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Abstract

Dialogue relation extraction (DRE) aims to
detect the relation between pairs of entities
mentioned in a multi-party dialogue. It plays
an essential role in constructing knowledge
graphs from conversational data increasingly
abundant on the internet and facilitating intel-
ligent dialogue system development. The prior
methods of DRE do not meaningfully leverage
speaker information—they just prepend the ut-
terances with the respective speaker names.
Thus, they fail to model the crucial inter-
speaker relations that may provide additional
context to relevant argument entities through
pronouns and triggers. We present a graph at-
tention network-based method for DRE where
a graph that contains meaningfully connected
speaker, entity, type, and utterance nodes is
constructed. This graph is fed to a graph atten-
tion network for context propagation among
relevant nodes, which effectively captures the
dialogue context. We empirically show that
this graph-based approach quite effectively
captures the relations between different argu-
ment pairs in a dialogue as it outperforms
the state-of-the-art approaches by a significant
margin on the benchmark dataset DialogRE.
Our code is released at: https://github.
com/declare-lab/dialog—-HGAT.

1 Introduction

The relation extraction (RE) task aims to identify
relations between pairs of entities that exist in a
document. It plays a pivotal role in understand-
ing unstructured text and constructing knowledge
bases (Peng et al., 2017; Quirk and Poon, 2017).
Although the task of document-level relation ex-
traction has been studied extensively in the past,
the task of relation extraction from dialogues has
yet to receive extensive study.

Most previous works in this field focus on the
professional and formal literature like biomedi-
cal documents (Li et al., 2016; Wu et al., 2019)
and Wikipedia articles (Elsahar et al., 2018; Yao
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Figure 1: An example adapted from DialogRE dataset.
Words with red and blue background represent sub-
ject and object entities. Words with yellow background
represent triggers that facilitate the relation inference.
Solid and dash lines stand for intra- and inter-utterance
relations.

et al., 2019; Mesquita et al., 2019). These kinds of
datasets are well-formatted and logically coherent
with clear referential semantics. Hence, for most
NLP tasks, analyzing a few continuous sentences
is enough to grasp pivotal information. However,
in dialogue relation extraction, conversational text
is sampled from daily chat, which is more casual
in nature. Hence its logic is simpler but more en-
tangled, and the referential ambiguity always oc-
curs to an external reader. Compared with formal
literature, it has lower information density (Wang
and Liu, 2011) and thus is more difficult for mod-
els to understand. Moreover, compared with other
document-level RE datasets such as DocRED, di-
alogue text has much more cross-sentence rela-
tions (Yu et al., 2020).

Fig. 1 presents an example of the target di-
alogue, taken from DialogRE (Yu et al., 2020)
dataset. In order to infer the relation between
Speaker! and Emma, we may need to find some
triggers to recognize the characteristics of Emma.
Triggers are shreds of evidence that can support
the inference. As we can see, the following ut-
terances are talking about Emma, and the keyword


https://github.com/declare-lab/dialog-HGAT
https://github.com/declare-lab/dialog-HGAT

baby daughter mentioned by Speakerl is a trigger,
which provides evidence that Emma is Speakerl’s
daughter.

Prior works show that triggers of arguments
facilitate the document-level relation inference.
Thus, the DocRED dataset (Yao et al., 2019) pro-
vides several supporting evidence for each argu-
ment pair. Some efforts utilize the dependency
paths of arguments to find possible triggers. For
example, LSR model (Nan et al., 2020) constructs
meta dependency paths of each argument pair and
aggregates all the word representations located in
these paths to their model to enhance the model’s
reasoning ability. Sahu et al. (2019) uses syn-
tactic parsing and coreference resolution to find
intra- and inter-related words of each argument.
Christopoulou et al. (2019) proposes an edge-
oriented graph to synthesize argument-related in-
formation. These models are graph-based and
have proven powerful in encoding long-distance
information. However, for dialogue relation ex-
traction, interlocutors exist in every utterance of
the dialogue, and they are often considered as an
argument. Although these previous approaches
have utilized entity features of arguments, most of
them employ meta dependency paths to find the
related words, which neglect necessary informa-
tion related to speakers, since the speaker refer-
ences have very little dependency features in each
utterance. In this work, we formulate the dialogue
relation extraction task as a classification prob-
lem, where we design a graph attention network
to model semantic, syntactic, and speaker infor-
mation. Compared with other graph-based mod-
els in the relation extraction task, our model is
lightweight, without any costly matrix operation,
and it can generalize to completely unseen graphs.

In this paper, we propose a simple yet effective
attention-based heterogeneous graph neural net-
work to tackle the dialogue relation extraction task
in an inductive manner. We use multi-type fea-
tures to create the graph and employ graph atten-
tion mechanism to propagate contextual informa-
tion. Different from most of the previous works,
our proposed model is customized for the rela-
tion extraction task in dialogue background, as
we have specially modeled speaker information
and designed a mechanism to propagate messages
among different sentences for better inter-sentence
representation learning.

The remainder of this paper is organized as fol-

lows: Section 2 briefly discusses relevant works of
heterogeneous graph neural networks; Section 3
elaborates on our proposed framework; Section 4
introduces the used dataset and baseline models;
Section 5 lays out the experiment results and anal-
ysis; Section 6 concludes the paper.

2 Related Work

Graph-based models have raised widespread at-
tention from NLP researchers, as it is demon-
strated as a powerful mathematical tool to repre-
sent complicated syntactic and semantic relations
among structured language data. Early work ap-
plies classic graph processing algorithms onto lan-
guage graphs. Pang and Lee (2004) constructed a
text graph and adopt the minimum-cut method to
cluster the nodes for sentiment analysis. Agirre
and Soroa (2009) leveraged PageRank algorithm
on personalized subgraphs of a wordnet to disam-
biguate polysemous words according to connected
context words.

Recently, graph neural networks (GNN) (Kipf
and Welling, 2017) becomes popular in relation
extraction tasks. For example, Peng et al. (2017)
tried to build a computation graph from syntactic
parsing trees and employed graph LSTM to ob-
tain better word embeddings for multi-ary relation
extraction. Zhang et al. (2018) designed a prun-
ing algorithm for syntactic graphs and add a graph
convolution layer on top of the sequential LSTM
encoder in the learning process. The combination
with typical attention-based language models such
as transformer (Vaswani et al., 2017) is also stud-
ied. Cai and Lam (2020) and Yao et al. (2020)
used transformer-based graph convolutional net-
works to explicitly encode relations among distant
syntactic nodes, to address the long-distance prop-
agation issue.

Based on GNN, heterogeneous graph neural
networks are proposed and have been applied in
many NLP tasks, like text classification (Linmei
et al., 2019), text summarization (Wang et al.,
2020), user profiling (Chen et al., 2019), and event
categorization (Peng et al., 2019). The prior work
proves that heterogeneous graph neural network is
a powerful tool in NLP. For the relation extraction
task, Christopoulou et al. (2019) constructed an
edge-oriented heterogeneous graph that contains
sentence, mention, and entity information. How-
ever, syntactic information is neglected in their
model. Differently, homogeneous nodes in our



graph are all independent, and we take syntactic
features to initialize sentence information as well
as edges features.

3 Method

3.1 Task Definition

Given a dialogue containing N utterances D =
{u1,ug,...,un} and a couple of argument pairs
A = {(z1,11), (x2,¥2),...}, where subject x;
and object y; are entities mentioned in the di-
alogue, the goal is to identify the relation be-
tween argument pairs (x;,y;). For document-
level relation extraction task, there are many cross-
sentence relations which are supported by various
sentences.

3.2 Model Overview

In this work, we introduce an attention-based
graph network to tackle the problem where each
conversation is represented as a heterogeneous
graph. We first utilize an utterance encoder, which
is composed of two Bidirectional long short-term
memory networks to encode conversational infor-
mation. These utterance encodings, along with
word embeddings, speaker embeddings, argument
embeddings, and type embedding, are logically
connected to form a heterogeneous graph, which
will be discussed in detail later in this section. Fur-
ther, this graph is fed through five graph attention
layers (Velickovi¢ et al., 2018) that aggregate in-
formation from the neighboring nodes. Lastly, we
concatenate the learned argument embeddings and
feed them to a classifier. An overview of the pro-
posed model is shown in Fig. 2.

3.3 Data Preprocessing

In the data preprocessing period, we use spaCy'
to tokenize utterances, and at the same time, we
obtain part-of-speech (POS) tags as well as named
entity types of each token.

3.4 Utterance Encoder

Given a dialogue D = {uq,ug,...,un}, we use
GloVe (Pennington et al., 2014) to initialize the
word embeddings and then feed them to a contex-
tual Bidirectional Long Short-Term Memory net-
work (BiLSTM) to obtain contextualized repre-
sentations. The operation of BiLSTM can be de-
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fined as:
_’L) % 7
i i
hj = [h%; hj) (3)
— =

where A and h’; denote the hidden representations
in the j-th layer of utterance w; from two direc-
tions, h} is the contextual representation which is

the concatenation of <h_; and h_?-, and eé- stands for
the embedding of the j-th token in utterance ;.
Unlike the previous approaches (Christopoulou
et al., 2019; Nan et al., 2020) that only adopt se-
mantic contextual features in utterance encoding,
we add syntactic features such as POS tags and
named entity types to the contextual representa-
tions. The embedding of each token in the utter-
ance can be described as:

e = [ew; ep; €] “)

where we concatenate word embedding e, initial-
ized by GloVe (Pennington et al., 2014), syntac-
tic POS embedding e, and type embedding e; to
form the token embedding e.

Moreover, we believe conversation-level con-
textual features play an important role in under-
standing a conversation. To encode non-local con-
textual information between each utterance, we
apply max pool operation to the hidden states of
each utterance-level BiLSTM (local LSTM), and
then feed the sequence ¢ = {c1,c2,...,cy} to a
conversation-level BiLSTM (global LSTM). The
operation of global LSTM is the same as Egs. (1)
to (3).

3.5 Graph Construction
3.5.1 Node Construction

In our model, we design a heterogeneous graph
network containing five types of nodes: utterance
nodes, type nodes, word nodes, speaker nodes, and
argument nodes. Each type of node is used to en-
code a type of information in the dialogue. In the
task, only word nodes, speaker nodes and argu-
ment nodes are probable to attend the final classi-
fication process. In other words, only these types
of nodes are possible arguments. For simplicity,
we name them as basic nodes in our illustration.

Utterance and Type Nodes Utterance nodes are
initialized by the utterance embeddings which we
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Figure 2: An overview of the proposed model.

obtain from the utterance encoder. They are con-
nected with the basic nodes which constitute the
utterance. Type nodes represent the entity types of
words in an utterance, where a variety of named
and numeric entities, such as PERSON or LOCA-
TION, are included. Since one mention may have
different types in one conversation, type nodes can
facilitate information integration. For example,
‘Frank’ can be a string if it represents an alterna-
tive name, and at the same time, it can be a person
if it refers to a speaker in the conversation. Type
nodes are connected with the basic nodes having
the type attribute in the conversation. Each type
node is initialized with a specific type of embed-
ding. We believe that type of information has a
positive influence on the relation inference pro-
cess.

Basic Nodes Word nodes represent the vocabu-
lary of a conversation. Each word node is con-
nected with the utterance, which contains the word
and it is also connected with all the possible
types that the word may have in the conversa-
tion. We initialize the states of word nodes with
GloVe (Pennington et al., 2014).

Speaker nodes represent each unique speaker in
the conversation. Each speaker node is connected
with the utterances uttered by the speaker him-
self/herself. This type of node is initialized with
some specific embeddings and can gather informa-

tion from different speakers.

Argument nodes are two special nodes that are
used to encode relative positional information of
argument pairs. There are two argument nodes in
each graph in total. One stands for the subject ar-
gument and the other represents the object argu-
ment. Similarly, argument nodes are also encoded
by specific embeddings.

3.5.2 Edge Construction

The proposed graph is undirected but the prop-
agation has directions. There are five types
of edges: utterance-word, utterance-argument,
utterance-speaker, type-word, and type-argument
edges. Each edge has its own type. These edges
are randomly initialized except the utterance-word
edge.

For the edge between utterance and word nodes,
we adopt POS tags to initialize the edge features.
This type of edge aggregates not only global se-
mantic features of the conversation but also local
syntactic features to the word nodes.

3.5.3 Graph Attention Mechanism

We use graph attention mechanism (Veli¢kovié¢
et al., 2018) to aggregate neighboring information
to the target node. Suppose we have a node ¢ and
some neighborhood nodes j, the graph attention
mechanism can be described as:
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a;; = softmax(F (h;, hj)) ©)
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where h; and h; are representations of node 7
and nodes j, W;, W;, W, and al are trainable
weight matrices, E;; is the edge weight matrix
that is mapped to the multi-dimensional embed-
ding space, «;; is the attention weight between i
and j, o is an activation function, and || is con-
catenation operation.

3.54

As shown in Fig. 2, there are five layers in our pro-
posed graph module, where each layer represents
an aggregation. There are four types of layers that
we mark in the figure. LayerA and LayerD contain
the message propagation between utterance nodes
and basic nodes, and similarly, LayerB and Lay-
erC are the message propagation between basic
nodes and type nodes. We would call the whole
message propagation path meta path. Different
meta path strategies may lead to different perfor-
mance.

Our meta path in this work can be described
as follows: First, we use utterance nodes to up-
date word nodes, speaker nodes, and argument
nodes; secondly, the updated word nodes and ar-
gument nodes pass messages to type nodes; then
type nodes conversely update the word nodes and
argument nodes; next we use word nodes, speaker
nodes, and argument nodes to update utterance
nodes; and lastly the updated utterance nodes up-
date word nodes, speaker nodes and argument
nodes. The path can be denoted as V,, — V}, — V;, —
Vy, — Vi — Vi, where V,,, V3, and V; refer to utter-
ance nodes, basic nodes, and type nodes.

Following Wang et al. (2020), we add a resid-
ual connection (He et al., 2016) to avoid gradient
vanishing during updating:

Message Propagation

hi = hi + I ©)
where h; is the output learned in the graph atten-
tion layer, and A/, is the original input of the graph
attention layer.

In message passing, except for graph attention
operation, there is also a two-layer feed-forward
network which can be denoted as:

A" = FFN(h;) (10)

Suppose we have the initial embeddings
of utterance nodes, basic nodes and type
nodes, denoted as embedding matrices H,, =
{H,,H;,H,}, the message propagating process
can be written as:

H, = GAT(H), H?) (11)
H] = GAT(H?, H}) (12)
H; = GAT(H}, H}) (13)
H! = GAT(HY, H?) (14)
H} = GAT(H;, H}) (15)

where the GAT operation is the same as Eqs. (5)
to (10). The superscripts represent the n‘" update
of the matrix and 0 marks the initial state.

3.6 Relation Classifier

After the message propagation in the heteroge-
neous graph, we obtain new representations of all
entities. We select the argument nodes 7, and 7,
as well as the corresponding word nodes e, and e,
from basic nodes, and concatenate them. Finally,
they are fed to a linear transformation and a sig-
moid function to get the predictions:

el = [maxpool(r;); maxpool (e, )]

(16)

e, = [maxpool(r, ); maxpool(e, )] (17)

¢ = [e}; ey (18)
P(rleg,ey) = a(Wee' +be)y (19)

where P(r|e;,e,) is the probability of relation
type 7 given argument pair (e, e,), W, and b,
are linear transformation weight and bias vector,
mazxpool is max pooling operation, and o is sig-
moid function.

4 Experiments

4.1 Dataset Used

We evaluate the proposed framework on the Di-
alogRE dataset (Yu et al., 2020), which contains
1,788 dialogues and 10,168 relational triples. The
data statistics are shown in Table 1. DialogRE is



adapted from the complete transcripts of Friends,
a widely used corpus in dialogue research these
years (Chen et al., 2017; Zhou and Choi, 2018;
Yang and Choi, 2019; Poria et al., 2019), and there
are 36 possible relation types, most of which fo-
cus on biographical attributes of person entities.
Each dialogue contains several relational triples
(z,y,7), and the task is to predict the relation r
between each argument pair (x,y). In the exper-
iments, the dataset is partitioned into train, dev,
and test set with a roughly 60/20/20 ratio. Follow-
ing the evaluation metrics of DialogRE, we report
macro F'1 scores of the proposed model and all the
baselines in both the standard and conversational
settings. In the following sections, we use F'1. to
represent F'1 scores in the conversational setting.

DialogRE ‘ Train ‘ Dev ‘ Test
#Conversations 1073 | 358 357
#Argument Pairs 5963 | 1928 | 1858
Average dialogue length | 229.5 | 224.1 | 214.2
Average # of turns 13.1 13.1 12.4

Average # of speakers 33 3.2 33

Table 1: DialogRE dataset statistics.

4.2 Baseline models

4.2.1 Sequence-based Models

We select convolutional neural networks
(CNN) (Zeng et al., 2014), LSTM, and BiL-
STM (Cai et al., 2016) as the sequence-based
baselines. These models take word embeddings,
mention embeddings, and type embeddings as
features. Concretely, they use GloVe and spaCy
to get word embeddings and label named-entity
types, and then take an average of all the embed-
dings of mention names for each entity to get
mention embeddings.

4.2.2 Graph-based Models

As our proposed model is graph-based, we also se-
lect two graph-based models AGGCN (Guo et al.,
2019) and LSR (Nan et al., 2020) as the baselines.
AGGCN directly feeds the full dependency tree of
each sentence to a graph convolutional network,
which takes self-attention weights as soft edges.
It achieves state-of-the-art results in various rela-
tion extraction tasks. LSR adopts an adaptation
of Kirchhoff’s Matrix-Tree Theorem (Tutte, 1984,
Koo et al., 2007) to induce the latent dependency

structure of each document and then feeds the la-
tent structure to a densely connected graph convo-
lutional network to inference the relations. These
graph-based models both utilize dependency in-
formation to construct the inference graph.

S Result and Analysis

5.1 Comparison with Baselines

We present our main results on DialogRE dataset
in Table 2. As shown in Table 2, our model sur-
passes the state-of-the-art method by 9.6%/7.5%
F'1 scores, and 8.4%/5.7% F'1. scores in both val-
idation and test sets, which demonstrates the ef-
fectiveness of the information propagation along
task-specific functional meta-paths in the hetero-
geneous graph. As a result, inter-sentence com-
munication usually passes through a long dis-
tance, which causes information loss or degrada-
tion. However, this kind of information transmis-
sion is critically important for dialog-style text,
because logical connections are not locally com-
pact within adjacent sentences, instead, they are
spread over the whole conversations. Our pro-
posed model constructs a heterogeneous graph
with shorter distances between logically closed but
syntactically faraway word pairs. Hence the long-
distance issue is mitigated.

We also compare the model sizes as an ef-
ficiency indicator. Although creating numerous
nodes and edges inevitably brings overhead, the
total number of parameters is still moderate.

5.2 Ablation Study

To understand the impact of our model’s compo-
nents, we perform ablation studies using our pro-
posed model on the DialogRE dataset. The ab-
lation results are shown in Table 3. First, we re-
move local LSTM and global LSTM. The drop-
ping accuracy proves that the contextual encoder
plays an important role in semantic feature extrac-
tion. Second, we remove the specific argument
nodes and have observed that F'1 and F'1. scores
decrease to 55.0% and 50.2% on test set. This
proves that our design on argument nodes effec-
tively synthesizes argument features to the model.
Further, we test the performance of the syntactic
features we inject by removing POS embedding,
NER embedding, and POS edge features. The
scores record a decrease under all these experi-
ment settings. Notably, removing POS embedding
leads to even about 2% drops in all the evaluation



Dev (%) Test (%)
Model #params | F'1  F1. F1 F1,
Majority (Yu et al., 2020) - 389 387 358 358
CNN (Yu et al., 2020) - 46.1 437 480 450
LSTM (Yu et al., 2020) - 46.7 442 474 449
BiLSTM (Yuetal.,2020) | 4.1M | 48.1 443 486 450
AGGCN (Guoetal.,2019) | 37M | 46.6 405 462 39.5
LSR (Nan et al., 2020) 205M | 445 - 444 -
This work | 40M | 577 527 561 50.7

Table 2: Main results on DialogRE dataset. Values in the #params column refer to parameter sizes of the models.
F'1and F'1, are macro F'1 scores under standard setting and conversational setting, respectively. Word embeddings
of the models are captured by GloVe (Pennington et al., 2014).

metrics.
Dev (%) Test (%)
Model F1 Fl, F1 Fl,
Full model 57.7 527 56.1 50.7
w/o Local BiLSTM 549 50.0 553 503
w/o Global BiLSTM 547 502 535 487
w/o Argument nodes 56.0 513 550 502
w/o POS embedding 54.6 509 53.0 485
w/o NER embedding 56.8 515 542 492
w/o POS edge weights | 569 524 547 50.4

Table 3: Ablation results on DialogRE dataset.

5.3 Effect of the Meta Path

We test the performance of our message propaga-
tion strategy via changing meta-path strategies. In
our proposed model, there are five layers in the
heterogeneous graph. Those basic nodes, corre-
sponding to different types of words, speakers, and
arguments, are updated totally three times, i.e.,
they are first updated by utterance nodes, second
updated by type nodes, and ultimately updated by
utterance again. To investigate the meta path’s ef-
fect, we compare our proposed five-layer graph
module with different strategies where the num-
bers of layers are one, seven, and nine in Table 4.
In Strategyl, we only set up one LayerA, where
the basic nodes are updated by the initialized ut-
terance nodes once. We observe that all the macro
F'1 scores drop dramatically, showing the one-
layer structure is not deep enough to grasp com-
plex dependencies. To make node features more
informative, we would add more layers. At this
time, we may be curious about how many lay-
ers the module should have to induct an optimal
structure in this task. In Strategy2 and Strategy3,

we design a seven-layer module and a nine-layer
module, respectively. For Strategy2, the order of
layers is A-B-C-D-A-D-A, where A,B,C, and D
are layer labels introduced in Fig. 2. Compared
with our proposed module, scores on validation
set decrease about 1% and scores on test set de-
crease 1.7% and 0.6 % with the standard-setting
and the conversational setting, respectively. How-
ever, the module with nine layers in Strategy3
shows a larger gap between itself and the best per-
formance, where the order of layers is A-B-C-D-
A-B-C-D-A. We think this is probably because the
structure is so complicated, which causes an over-
smooth problem and prevents itself from learning
meaningful hidden representations.

Dev (%) Test (%)
Strategy F1 Fl, Fl1 Fl,
This work (L=5) | 577 527 56.1 507
Strategyl (L=1) | 483 46.5 484 459
Strategy2 (L=7) | 56.8 51.6 544 50.1
Strategy3 (L=9) | 53.8 49.1 522 472

Table 4: Comparison with different meta-path strate-
gies on DialogRE dataset. ‘L’ means the number of
layers in the graph module.

5.4 Case Studies

In the dataset, 95% of argument pairs span in
at least two consecutive sentences instead of be-
ing restricted to the same sentence. Therefore, it
is crucial that the model can tackle long-distance
learning issues. Compared with the LSTM model,
direct connections among different types of nodes
in HGNN reduce the length of information prop-
agation paths between pairs of argument nodes.
Considering the following example in Fig. 3, sub-



fSpeaker 1 Speaker 2
/Tlﬁanks, but | gotta go to work N
\ "
ay'nd get my eyes scratched out 4,’ per-friends
''"Mindy. 7=~ ----""""~ -
by Mindy. - ----=""""" )
1 — s Y
! Relax. Y'know, she may not
/ even know."

| Please. | haven't heard from her in seven
e

months, and now she
what else is it about? Oh! She was my best

calls me? | mean,

friend, you ' 'guys! We went to camp
| together... she taught me how to kiss..'

Figure 3: An example to show the effective message
propagation between argument pairs

ject a - ‘Mindy’ and object b - ‘Speaker 1° share
the relationship ‘per:friends’, which is indicated
by the trigger ‘my best friend’ in the first ut-
terance. The entity information is relayed from
‘Mindy’ to ‘Speaker 1’ in the update process:
‘speaker 1’ node aggregates utterance level in-
formation from its neighbor nodes containing a.
the relation trigger ‘best friend’. b. in BiLSTM
model, the key information has to travel a long
journey from the subject entity word to the object
one as there are too many words between them in
the context.

5.5 Error Analysis

Type information involves in the information
propagation process and thus affects the con-
tents of output embeddings. The model is prone
to make incorrectly and biased predictions. If
it fails to receive enough certainty from other
information sources and then can only rely on
the entity types of the two arguments. For
example, given an argument pair of two hu-
man names, both are named entity type ‘PER-
SON’. Sometimes the model inclines to deem
the relationship between the two arguments to
be ‘per:alternate_name’ instead of the correct an-
swer ‘per:alumni’ or ‘per:roommate’. This is
because among all of these classes, ‘PERSON-
PERSON’ is a preferable type pair. However,
the class ‘per:alternate_name’ (22.01%) presents
more frequently than ‘per:alumni’ (1.83%) and
‘per:roommate’ (1.29%) in the dataset. When in-
formation aggregated from all sources other than
the argument pair is not evident for judgment, en-

tity bias misguides the model to the wrong classi-
fication results.

6 Conclusion

In this work, we present an attention-based hetero-
geneous graph network to deal with the dialogue
relation extraction task in an inductive manner.
This heterogeneous graph attention network has
modeled multi-type features of the conversation,
such as utterance, word, speaker, argument, and
entity type information. On the benchmark Dialo-
gRE dataset, our proposed framework outperforms
the strongest baselines and the state-of-the-art ap-
proaches by a significant margin, which proves the
proposed framework can effectively capture rela-
tions between different entities in the conversa-
tion. Future work will focus on making use of
latent relations between entities that exist in dia-
logue history to develop intelligent conversational
agents.
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A Settings and Hyperparameters

In our experiments, we tune the parameters of
batch size, learning rate, and BiLSTM hidden size
by testing the performance on the validation set.
Table 5 lists the major parameters used in our ex-
periments.

Parameter Value
Word embedding dimension 300
NER embedding dimension 30
POS embedding dimension 30
Local BiLSTM hidden Size 200
Local BiLSTM layers 2
Global BiLSTM hidden Size | 128
Global BiLSTM layers 2

# Multihead attention 10
Learning rate 0.0005
Batch size 16
Edge embedding dimension 50

Table 5: Parameter settings.

B Statistics of Relation Labels

Table 6 shows statistics of relation labels in Di-
alogRE dataset. In the train set and test set,
there are 35 types of relations, while in the dev
set, there are 37 types. ‘gpe:birth_in_place’ and
‘per:place_of_birth’ only exist in the dev set.



Relation Type

Quantity

Percentage (%)

train dev test | train  dev test
per:alternate_names 1319 410 409 | 22.12 21.26 22.01
unanswerable 1308 404 388 | 21.94 20.95 20.88
per:girl/boyfriend 502 170 136 | 842 882 732
per:positive_impression 476 149 138 | 798 7.73 743
per:friends 444 156 122 | 745 8.09 6.57
per:title 250 86 78 | 419 446 420
per:spouse 204 72 54 | 342 373 291
per:siblings 196 64 58 | 329 332 3.2
per:children 171 55 48 | 287 285 258
per:parents 171 55 48 | 287 285 258
per:negative_impression 156 46 56 | 262 239 3.01
per:roommate 140 44 24 | 235 228 1.29
per:alumni 110 38 34 | 184 197 1.83
per:other_family 66 29 30 | L.11 1.50 1.61
per:works 58 12 19 | 097 0.62 1.02
per:age 53 15 10 | 0.89 0.78 0.54
per:client 52 18 18 | 0.87 093 0.97
per:place_of_residence 49 12 23 | 082 0.62 124
gpe:residents_of_place 49 12 23 | 0.82 0.62 1.24
per:boss 49 13 12 | 0.82 0.67 0.65
per:subordinate 49 13 12 | 0.82 0.67 0.65
per:visited_place 48 20 25 | 0.80 1.04 1.35
gpe:visitors_of_place 48 20 25 | 0.80 1.04 1.35
per:employee_or_member_of | 46 11 15 0.77 0.57 0.81
org:employees_or_members 46 11 15 | 0.77 057 081
per:neighbor 40 14 12 | 0.67 0.73 0.65
per:place_of_work 37 9 25 | 0.62 047 135
per:pet 30 10 8 0.50 052 043
per:acquaintance 26 12 34 | 044 0.62 1.83
per:origin 21 4 1 035 021 0.05
per:dates 20 14 6 034 073 033
per:schools_attended 5 2 1 0.08 0.10 0.05
org:students 5 2 1 0.08 0.10 0.05
per:major 2 1 3 0.03 0.05 0.16
per:date_of_birth 1 2 3 0.02 0.10 0.16
gpe:birth_in_place 0 1 0 0 0.05 0
per:place_of_birth 0 1 0 0 0.05 0

Table 6: Statistics of relation labels in DialogRE dataset.



