, S. Zhao, J. Shen, K.M. Lam, in Pro-
ceedings of the European conference on computer vision
(ECCV) (2018), pp. 715–731

30. F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang,
X. Wang, X. Tang, in Proceedings of the IEEE conference
on computer vision and pattern recognition (2017), pp.
3156–3164

31. L. Chen, H. Zhang, J. Xiao, L. Nie, J. Shao, W. Liu, T.S.
Chua, in Proceedings of the IEEE conference on computer
vision and pattern recognition (2017), pp. 5659–5667

32. H. Xu, K. Saenko, in European Conference on Computer
Vision (Springer, 2016), pp. 451–466

33. J. Li, Y. Wei, X. Liang, J. Dong, T. Xu, J. Feng, S. Yan,
IEEE Transactions on Multimedia 19(5), 944 (2016)

34. N. Liu, J. Han, M.H. Yang, in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(2018), pp. 3089–3098

35. S. Chen, X. Tan, B. Wang, X. Hu, in Proceedings of
the European Conference on Computer Vision (ECCV)
(2018), pp. 234–250

36. X. Zhang, T. Wang, J. Qi, H. Lu, G. Wang, in Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (2018), pp. 714–722

37. L.C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A.L.
Yuille, IEEE transactions on pattern analysis and machine
intelligence 40(4), 834 (2017)

38. Y. Pang, X. Zhao, L. Zhang, H. Lu, in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (2020), pp. 9413–9422

39. Q. Yan, L. Xu, J. Shi, J. Jia, in Proceedings of the IEEE
conference on computer vision and pattern recognition
(2013), pp. 1155–1162

40. Y. Li, X. Hou, C. Koch, J.M. Rehg, A.L. Yuille, in Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (2014), pp. 280–287

41. L. Wang, H. Lu, Y. Wang, M. Feng, D. Wang, B. Yin,
X. Ruan, in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (2017), pp. 136–145

42. V. Movahedi, J.H. Elder, in 2010 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition-
Workshops (IEEE, 2010), pp. 49–56

43. D. Zhang, J. Han, Y. Zhang, in Proceedings of the IEEE
International Conference on Computer Vision (2017), pp.
4048–4056

44. P. Zhang, D. Wang, H. Lu, H. Wang, B. Yin, in Proceed-
ings of the IEEE International Conference on computer
vision (2017), pp. 212–221

45. X. Chen, A. Zheng, J. Li, F. Lu, in Proceedings of the
IEEE International Conference on Computer Vision
(2017), pp. 1050–1058

46. X. Li, F. Yang, H. Cheng, W. Liu, D. Shen, in Proceedings
of the European Conference on Computer Vision (ECCV)
(2018), pp. 355–370

47. Y. Zeng, Y. Zhuge, H. Lu, L. Zhang, M. Qian, Y. Yu, in
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (2019), pp. 6074–6083

48. L. Zhang, J. Zhang, Z. Lin, H. Lu, Y. He, in Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (2019), pp. 6024–6033

49. Y. Zeng, P. Zhang, J. Zhang, Z. Lin, H. Lu, in Proceed-
ings of the IEEE International Conference on Computer
Vision (2019), pp. 7234–7243



PS-Net: Progressive Selection Network for Salient Object Detection 11

50. Y. Xu, D. Xu, X. Hong, W. Ouyang, R. Ji, M. Xu, G. Zhao,
in Proceedings of the IEEE International Conference on
Computer Vision (2019), pp. 3789–3798

51. W. Wang, S. Zhao, J. Shen, S.C. Hoi, A. Borji, in Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (2019), pp. 1448–1457

52. S.H. Gao, Y.Q. Tan, M.M. Cheng, C. Lu, Y. Chen, S. Yan,
arXiv preprint arXiv:2003.05643 (2020)

53. J. Zhang, X. Yu, A. Li, P. Song, B. Liu, Y. Dai, in Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (2020), pp. 12,546–12,555

54. J. Zhang, J. Xie, N. Barnes, arXiv preprint arX-
iv:2007.12211 (2020)

55. X. Zhao, Y. Pang, L. Zhang, H. Lu, L. Zhang, arXiv
preprint arXiv:2007.08074 (2020)


	coversheet_template
	REN 2022 PS-net (AAM).pdf
	Introduction
	Related Works
	Method
	Experiments
	Conclusion


