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Abstract Robotic process automation (RPA) is an

emerging technology that allows organizations automating

repetitive clerical tasks by executing scripts that encode

sequences of fine-grained interactions with Web and

desktop applications. Examples of clerical tasks include

opening a file, selecting a field in a Web form or a cell in a

spreadsheet, and copy-pasting data across fields or cells.

Given that RPA can automate a wide range of routines,

this raises the question of which routines should be auto-

mated in the first place. This paper presents a vision

towards a family of techniques, termed robotic process

mining (RPM), aimed at filling this gap. The core idea of

RPM is that repetitive routines amenable for automation

can be discovered from logs of interactions between

workers and Web and desktop applications, also known as

user interactions (UI) logs. The paper defines a set of basic

concepts underpinning RPM and presents a pipeline of

processing steps that would allow an RPM tool to generate

RPA scripts from UI logs. The paper also discusses

research challenges to realize the envisioned pipeline.

Keywords Robotic process automation � Process mining �
Robotic process mining

1 Introduction

Robotic process automation (RPA) tools, such as UiPath

Enterprise RPA Platform1 and Automation Anywhere

Enterprise RPA,2 allow organizations to automate repeti-

tive work by executing scripts that encode sequences of

fine-grained interactions with Web and desktop applica-

tions (van der Aalst et al. 2018). A typical clerical task that

can be automated using an RPA tool is transferring data

from one system to another via the user interfaces of these

systems. For example, Fig. 1 shows a spreadsheet with

student records that need to be transferred one by one into a

Web-based study information system. This task involves,

for each row in the spreadsheet, selecting the cells, copying

the value in a selected cell to the corresponding field in the

Web form, and submitting the form after a row has been

processed. Routines such as this one can be encoded in an

RPA script and executed by an instance of an RPA tool’s

runtime environment, also known as an RPA software

robot (or RPA bot for short).

A number of case studies have shown that RPA tech-

nology can lead to improvements in efficiency and data

quality in business processes involving clerical

work (Lacity and Willcocks 2016; Aguirre and Rodriguez

2017). However, while existing RPA tools are able to

automate a wide range of routines, they cannot determine

which routines are candidates for automation in the first

place.
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The current practice for identifying candidate routines

for RPA is through interviews, walk-throughs, and detailed

observation of workers conducting their daily work, either

in situ or using video-recordings (Agaton and Swedberg

2018). These empirical investigation methods allow ana-

lysts to identify candidate routines for automation and to

assess the potential benefits and costs of automating the

identified routines. However, these methods are time-con-

suming and, therefore, face scalability limitations in

organizations where the number of routines is very high.

In this position paper, we lay down a vision for a new

class of tools, namely Robotic Process Mining (RPM)

tools, capable of discovering automatable routines from

logs of interactions between workers and Web and desktop

applications. The envisioned RPM tools take as input logs

of user interactions with the applications (so-called user

interaction logs, or UI logs) that contain event records,

such as selecting a field or cell, copying and pasting, and

editing fields or cells. Given a UI log, RPM tools aim at

identifying automatable routines and their boundaries,

collect variants of each identified routine, standardize and

streamline the identified variants, and discover an exe-

cutable specification corresponding to a streamlined and

standardized variant of the routine. The routines produced

as output should be defined in a platform-independent

language that can be compiled into a script and executed in

an RPA tool.

In this way, RPM tools will assist analysts in drawing a

systematic inventory of candidate routines for automation.

This input is useful in environments where the number of

routines is too large for purely manual identification. We

envision that the identified candidate routines will then be

analyzed in terms of potential benefit and automation costs

using a combination of automatically derived attributes

(e.g., frequency, number of steps in the routines,

amenability to automation) in conjunction with domain

knowledge (e.g., potential financial benefits of automating

the routines). Once the candidate routines for RPA have

been selected, RPM will then help analysts to produce

executable specifications of routines (or sub-routines),

which can be used as a starting point for the automation

effort.

The paper defines a set of concepts underpinning RPM

and presents a pipeline of processing steps that would

allow an RPM tool to generate RPA scripts from UI logs.

Based on this pipeline, the paper then discusses research

challenges and points out possible approaches to address

these challenges.

The rest of the paper is structured as follows. Section 2

presents the proposed RPM framework. Section 3 discusses

challenges and guidelines to realize this framework. Sec-

tion 4 positions RPM with respect to related fields, and

Sect. 5 draws conclusions and acknowledges ethical

considerations.

2 RPM Framework

In this section, we clarify the context and scope of RPM

and propose a conceptual framework for RPM as well as a

pipeline that decomposes the RPM problem into relatively

independent steps.

2.1 Context and Scope

Several partially overlapping definitions of RPA can be

found in the research and industry literature. For example,

Aguirre and Rodriguez (2017) define RPA as a category of

software tools designed ‘‘to automate rules-based business

processes that involve routine tasks, structured data, and

deterministic outcomes’’. Meanwhile, van der Aalst et al.

(2018) define RPA as ‘‘an umbrella term for tools that

operate on the user interface of other computer systems in

the way a human would do’’. On the other hand, Gart-

ner (Tornbohm 2017) defines RPA as a class of tools that

perform [if, then, else] statements on structured data, typ-

ically using a combination of user interface interactions, or

by connecting to APIs to drive client servers, mainframes

or HTML code. An RPA tool operates by mapping a pro-

cess to the RPA tool language to drive the software robot,

with runtime allocated to execute the script by a control

dashboard.

Three elements come out from the above definitions.

First, RPA tools are designed to automate routine tasks that

involve structured data, that are driven by rules (e.g., if-

then-else rules), and that have ‘‘deterministic outcomes’’.

Second, RPA tools are able to execute tasks that involve

user interactons, in addition to other operations accessible

via APIs (in any case, automated actions). Third, in RPA

Fig. 1 Extract of spreadsheet with student data that needs to be

transferred to a Web form
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tools, it is possible to specify scripts and to operate (i.e., to

run and monitor via control dashboards) software bots that

execute these scripts.

By synthesizing these elements, we define RPA as a

class of tools that allow users to specify deterministic

routines involving structured data, rules, user interface

interactions, and operations accessible via APIs. These

routines are encoded as scripts that are executed by soft-

ware bots, operated via control dashboards.

Depending on how the control dashboard is used, we can

distinguish two RPA use cases: attended and unat-

tended (Tornbohm 2017). In attended use cases, the bot is

triggered by a user. During its execution, an attended bot

may provide/take in data to/from a user. Also, in these use

cases, the user may run the bot’s script step-by-step, stop

the bot, or otherwise intervene during the execution of the

script. Attended bots are suitable for routines where

dynamic inputs (i.e., inputs gathered during a routine) are

required, where some decisions or checks need to be made

that require human judgment, or when the routine is likely

to have unforeseen exceptions and it is important to detect

such exceptions. Entering data from an invoice in a

spreadsheet format into a financial system is an example of

a routine suitable for attended RPA, given that in this

setting some types of errors may have financial

consequences.

Unattended RPA bots, on the other hand, execute scripts

without human involvement and do not take inputs during

their execution. Unattended RPA bots are suitable for

executing deterministic routines where all execution paths

(including exceptions) are well understood and can be

codified. Copying records from one system into another via

their user interfaces through a series of copy-paste opera-

tions is an example of a routine that could be executed by

an unattended bot.

In light of the above, we can classify RPA as a specific

type of process automation technology – a broader class of

software tools that include Business Process Management

Systems (BPMS), document workflow systems, and other

types of workflow automation tools (Dumas et al. 2018). A

key difference between RPA on the one hand and BPMS

and workflow systems on the other is that RPA is meant to

automate deterministic routines that involve automated

steps where either an interaction is performed with the UI

of an application or an API is called (in both cases the steps

are automated). In contrast, BPMS and workflow systems

are designed to automate processes that involve combina-

tions of automated tasks and manual tasks. Related to this

distinction, BPMS and workflow systems are designed to

automate end-to-end processes consisting of multiple tasks,

performed by multiple types of participants (e.g., roles,

groups). Meanwhile, RPA tools are developed to automate

smaller routines, which correspond to individual tasks in a

process, or even steps within a task, such as creating an

invoice or a student record in an information system. As

such, RPA tools and BPMSs are complementary. A BPMS

may trigger an RPA tool to perform a given step in a

process.

RPA tools are able to automate a wide range of routines,

thus raising the following question: Which routines in an

organization may be beneficially automated using RPA?

We envision a class of tools, namely RPM tools3, that

answer this question. Specifically, we define RPM as a

class of techniques and tools to analyze data collected

during the execution of user-driven tasks in order to sup-

port the identification and assessment of candidate routines

for automation and the discovery of routine specifications

that can be executed by RPA bots. In this context, a user-

driven task is a task that involves interactions between a

user (e.g., a worker in a business process) and one or more

software applications. Accordingly, the main source of

data for an RPM tool is a UI log.

In line with the above definition, we distinguish three

main phases in RPM: (1) collecting and pre-processing UI

logs corresponding to executions of one or more tasks; (2)

identifying candidate routines for RPA; and (3) discovering

executable RPA routines.4 In the following, we analyze the

concepts involved across these three phases and refine

these phases into a tool pipeline.

2.2 Concepts

The main input for RPM is a UI log, which has to be

recorded beforehand. A UI log is a timestamped sequence

of events performed by a single user in a single worksta-

tion, involving events generated by one or more applica-

tions (including Web and desktop applications). An

example of a UI log, which we use herein as a running

example, is given in Table 1.

Each row in this example corresponds to one event (e.g.,

accessing url ‘‘https://www.unimelb.edu.au’’, clicking

button ‘‘New record’’, etc.). Each event is characterized by

an event type (e.g., click button, edit text field), a times-

tamp and other information (e.g., the label of a button,

3 Some commercial and open-source tool developers use the term

task mining to refer to RPM, e.g., in the PM4Py toolset http://pm4py.

pads.rwth-aachen.de/task-mining/.
4 Once an RPA routine has been automated via an RPA bot, a fourth

phase is to monitor this bot in order to detect anomalies or

performance degradation events that may signal that the bot may

need to be adjusted, re-implemented, or retired. While relevant from a

practical perspective, this phase is orthogonal to the three previous

phases since it is relevant both for bots developed manually and bots

developed using RPM techniques. Furthermore, previous work has

shown that existing process mining tools are suitable for analyzing

logs produced by RPA bots for monitoring purposes (Geyer-Klinge-

berg et al. 2018).
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Table 1 Example of UI log

Timestamp Event type Source Arg 1 Arg 2 Arg 3

1 2019-03-

03T19:02:18

Open file File

System

FileName: student_data.xls

2 2019-03-

03T19:02:23

Go to URL Web URL: ‘‘https://www.

unimelb.edu.au’’

3 2019-03-

03T19:02:26

Click button Web Label: ‘‘New record’’

4 2019-03-

03T19:02:28

Go to cell Worksheet SheetName: Sheet1 Address: A2 Value:

‘‘John’’

5 2019-03-

03T19:02:31

Click text

field

Web Label: ‘‘First Name’’ Value: ‘‘’’

6 2019-03-

03T19:02:37

Edit text field Web Label: ‘‘First Name’’ Value: ‘‘John’’

7 2019-03-

03T19:02:40

Go to URL Web URL: ‘‘https://www.

distraction.com‘‘

8 2019-03-

03T19:07:33

Open email Email

Client

From: ‘‘student@abc.com’’ Message: ‘‘Dear Course Coordinator,...’’

9 2019-03-

03T19:07:40

Click button Email

Client

Label: ‘‘Reply’’

10 2019-03-

03T19:07:48

Edit text field Email

Client

Label: ‘‘Message’’ Value: ‘‘Dear Student, your request has

been processed’’

11 2019-03-

03T19:07:50

Click button Email

Client

Label: ‘‘Send’’

12 2019-03-

03T19:07:55

Go to URL Web URL: ‘‘https://www.

unimelb.edu.au’’

13 2019-03-

03T19:08:02

Click text

field

Web Label: ‘‘Last Name’’ Value: ‘‘’’

14 2019-03-

03T19:08:05

Edit text field Web Label: ‘‘Last Name’’ Value: ‘‘Do3’’

15 2019-03-

03T19:08:08

Click text

field

Web Label: ‘‘Last Name’’ Value: ‘‘Do3’’

16 2019-03-

03T19:08:12

Edit text field Web Label: ‘‘Last Name’’ Value: ‘‘Doe’’

17 2019-03-

03T19:08:17

Click text

field

Web Label: ‘‘Country of

residence’’

Value: ‘‘’’

18 2019-03-

03T19:08:21

Edit text field Web Label: ‘‘Country of

residence’’

Value: ‘‘Australia’’

19 2019-03-

03T19:08:28

Click button Web Label: ‘‘Save’’

20 2019-03-

03T19:08:35

Click button Web Label: ‘‘New record’’

21 2019-03-

03T19:08:38

Go to cell Worksheet SheetName: Sheet1 Address: A3 Value:

‘‘Albert’’

22 2019-03-

03T19:08:39

Copy Worksheet Content: ‘‘Albert’’

23 2019-03-

03T19:08:40

Copy Worksheet Content: ‘‘Albert’’

24 2019-03-

03T19:08:42

Click text

field

Web Label: ‘‘First Name’’ Value: ‘‘’’

25 2019-03-

03T19:08:43

Paste Web Value: ‘‘Albert’’

26 2019-03-

03T19:08:44

Edit text field Web Label: ‘‘First Name’’ Value: ‘‘Albert’’

27 2019-03-

03T19:08:47

Go to cell Worksheet SheetName: Sheet1 Address: B3 Value:

‘‘Rauf’’
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the value of a cell, etc.), called payload, sufficient to

reconstruct the performed activity. For example, for an

event that refers to clicking a button, it is important to store

a unique identifier of this button (e.g., either the element

identifier, or its name if this is unique in the page). Like-

wise, for an event that refers to editing a field, an identifier

of the field as well as a new value assigned to that field are

required attributes. Events of the same type usually are

characterized by the same attributes in the payload. Gen-

erally, events recorded by different source applications

contain different attributes in the payload. For example, the

events generated by a spreadsheet (e.g., an Excel spread-

sheet) contain information such as spreadsheet name and

position of the involved cell or range of cells, while Web-

based events are characterized by the corresponding Web

page, name and/or identifier of the involved HTML ele-

ment. Events in UI logs are chronologically ordered based

on their timestamps. Some events may be aggregated into

actions of higher level. For example, two events Go to cell

and Copy cell content can be merged into one action called

Copy cell.

In order to obtain a UI log, all user interactions related to

a particular task have to be recorded. This recording pro-

cedure can be long-running, covering a session of several

hours of work, if the user performs multiple instances of

the task one after the other. During such a session, a

worker is expected to perform a number of actions of the

same or different types. The UI log used as running

example describes the execution of a task corresponding to

transferring student data from a spreadsheet into the Web

form of a study information system. The Web form

requires information such as the student’s first name, last

name and country of residence. If the country of residence

is not Australia, the user needs to perform one more step,

indicating that the student has to be registered as an

international student.

Each execution of a task is represented by a task trace.

In our running example, there are two traces belonging to

the new record creation task. From the log, we can see that

the user performed the creation of a new record in two

different ways. In the first case, they filled in the form

manually, while in the second case, they copied the data

from a worksheet and pasted it into the corresponding

fields.

Given a collection of task traces, the goal of RPM is to

identify a repetitive sequence of actions that can be

observed in multiple task traces, herein called a routine,

and identify routines amenable for automation. For each

such routine, RPM then aims at extracting an exe-

cutable specification (herein called a routine specification).

Table 1 continued

Timestamp Event type Source Arg 1 Arg 2 Arg 3

28 2019-03-

03T19:08:49

Copy Worksheet Content: ‘‘Rauf’’

29 2019-03-

03T19:08:52

Click text

field

Web Label: ‘‘Last Name’’ Value: ‘‘’’

30 2019-03-

03T19:08:53

Paste Web Value: ‘‘Rauf’’

31 2019-03-

03T19:08:54

Edit text field Web Label: ‘‘Last Name’’ Value: ‘‘Rauf’’

32 2019-03-

03T19:08:58

Go to cell Worksheet SheetName: Sheet1 Address: C3 Value:

‘‘Germany’’

33 2019-03-

03T19:09:01

Copy Workseet Content: ‘‘Germany’’

34 2019-03-

03T19:09:03

Click on text

field

Web Label: ‘‘Country of

residence’’

Value: ‘‘’’

35 2019-03-

03T19:09:04

Paste Web Value: ‘‘Germany’’

36 2019-03-

03T19:09:05

Edit text field Web Label: ‘‘Country of

residence’’

Value: ‘‘Germany’’

37 2019-03-

03T19:09:09

Tick box Web Label: ‘‘International

student’’

38 2019-03-

03T19:09:14

Click button Web Label: ‘‘Save’’

... ... ... ... ... ... ...
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This routine specification may initially be captured in a

platform-independent manner, and then compiled into a

platform-dependent RPA script to be executed in a specific

RPA tool.

To summarize, Fig. 2 presents a class diagram capturing

the above concepts and their relations.

2.3 RPM Pipeline

As mentioned earlier, the three main phases of RPM are:

(1) UI log collection and pre-processing; (2) candidate

routine identification; and (3) executable routine discovery.

In order to provide a more detailed view of the steps

required to achieve the goals of RPM, we decompose the

first phase into the recording step itself, and three pre-

processing steps, namely removal of irrelevant events

(noise filtering), segmentation of the log into routine traces,

and simplification of the resulting routine traces. We then

map the second phase into a single step and we decompose

the third phase into two steps: the discovery of platform-

independent routine specifications and compilation of the

latter into platform-specific specifications (scripts). This

decomposition of the three phases into steps is summarized

in the RPM pipeline depicted in Fig. 3. In the follow-

ing, we discuss each of the steps in this pipeline.

The recording of a UI log involves capturing low-level

UI events, such selecting a field in a form, editing a field,

opening a desktop application, or opening a Web page. UI

log recording may be achieved by instrumenting the soft-

ware applications (including the Web browser) used by the

workers, via plugin or extension mechanisms. Logs

collected by such plugins or extensions may be merged in

order to produce a raw UI log corresponding to the exe-

cution of one or more tasks by a user during a period of

time. This raw log usually needs to undergo some pre-

processing in order to be suitable for RPM.

As shown in Fig. 2, a UI log may contain events that do

not belong to an execution of any action, herein called

noise. Noise may occur for example when the user is

interrupted or gets distracted during the execution of a task,

leading to performing activities that are not relevant to the

task in question (e.g., pausing the transfer of student

records to reply to an email). Accordingly, the first step in

the pipeline (after the recording step) is dedicated to

identifying and filtering out events that do not belong to

any action (noise filtering) and as such should not be

automated. In our running example, event 7 (visiting

https://www.distraction.com) as well as events 8-11 (re-

plying to an email) are examples of noise.

Given a noise-filtered UI log, the next problem is to

identify the boundaries of the task traces. We call this

problem segmentation. Specifically, the purpose of seg-

mentation is to identify sequences of consecutive actions

that represent the execution of a task. The input of seg-

mentation is a UI log containing a single sequence of

events, while the output is a set of traces each representing

the executions of a task. We observe that noise filtering and

segmentation are intertwined. By identifying the bound-

aries of task traces, we also understand which events are

Fig. 2 Class diagram of RPM concepts

Fig. 3 RPM pipeline
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not part of any task, hence representing noise. Segmenta-

tion can be performed in several ways. For example, it can

be performed by using domain knowledge or a UI log can

be combined with transactional data recorded by an

enterprise system to identify start and end events of a

task (Linn et al. 2018).

Task traces may contain events that have no effect on

the final outcome. Such events constitute waste. For

example, a task trace may contain redundant events (e.g.,

pressing Ctrl-C twice consecutively on the same field,

which has the same effect as doing it only once). Another

type of waste has to do with defects, e.g., typing in a text

field, then deleting the content of the field and typing

something different. In our running example, events 13, 14

and 22 represent overprocessing waste. Accordingly, the

pipeline includes a simplification step, that aims at waste

identification and removal. The simplification step includes

aggregation of events into higher-level actions. In this way,

the task traces will be much more compact and concise,

and thus easier to translate into a target language.

Given a set of simplified task traces, the next step is to

identify candidate routines for automation. This step aims at

extracting repetitive sequences of actions that occur across

multiple task traces, a.k.a. routines, and at identifying the

ones that are amenable for automation. The output of this step

is a set of automatable or semi-automatable routines, ranked

accordingly to their automation potential (e.g., based on their

execution frequency and length).

After the candidate routines for automation are identi-

fied, the next step is executable (sub)routine discovery. For

each candidate routine, this step identifies the activation

condition (events 3 and 20 in Table 1), which indicates

when an instance of the routine should be triggered, and the

routine specification, which specifies what actions should

be performed within that routine.

The executable (sub)routine discovery step leads to a

platform-independent representation of the routine, which

can then be compiled into a script targeted at a specific

RPA tool via a final compilation step. This step generates

an executable script by mapping actions from the routine

specification into commands in the scripting language of

the target RPA tool.

The generated bot can then be executed in attended or

unattended settings. In attended settings, given an activa-

tion condition extracted from the routine specification, it

can notify the user about its ‘‘readiness’’ to perform the

routine when the condition is met. It can be paused during

execution, so the user can make small corrections if needed

and then resume the work. In unattended settings, the bot

works independently without human involvement.

Let us demonstrate this RPM pipeline on the running

example (Table 1):

Noise filtering. Events e7, e8, e9, e10, and e11 are noise

and must be filtered out from the log.

Segmentation. The main goal of the task captured in the

running example is to create a new record of a student.

Thus, the end event of a task trace is the actual creation of

such record, achieved as a result of clicking the button

‘‘Save’’. Thus, there are two task traces:

– Trace 1: e1, e2, e3, e4, e5, e6, e12, e13, e14, e15, e16,

e17, e18, e19;

– Trace 2: e20, e21, e22, e23, e24, e25, e26, e27, e28,

e29, e30, e31, e32, e33, e34, e35, e36, e37, e38;

Simplification. Events e13 and e14 in Trace 1 as well as

event e22 in Trace 2 are waste and must be removed. There

are three possible events merges:

– Events {e5, e6}, {e15, e16} and {e17, e18} can be

merged into action Write into text field with payload p

= {Label, Value}.

– Events {e24, e25, e26}, {e29, e30, e31} and {e34, e35,

e36} can be merged into action Paste into text field

with payload p = {Label, Value}.

– Events {e21, e23}, {e27, e28} and {e32, e33} can be

merged into action Copy cell with payload p =

{SheetName, Address, Content}.

Candidate routine identification. The actions related to

the modification of the Web-form fields occur in both

traces. Thus, the corresponding sequence of actions con-

stitutes a routine. Note that Trace 1 contains some actions

that cannot be automated (the user fills in the form man-

ually), while Trace 2 consists of automatable actions only.

Executable (sub)routine discovery. The activation

condition for the extracted routine is Click button ‘‘New

Record’’ (e3 and e20 of the running example). Figure 4

presents the New Record Creation routine specification.

Compilation. The routine specification is then compiled

into an RPA script. Here, each step from the specification

model is ‘‘translated’’ into a specific command in the lan-

guage of the target RPA tool. Figure 5 provides an example

of script generated from the discovered routine

specification.

3 Challenges and Guidelines

Each step of the RPM pipeline presented in Fig. 3 gives

rise to research challenges. Next, we give an overview of

some of these challenges and propose approaches to tackle

them.

Recording. The main challenge in this step is to identify

what actions must be recorded. The same action (e.g.,

mouse click) can either be important or irrelevant in a
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given context. For example, a mouse click on a button is an

important event but a mouse click on the background of a

Web page is an irrelevant event. Also, when a worker

selects a Web form, we need to record events at the level of

the Web page (the Document Object Model – DOM) in

order to learn routines at the level of logical input elements

(e.g., fields) and not at the level of pixel coordinates, which

are dependent on screen resolution, window sizes, etc.

Existing UI event recording tools, such as JitBit Macro

Recorder,5 TinyTask,6 and WinParrot,7 save all the actions

performed by the user at a too low level of granularity, with

reference to pixel coordinates (e.g., mouse click at coor-

dinates 748,365). As a result, the UI interaction logs gen-

erated by these tools are not suitable for extracting useful

routines. RPA tools (e.g., UiPath Enterprise RPA Platform,

and Automation Anywhere Enterprise RPA) provide

recording functionality. However, this functionality is

intended to record RPA scripts. These tools do not capture

details about the values of the different fields, as these

values are not relevant for RPA script generation. Hence, a

new family of recording tools is needed to record UI logs

required for RPM.

In recent work, Leno et al. (2019) introduced a tool to

record UI logs in a format that is suitable for RPM. The

tool records not only the UI actions (selecting a field,

editing a field, copying into or pasting from the clipboard),

but also the values associated with these actions (e.g., the

value of a field after an editing event). The tool supports

MS Excel and Google Chrome. The tool also simplifies the

recorded UI logs by removing redundant events (e.g.,

double-copying without pasting, navigation between cells

in Excel without modifying or copying their content). The

applicability of such tools, however, is limited to desktop

applications that provide APIs for listening to UI events

and accessing the data consumed and produced by these

events. To develop a more general solution, it may be

necessary to combine this latter approach with the OCR

technology in order to detect UI events and associated data

from application screenshots, as outlined in Ramirez et al.

(2019); Linn et al. (2018).

Noise filtering. One of the main challenges of this stage

is to separate noise from events that contribute to tasks. A

possible solution is to treat noise as chaotic events that can

happen anywhere during the process execution. A tech-

nique for filtering out such chaotic events is described

in Tax et al. (2019). However, if noise gravitates towards

one particular state or set of states in the task (e.g., towards

the start or the end of the task), techniques such as the one

mentioned above may not discover it and consequently

may not filter it out. Moreover, some events can be mis-

takenly removed due to the different ways the same task

can be performed and induce what may mistakenly appear

to be chaotic sequences of events. This can be avoided by

Fig. 4 New Record Creation routine specification

Fig. 5 New Record Creation script

5 https://www.jitbit.com/macro-recorder/.
6 https://www.tinytask.net/.
7 http://www.winparrot.com/.
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considering the data perspective of processes, i.e., values

of data objects that are manipulated by actions and events.

Looking at the data objects, it is possible to identify events

and actions that share the same attribute values (e.g.,

copying a value from a worksheet and then pasting it into a

Web form), or have the same source/origin (e.g., all the

actions performed on the same web site). The events that

do not share any data attributes and/or values or originate

from uncommon sources most likely constitute noise.

Segmentation. A UI log, in its raw form, consists of one

single sequence of events recorded during a session. Dur-

ing this session, a user may have performed several exe-

cutions of one or multiple tasks. In other words, a UI log

may contain information about several tasks, whose actions

and events are mixed in some order that reflects the par-

ticular order of their execution by the user. Moreover, the

same task can be ‘‘spread’’ across multiple logs, for

example if a task is performed by several users working on

different work stations. Before identifying candidate rou-

tines for automation, we therefore need to segment a UI log

into traces, such that each trace corresponds to one exe-

cution of a task.

In some scenarios, segmentation may be accomplished

by combining transactional data recorded by enterprise

information systems together with UI logs, as proposed

in Linn et al. (2018). For instance, after pressing button

‘‘Save’’ in our running example, event Create record can

be generated, which marks the end point of the current task

trace. The problem of this approach, however, is that such

transactional data may only provide limited information

about the task.

The problem of segmentation in RPM is akin to that of

Web session mining – widely studied in the field of Web

log mining (Liu 2007) – where the input is a set of click-

streams and the goal is to extract sessions where a user

engages with a web application to fulfill a goal. Most of

traditional approaches to session identification can also be

used for RPM. However, they can only be used in the

context of Web interactions, as they are based on Web

organization specifics. For example, one of the key con-

cepts they use is that a page must have been reached from a

previous page in the same session. Therefore, one of the

challenges in RPM segmentation is that tasks are usually

performed across different systems and applications, and

the Web browser is just one of these applications. An

alternative approach is to use time-based heuristics to set a

limit for the total duration of a session or the maximal

allowed time difference between two events. However, this

approach is unreliable since users may be involved in

different activities when performing a task. In addition,

tasks are usually performed in batches, and that increases

the difficulty of using time-based heuristics for the correct

identification of the tasks’ boundaries. As an example, let

us take the task of filling in Web forms by copying data

from a spreadsheet. For each row in the spreadsheet, the

user creates a new form, copies the required data from a

cell of that row and pastes it into the corresponding text

field, then presses the submit button and starts the task

again. In this example, the time difference between two

different tasks can be smaller than the time difference

between events in the same task, leading to an incorrect

segmentation.

The problem of UI log segmentation is also related to

that of correlating uncorrelated events in event logs used

for process mining (Bayomie et al. 2019, 2016; Ferreira

and Gillblad 2009). However, this problem has been ad-

dressed in restrictive settings. In particular, Ferreira and

Gillblad (2009) addressed the problem when the process (in

our case the routine) does not have cycles/repetitions,

whereas (Bayomie et al. 2016, 2019) assume that a process

model is given as input, which means that the the rou-

tine specification is known. Also, the approaches in Fer-

reira and Gillblad (2009) and Bayomie et al. (2016) were

shown to produce rather inaccurate results, whereas RPM

seeks to identify routines with high levels of confidence,

given that replicating a routine inaccurately can lead to

costly errors, especially in contexts where unattended bots

are used.

Simplification. Even if an event belongs to a task, it

may still be redundant. For example, when a user fills in a

text field with a mistake, and then has to fill it in again. In

this case, the events that belong to the first time of filling in

the text field are redundant. Depending on the context, the

same event may be integral part of a routine or it may be

redundant. Thus, classical frequency-based filtering

approaches, like (Conforti et al. 2017), cannot be applied

to address this problem. One of the possible solutions is to

use sequential pattern mining techniques to distinguish

between events that are part of mainstream behavior and

outlier events (Sani et al. 2017). However, in case some

events are rarely seen during a task execution they can be

mistakenly treated as outliers. The outlined problem cre-

ates a need for semantic filtering. Groups of events can be

combined into actions of a higher semantic meaning. The

challenge here is to identify the semantic boundaries of an

action and the attributes to form its payload.

Candidate routines identification. This step can be

decomposed into two substeps: 1) Routine extraction; 2)

Identification of automatable routines. Each of the pre-

sented substeps faces its own challenges.

The first substep aims at the identification and extraction

of repetitive sequential patterns that represent the execution

of routines. One of the challenges here is that, during

the execution of a routine, the user can perform other
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actions that are not part of the routine. When identifying

the routines, such actions have to be ignored. In this regard,

sequential pattern mining techniques, in particular the ones

that work with gapped patterns (Liao and Chen 2013) can

be used. Another challenge is that sometimes the actions

that constitute a routine can be performed in random order

(e.g., when filling in a Web form). Thus, it is difficult to

identify frequently-occurring patterns. One possible solu-

tion is to use abstraction mechanisms as shown in Bialy

et al. (2019). An alternative approach is to use more flex-

ible notions of patterns like alphabet repeats (Bose and

van der Aalst 2009) that do not take into consideration the

order in which the events occur, or even declarative

specifications as described in Leno et al. (2020).

The main goal of the second substep is to identify rou-

tines amenable for automation. A discovered routine is

considered to be a candidate for automation if this routine

is either semi- or fully automatable. In this context, the

challenge is how to identify whether the routine is

automatable or not. In Geyer-Klingeberg et al. (2018), the

authors describe how to assess the automation potential of

a task. The frequency of execution of a task is presented as

the main criterion for automation. However, if the task is

frequent there is no guarantee that it is automatable.

Lacity and Willcocks (2016) propose high-level guide-

lines for determining if a task is a candidate for automation

in the context of a case study at Telefonica. However, this

work does not provide a formal and precise definition of

an automatable task, which would be crucial to automate

the identification of automatable routines. In fact, a major

challenge is how to formally characterize what makes a

routine suitable for RPA, in a sufficiently precise way to

enable the design of efficient algorithms to identify these

routines from large volumes of UI logs. One possible

solution is to use the notion of determinism. A routine can

be automated if every event belonging to the routine is

deterministically activated and uses data produced by

previous actions (e.g., the manual input into a text field is

an example of a non-deterministic action). The challenge

here is to identify non-deterministic events in a UI log,

which reflect non-deterministic actions being performed.

One of the problems related to non-deterministic

actions that can arise is the identification of partially-au-

tomatable routines including automatable sub-routines.

If somewhere in the middle of a routine a non-determin-

istic action happens, this action splits the routine into two

automatable sub-routines. We also observe that not every

routine is worth to be automated. The automation of some

routines can bring much more benefits than the automation

of other routines. Thus, a cost-benefit analysis of routine

automation is an important task in RPA (Lacity and Will-

cocks 2016).

Executable routine discovery. Given a set of routines,

executable routine discovery consists in constructing a

routine specification that represents the entire set of routi-

nes in the form of a control-flow model enhanced with data

flow. The challenge here is that there may be multiple

(alternative) ways of performing the same routine, e.g.,

different workers may perform the same routine differ-

ently. Hence, when discovering a routine specification, we

need to focus on capturing all the preconditions under

which the routine should be triggered and the effects

(postconditions) of the routine. This calls for dedicated

quality measures for routine specifications, which capture

the extent to which the preconditions and the effects of the

observed routines are covered by a given routine specifi-

cation. Also, in case two different routines produce the

same effects, it is important to identify the optimal one.

Searching for the best alternative variant of a routine is a

challenge in executable routine discovery.

Some repetitive routines may be triggered only under

certain conditions. For example, when a purchase order is

of type ‘‘retail-EU’’, then a certain sequence of actions is

performed in order to comply with specific EU regulations

and this sequence of actions corresponds to a repetitive

routine that can be automated. On the other hand, when the

order is of type ‘‘retail-US’’ another routine is performed.

Or, alternatively, we might find that handling orders of

type ‘‘retail-EU’’ follows some specified sequence of steps

(that can be captured via an executable process model),

whereas for ‘‘retail-CN’’, handling the order is an ad-

hoc procedure and no regularity can be found. Therefore,

the handling of ‘‘retail-EU’’ orders can be automated by

means of an executable model, whereas the processing of

‘‘retail-CN’’ orders cannot. Recent work (Bosco et al.

2019) has put forward the idea of using rule mining tech-

niques, such as RIPPER, to discover conditions under

which a given routine can be automated. However, the

applicability of these techniques on real-life RPM scenar-

ios has yet to be tested, and is likely to raise scalability and

robustness challenges.

Another challenge in this step is to discover the data

transformations that occur within each action in a routine.

Indeed, if we want an RPA bot to reproduce the actions of a

routine, we need to encode in the bot’s script how the

parameters of each action are computed from the routine’s

input parameters or from the parameters of previous

actions in the routine. Recent work (Bosco et al. 2019)

suggests that this step in the discovery of executable rou-

tines can be implemented using existing methods for

automated discovery of data transformations ‘‘by exam-

ple’’ (Abedjan et al. 2016; Jin et al. 2017). However, these

methods suffer from scalability issues. In addition, their

scope (i.e., the types of transformations they can discover)

is rather limited. Thus, new advances in the field of
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automated discovery of data transformations are needed to

make data transformation applicable in the context of

RPM.

Compilation. Given a routine specification, the compi-

lation step aims at generating an executable RPA script

that implements the specification. This step requires the

correct identification of the application elements involved

during the routine execution (e.g., a button or a text field in

a Web form). For example, when converting the action of

clicking a button in a Web page into an executable com-

mand, we need to identify the HTML element that repre-

sents this button and extract its DOM position. Such

information can be recorded by a logger during the

recording step. However, sometimes this information may

be missing. For example, some of the Web elements (e.g.,

the links) do not have any identifiers that can be used to

locate them in the page. In cases where Web sites are

created dynamically and consist of a large amount of

nested containers it is very difficult to extract the correct

location of the elements. Therefore, when working with

custom applications without an API, it may not be possible

to identify the type of an event correctly. For this reason, an

intelligent recognition of the elements is required. In this

regard, technologies such as OCR may be used, but the

challenge here is to preserve the semantics of the actions

recorded and to capture all the data involved during their

execution.

4 Related Work

The discovery of candidate routines for automation via

RPA tools is so far a largely unexplored problem. Recent

work (Leopold et al. 2018) sketched an approach to iden-

tify passages in textual descriptions of business processes

(e.g., work instructions) that might refer to tasks amenable

for automation. This approach, however, may lead to

imprecise results due to the complexity of natural language

analysis. Also, it requires textual documentation of suit-

able quality and completeness, and assumes that tasks are

performed exactly as documented. In reality, workers may

perform steps that are not fully documented in order to deal

with exceptions and variations. Hence, a task that might

appear as automatable according to its work instructions

might turn out not to be automatable in practice. Another

body of related work includes approaches for auto-com-

pleting Web forms with default values or predicted values

(Hermens and Schlimmer 1994). These approaches help

users during manual form filling, but they do not automate

routines in the way RPA tools do.

In addition to the above work, the RPM vision presented

in this paper is related to other sub-fields of data mining

that seek to discover behavioral models from different

types of logs. Below, we discuss the relations between

RPM and three of such fields, namely process mining, web

usage mining, and user interface log mining.

Process mining. RPM can be positioned as an extension

of the field of process mining (van der Aalst 2016).

Specifically, discovering RPA routines is closely related to

the problem of Automated Process Discovery (APD),

which has been widely studied in the field of process

mining (Augusto et al. 2019). The purpose of APD tech-

niques is to discover business process models from event

logs recording the execution of tasks in enterprise systems.

A significant subset of APD algorithms focus on discov-

ering process models from the control-flow perspective.

This subset of APD algorithms does not consider the data

that is taken as input and produced as output by the tasks of

the process, nor the data used by a process execution

engine to evaluate branching conditions. Another subset of

APD techniques target the problem of discovering process

models with data-driven branching conditions (de Leoni

et al. 2013) as well as control-flow relations that only hold

under certain conditions (Mannhardt et al. 2017). These

latter techniques provide a starting point for developing

techniques for discovering RPA routines. Indeed, in order

to discover RPA routines, we need to discover conditions

within the routine like the activation conditions that trigger

a routine. Other APD techniques focus on discovering

simulation models (Martin et al. 2016). The latter type of

models can be given as input to business process simula-

tors, which execute them in a stochastic sense.

Notwithstanding the rich body of work in the field of

process mining, we are not aware of techniques that dis-

cover executable process models ready to be deployed or

compiled (without significant manual enhancement) into a

business process execution engine. In particular, we are not

aware of any work on automated process discovery that

tries to discover data transformations (i.e., mappings

between inputs and outputs) in automatically discovered

process models. Yet, these data transformations are

essential to discover process models that can be executed

by a process execution engine or by an RPA tool.

There are similarities between UI logs and event logs

used in process mining. Specifically, both types of logs

consist of timestamped records, such that each record refers

to the execution of an action (or a task) by a user. Also,

each record may contain a payload consisting of one or

more attribute-value pairs. Some commercial process

mining vendors have exploited the similarities between UI

logs and business process event logs in order to offer RPM-

related features. For example, the Minit8 process mining

tool provides a multi-level process discovery feature to

support some RPM tasks. Specifically, given an event log

8 https://www.minit.io/.
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recording the execution tasks and a UI log, Minit is able to

generate a two-level process map. The first level shows the

tasks recorded in the log extracted from the enterprise

system. Each task can be expanded into a second-level

process map showing the UI actions and their control-flow

relations. In this way, the tool supports the (visual) iden-

tification of tasks that have relatively simple internal

structures and could, therefore, be potentially automated.

However, it cannot determine if a task contains fully

deterministic (sub-)routines nor can it produce exe-

cutable specifications of deterministic routines. Also, the

tool assumes that there is a clear relation between the

events in the UI log and those in the business process event

log. In other words, it does not address the segmentation

step in the RPM pipeline.

Another commercial tool, namely Kryon Process Dis-

covery,9 identifies candidate routines for RPA by analyzing

UI logs in conjunction with screenshots taken while users

perform their work on one or more applications. However,

the candidate routines that Kryon identifies may or may not

be automatable, depending on the actual data values that

users have entered. If the data values that are entered in a

particular step cannot be determined from the values of

previously observed attributes, it means that the user is

providing inputs either from external data sources (not

observed in the UI) or from their own domain knowledge,

and hence that step of the routine is not automatable. In

other words, not all routines that are identified as candi-

dates for automation by this tool can be automated.

While there are similarities between UI logs on the one

hand, and event logs used for process mining on the other

hand, there are four some notable differences. First, event

logs capture events at a higher level of abstraction.

Specifically a record in an event log typically refers to the

execution of an entire task within a business process, such

as Check purchase order or Transfer student records. Such

tasks can be seen as a composition of lower-level actions,

which may be recorded in a UI log. For example, task

Transfer student records may involve multiple actions to

copy the records associated with a student (name, surname,

address, course details) from one application to another.

Second, UI logs do not come with a notion of case iden-

tifier (or process instance identifier), whereas event logs

typically do. In other words, events in a UI log are not

explicitly correlated, and for this reason, they may need to

be segmented as discussed in Sect. 2.3. Third, a record in

an event log often does not contain all input or output data

used or produced during the execution of the corresponding

task. For example, a record in an event log corresponding

to an execution of task Transfer student records, is likely

not to contain all attributes of the corresponding student

(e.g., their address). On the other hand, the presence of

every input and output attribute in a UI log is necessary for

RPM purposes. If some input or output attributes are

missing in the UI log, the resulting routine specification

would be incomplete, and hence the resulting RPA bot

would not perform the routine correctly. A fourth differ-

ence is that event logs are typically obtained as a by-pro-

duct of transactions executed in an information system,

rather than being explicitly recorded for analysis purposes.

The latter characteristic entails that event logs are more

likely to suffer from incompleteness, including missing

attributes as discussed above, but also missing events. For

example, in a patient treatment process in a hospital, it may

be that the actual arrival of the patient to the emergency

room is not recorded when the patient arrives by them-

selves, but it is recorded when the patient arrives via an

ambulance. In other words, the presence or absence of an

event in an event log depends on whether or not the

information system is designed to record it, and whether or

not the workers actually record it. On the other hand, a UI

log is recorded specifically for analysis purposes, which

allows all relevant events to be collected subject to the

capabilities of the UI recording tool.

Web usage mining. Web usage mining seeks to dis-

cover and analyze sequential patterns in Web data, such as

click streams capturing user interactions with Web appli-

cations (Srivastava et al. 2000). Analyzing such data can

help to optimize the functionality of Web-based applica-

tions, provide personalized content to users, and find the

most effective logical structure for Web pages (Liu 2007).

Web usage mining works with data at a similar level of

granularity as RPM. Also, the data manipulated in Web log

mining is often uncorrelated, meaning that it represents a

sequence of actions performed throughout several sessions

without explicit assignment of actions to a specific session.

Given these similarities, Web usage mining techniques

could provide a starting point to realize an RPM pipeline.

For example, Web mining techniques for extracting ses-

sions from Web logs could be adapted to address the

problem of segmentation discussed above. On the other

hand, Web usage mining techniques do not address the

problem of discovering candidate routines for automation.

Also, RPM differs from Web usage mining in that it is not

restricted to Web applications.

User interface log mining. RPM is also related to the

topic of user interface log mining. In the context of desktop

assistants, research proposals such as TaskTracer and

TaskPredictor have tackled the problem of analyzing user

interface logs generated by desktop applications in order to

identify the current task performed by a user and to detect

switches between one task and another (Shen et al. 2007;

Dragunov et al. 2005). Other related work in this area has9 https://www.kryonsystems.com/process-discovery/.
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tackled the problem of task identification and classification

from Desktop app user interface logs (Oliver et al. 2006;

Rath et al. 2010) as well as the problem of extracting

frequent sequences of actions from noisy user interface

logs (Dev and Liu 2017) (which could constitute candidate

routines for automation). With respect to the previously

cited research, the novelty of RPM is that it seeks to dis-

cover executable routine specifications by analyzing logs

that include inputs and outputs of actions (e.g., data copied

to or pasted from the clipboard, data entered into cells), as

opposed to purely considering sequences of actions without

the associated data.

5 Conclusion

We have exposed a vision for a new class of process

mining tools, namely RPM tools, capable of analyzing

UI logs of fine-grained user interactions with IT systems in

order to identify routines that can be automated using RPA

tools. As a first step to concretize this vision, we decom-

posed it into a pipeline and sketched challenges that need

to be overcome to implement each of the pipeline’s com-

ponents. We also provided some guidelines to tackle these

challenges.

The proposed RPM pipeline focuses on the discovery of

routines that can be executed in an end-to-end manner by

an RPA bot. This assumption is constraining. In reality,

routines may be automated for a certain subset of cases, but

not for all cases (i.e., automation may only be partially

achievable). A key challenge beyond the proposed RPM

pipeline is how to discover partially deterministic routines.

While a fully deterministic routine can be executed end-to-

end in all cases, a partially deterministic routine can be

stopped if the bot reaches a point where the routine cannot

be deterministically continued given the input data and

other data that the bot collects during the routine’s exe-

cution. For example, while copying records of purchase

orders from a spreadsheet or an enterprise system, the bot

detects that this order comes from China, so it stops

because it does not know how to handle such orders, or it

does not find a PO number (empty cell), and hence it

cannot proceed. Discovering conditions under which a

routine cannot be deterministically continued (or started) is

a major challenge for RPM.

The vision of RPM exposed in this paper focuses on

discovering automatable routines, which is only one op-

eration of a broader set of RPM operations that we foresee,

namely robotic process discovery. Besides robotic process

discovery, we envision that the field of RPM will encom-

pass complementary problems and questions such as per-

formance mining of RPA bots, e.g., ‘‘What is the success or

defect rate of a bot when performing a given routine?’’,

‘‘What patterns are correlated with or are causal factors of

bot failures?’’, as well as anomaly detection problems, e.g.,

‘‘Are there cases where the behavior of the bot or the

effects of the bot’s actions are abnormal and hence warrant

manual inspection and rectification?’’.
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