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Abstract Transparency in transport processes is becoming

increasingly important for transport companies to improve

internal processes and to be able to compete for customers.

One important element to increase transparency is reliable,

up-to-date and accurate arrival time prediction, commonly

referred to as estimated time of arrival (ETA). ETAs are

not easy to determine, especially for intermodal freight

transports, in which freight is transported in an intermodal

container, using multiple modes of transportation. This

computational study describes the structure of an ETA

prediction model for intermodal freight transport networks

(IFTN), in which schedule-based and non-schedule-based

transports are combined, based on machine learning (ML).

For each leg of the intermodal freight transport, an indi-

vidual ML prediction model is developed and trained using

the corresponding historical transport data and external

data. The research presented in this study shows that the

ML approach produces reliable ETA predictions for

intermodal freight transport. These predictions comprise

processing times at logistics nodes such as inland terminals

and transport times on road and rail. Consequently, the

outcome of this research allows decision makers to

proactively communicate disruption effects to actors along

the intermodal transportation chain. These actors can then

initiate measures to counteract potential critical delays at

subsequent stages of transport. This approach leads to

increased process efficiency for all actors in the realization

of complex transport operations and thus has a positive

effect on the resilience and profitability of IFTNs.
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transport � Hinterland transport � Intermodal transport �
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1 Introduction

Driven by supply chains with a more and more global

reach, today’s freight transport networks must connect

increasingly distant production and sales regions, and such

global competition leads to increasing demands for service,

delivery times and cost efficiency. Simultaneously, con-

straints such as limited space in facilities and regulations

(e.g., environmental protection and customs) must be

considered. These factors create greater dynamics and

complexity in global freight transport networks, resulting

in increased vulnerability.

This increased vulnerability becomes apparent in supply

chains when companies simultaneously try to to reduce risk

buffers as a result of rising cost pressure. Interviews

revealed that instead of short but unstable transport times,

companies prefer somewhat slower transports with a reli-

able arrival time, as this allows them to establish

stable processes along the supply chain. This requires more

transparency along all of the production and transport

processes. In this context, the transport processes are of

particular importance, as they do not take place in a pro-

tected environment such as a factory building, but on a

shared infrastructure where they are exposed to environ-

mental influences.
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To increase their supply-chain visibility, actors in the

supply chain use transport management systems as well as

track-and-trace systems. However, these systems currently

only provide information on how the transport of a loading

unit is planned and where it is located at that moment, but

not how its further transport is likely to be realized. This

would especially be important in regard to disruptions,

which propagate through the network. A small delay in the

first leg of the transport chain can have negative cascading

effects at all subsequent legs and eventually lead to missing

a scheduled connection that cannot wait. An important

metric that builds upon transparency is the estimated time

of arrival (ETA) of transports.

ETAs are especially interesting for intermodal trans-

ports, in which schedule-based and non-schedule-based

transports are usually combined. The term ‘‘intermodal

transport’’ refers to a transport chain in which loading units

such as intermodal containers are transported by at least

two different modes of transport, including transshipment.

Generally, trains or ships that follow strict schedules cover

the majority of the distance. The more flexible road

transport of the loading unit is used only over short dis-

tances for pre- and post-carriage, for example, to transport

goods to a rail or sea terminal or to collect goods again at

the unloading point.

In supply chains using intermodal freight transport net-

works (IFTN), accurate and up-to-date ETAs can be used

for each transshipment point to determine whether a con-

necting transport will be reached or not. If included into an

information-sharing platform, this would allow proactive

communication and thereby enable different actors to

consider and take appropriate measures to potentially

compensate for existing delays. Thus, the resilience of

IFTNs as well as of supply chains can be improved by

determining ETAs. This in turn would enable the various

actors to make the supply chain more efficient and cost-

effective.

To derive accurate ETAs, a large quantity of data with a

high variety and velocity must be collected and processed.

This is especially demanding for complex IFTNs because

different actors cover the different legs of the intermodal

transport chain. The different goals and IT structures sub-

stantially increase the effort required for data collection,

cleaning and connection. However, the major difficulties

when calculating ETAs in IFTN arise from the different

characteristics of the various modes of transport: the

intermodal transport chain connects scheduled and

unscheduled transports, which creates peaks in the distri-

bution of possible arrival times and prevents the determi-

nation of an ETA prediction with a fixed confidence

interval for the entire transport chain. In addition, the

loading capacity of some means of transport, such as ships

and trains, and the transshipment capacity at transshipment

points are limited, which creates further restrictions for

ETA prediction.

These factors lead to the overarching question addressed

in this computational study: What is an appropriate struc-

ture for ETA prediction of containers in intermodal trans-

port chains?

To answer this question, we look at an example IFTN

that connects the German hinterland with the port of

Hamburg. The IFTN was analyzed in regard to physical

and IT processes by means of 25 semi-structured inter-

views with various actors within the network. These

interviews were used to identify the requirements for ETA

prediction, available data, possible transport disruptions

and expected challenges in the implementation of inte-

grated ETA prediction for whole intermodal transport

chains. This process was followed by the acquisition and

transformation of extensive amounts of historical data for

2015–2017. The data include process data from railway

operators, railway transport companies and inland terminal

operators, network data from railway infrastructure com-

panies and additional data from weather services.

Usually, when large amounts of data are available, one

potential approach is to derive a descriptive microsimula-

tion model that maps the structure of the underlying system

in detail. However, the extent of the dynamics and com-

plexities within IFTNs is too large for such a model to be

feasible. Nevertheless, the recently emerging field of

machine learning (ML) opens up new possibilities.

A purely data-driven approach using ML would not be

effective for ETA predictions in IFTNs because intermodal

transport chains usually include buffer times between the

rigid timetables of some modes of transport and often

include added services, such as storage. The pure appli-

cation of ML to the overall intermodal transport chain

would lead to a predictive model that ignores the logistics

structure of the chain and therefore mixes transport times,

buffer times and storage times. The ETA prediction pro-

duced in this manner would not be very meaningful, as it

would not be possible to distinguish between planned and

unplanned storage times. Moreover, a container can be

shipped via different routes for the same origin–destination

pair. Ignoring this feature would result in greatly varying

predictions. Knowledge of the actual transport processes is

necessary to develop an appropriate ETA prediction model

using ML for an intermodal transport chain. This knowl-

edge enables the identification and inclusion of logistics

structures in the overall approach.

Such a mixed approach of ML methods and the mapping

of logistic structures for ETA prediction in IFTNs does not

exist in current research. In recent years, freight transport

research on ETA predictions has focused on single modes

of transport, especially on road transport executed via

trucks. As a result, much of the data generated by today’s
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IFTNs remains unused. Being able to leverage these data

through the new possibilities introduced by ML holds great

potential in terms of transparency and operational

efficiency.

Therefore, the aim of this computational study is to

develop an approach to ETA prediction that uses existing

data from different actors to cover the entire intermodal

transport chain.

To reduce the complexity and to make specific and

accurate predictions for each actor, the overall ETA pre-

diction was divided into subproblems covering the indi-

vidual legs of the intermodal transport chain, and an

appropriate ML method was identified for each leg. Then,

each submodel was developed in four steps: (1) system

structuring (2) feature engineering and feature selection,

(3) model selection and model tuning, and (4) system

validation. As the data allow for the identification of single

containers and for assignment to trucks and wagons on a

train, all predictions can be transferred to subsequent legs

of the transport chain, thus acting as inputs for the fol-

lowing predictions. Therefore, all the individual predic-

tions can be combined into an overall ETA prediction that

covers the entire intermodal transport chain from the origin

to the final destination.

The rest of this paper is organized as follows. The ter-

minology and structures of IFTNs are clarified in Sect. 2 to

provide background information about the underlying

system. Section 3 reviews some of the literature on ETA

predictions for different modes of transport, intermodal

transport and ML techniques. The problem as well as the

methodology and data used to solve it are formally

described in Sect. 4. Section 5 applies this method to an

inland terminal and the following train connection. Sec-

tion 6 draws conclusions and discusses some important

considerations for applying the method.

2 Research Background

IFTNs usually consist of several distinct transport legs

using multiple means of transportation that can include

transport via truck (road), train (rail), plane (air) or ship

(river, sea). The different natures of these modes of

transport necessitate the existence of processing facilities

within the IFTN. During a shift from road to rail transport,

for example, the containers have to be transferred from

trucks to trains. These transfers are executed in terminals

that employ cranes to transfer containers. Employees of

these terminals also manually check and assure compliance

with safety regulations. Additionally, the overall load of a

train must also sometimes be broken down, separated and

allocated to new trains. Consequently, the IFTN consists of

transportation between nodes that can be conducted by

either trains or trucks and of transfer and reallocation

processes at the terminal nodes. In addition to terminal

nodes, the IFTN includes starting nodes and destination

nodes.

Since some modes of transport operate according to

strict schedules, the question arises of whether a container

can reach its planned connection on time. The most

important of these transitions are the flexible container

delivery by truck in the hinterland terminal with onward

transport by scheduled train, the formation of a scheduled

train in the marshaling yard for onward transfer to the port

of Hamburg and the marshaling of the wagons from the

port’s entry station to the sea terminal for loading onto the

scheduled ship.

As the shippers of the containers at the starting node are

companies that rarely have a direct connection to railways,

the first leg of the overall transport is usually a truck.

Depending on the ultimate destination of the container, the

same applies for the last leg. In the case of continental

transport, the combination of truck, rail and truck is often

standard. For intercontinental transport, which is the focus

of this paper, ship transport is the main leg. Since hinter-

land transport is organized very differently in various

export and import nations, the scope of this paper is further

limited to sea freight containers in the first leg, i.e., trans-

port from the shipper to the exporting ship.

As a basis for research, an initial system analysis was

conducted in the context of the SMECS project (Smart

Event Forecast for Seaports) funded by the German Federal

Ministry of Transport and Digital Infrastructure. One major

goal of this system analysis was the identification and

mapping of relevant physical and information processes in

the IFTN. To gain insight into the different processes, a

total of 25 semi-structured interviews were conducted with

various actors within the network.

Based on the insights from the interviews, two main

relations were identified for developing the heuristic solu-

tion. Two inland terminals, one in the south and one in the

east of Germany, as well as the port of Hamburg in the

north, were chosen (Fig. 1). These two terminals are an

essential part of important transport routes connecting the

Eastern respectively Southern European hinterland with the

major ports in Northern Germany, Belgium and the

Netherlands. The selected terminals are representative also

for other typical inland terminals as they provide the usual

container storage areas, several railway tracks and gantry

cranes. Further we selected terminals of different size, the

southern terminal being approximately 50% larger than the

eastern terminal.

Data were gathered at the container level for these three

logistics nodes and the train connections between the

inland terminals and the port, including the preceding road

transport. As trains transport containers to various sea
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terminals and marshaling capacity in the ports is very

limited, trains from different origins are often sorted into

sea terminals in an extra marshaling yard before they reach

the port. This marshaling yard is also part of the study

(Fig. 2).

3 Literature Review

A distinction can be made in the scientific literature

between two types of approaches to ETA and delay pre-

diction: approaches that map the structure of the underlying

system and data-based approaches. Structure-based

approaches can be further categorized into simulation

models and analytical models. Simulation models are based

on existing simulation software, such as OpenTrack (Nash

and Huerlimann 2004) and Railsys (Radtke and Haupt-

mann 2004), or are developed individually. Analytical

models can be further divided into two subcategories,

depending on whether they are based on graph theory or

queuing theory. Examples of delay prediction based on

graph theory include timed event graphs (Goverde 2010),

activity graphs (Büker and Seybold 2012), and Petri nets

(Zegordi and Davarzani 2012). Queuing theory models can

be designed as Markov chains, as shown by Özekici and

Sengör (1994). Structure-based approaches can lead to very

precise results but are not feasible for real-time application

in IFTNs because the networks are too complex for

detailed modeling. Even if such models could be devel-

oped, they would require considerable processing power.

However, processing times are critical to real-time opera-

tions to communicate updated ETAs at short notice.

Therefore, data-based approaches are better suited for such

applications, as they allow for approximately real-time

evaluation of disruptions and their consequences.

Data-based approaches mostly use conventional statis-

tical methods, such as multiple linear regression, logistic

regression, time series analysis and Bayesian networks

(Zhang et al. 2016). However, these basic methods lead to

poor results in complex systems because they can only

account for a very small number of explanatory variables

and thus oversimplify complex relationships. To date, more

modern methods, such as ML, have been only selectively

considered in transport research. In general, various

approaches to delay prediction are found in the field of ML:

artificial neuronal networks (Yaghini et al. 2013), support

vector machines (Markovic et al. 2015), decision trees

(Van Riessen et al. 2016), and k-nearest neighbor algo-

rithms (Chang et al. 2010), among others. Although these

methods can be applied for real-time analysis, data-based

approaches represent the minority of the scientific literature

in transport science compared to model-based approaches.

In terms of ETA predictions in general, research exists

for all modes of transport. For road traffic, many ETA

prediction solutions have been implemented in practice, for

example, in navigation systems. However, these solutions

are often unable to satisfy operational requirements or take

dynamic events, such as weather, into account. In addition,

the existing solutions generally do not include ETA-based

measures for real-time operations management.

Regarding rail transport, the focus of the scientific lit-

erature and practical solutions is on passenger transport,

while rail freight transport is rarely considered. The

research on rail freight transport predominantly uses

model-based approaches and focuses on the prediction of

Port of Hamburg

Marshaling yard

Inland Terminal 1

Inland Terminal 2

Approx. 780 km

Approx. 360 km

Approx. 30 km

Fig. 1 Chosen logistics nodes and corresponding transport relations

within Germany

Two inland 
terminals

Port marshaling 
yard

Multiple 
shippers

Sea
terminals

Sea 
transport

Road 
transport

Rail transport incl. 
marshaling

Fig. 2 Intermodal container transport chain from the shipper to sea transport

123

406 A. Balster et al.: An ETA Prediction Model for Intermodal Transport Networks Based…, Bus Inf Syst Eng 62(5):403–416 (2020)



follow-up delays, not initial events. Examples include

Schön and König (2018), with their stochastic dynamic

programming approach for delay management of a single

train line, and Yuan (2006), who evaluates the statistical fit

of seven different probability distributions to empirical

data on arrival and departure delays of 14 trains at a train

station in The Hague, Netherlands. In contrast, Barbour

et al. (2018) use a data-driven approach to predict ETAs of

individual freight trains based on the properties of the train,

the network and potentially conflicting traffic in the net-

work. They formulate the ETA prediction as a ML

regression problem and solve it using support vector

regression, trained and cross-validated on over two years of

detailed historical data for a 140 mile section of track

located primarily in Tennessee, USA. In practice, ETAs for

rail freight transport in Germany are currently performed

by forward projection of already existing delays.

Solutions that include several means of transport for

door-to-door transport as a whole are not available.

Research on intermodal subsections, and thus on logistical

nodes such as inland terminals, marshaling yards and ports,

is also rare. One example of such research is the queuing

model for intermodal container terminals and the following

rail transport introduced by Leachman and Jula (2012).

This model is used to estimate the dwell and transit times

of containers as a function of changes in infrastructure,

staffing levels at terminals and import volumes, which in

essence represents an ETA prediction.

In addition, there are several scheduling approaches for

IFTN: van Riessen et al. (2016) use decision trees to create

reliable schedules, Boysen et al. (2013) formalize and

develop heuristics for truck scheduling problems in cross-

docking terminals, Wang and Yun (2013) use tabu search

on small-scale networks, Li et al. (2015) deduce and solve

linear programming problems for large-scale networks, and

Schönemann (2016) determine the reliability of planned

dwell times based on Monte Carlo generated data. Another

interesting approach to address rescheduling in hinterland

traffic using a mixed-integer programming model is pro-

vided by Qu et al. (2019). These studies provide an

important basis for ETA predictions, as planned times are

as important as historical data on the timestamps of actual

process steps. However, these methods cannot be used to

predict ETAs.

A similar field that has made scientific achievements

relevant to this work, is concerned with the scheduling of

jobs and the management of capacities. Current overviews

of the research area are presented by Van den Bergh et al.

(2013) and Defraeye and Van Nieuwenhuyse (2016),

among others. Both works refer to scheduling of personnel

and show that inaccurate forecasts and assumptions lead to

inadequate scheduling. However, the analyzed models are

not limited to personnel planning, but are rather relevant

for a wide range of problems including transport opera-

tions. Directly referring to job scheduling and capacity

management in intermodal networks are Gao et al. (2020),

providing analytical tools and insights on how to manage

network capacity. They state that intermodal network

operations often suffer from chronic asset imbalance over

time and across locations, because of environmental

uncertainty and network interdependence. One of the most

critical factors for imbalance that they identify is hetero-

geneous lead time. An integrated approach to personnel

scheduling and job scheduling under uncertainty combined

with an ETA prediction like the one presented in this paper

would represent a significant improvement in the capacity

planning process.

The connection problem plays a major role not only in

IFTNs but also within other means of transport that are

oriented towards passengers. Examples of such work can

be found in Diana (2014) for connecting flights and Zhao

et al. (2013) for tram rides with changing trains.

Initial attempts to develop integrated ETA prediction in

relation to large intermodal transport networks can be

found in the ELETA project (‘‘Electronic Exchange of

ETA information’’) (ELETA 2017). The project considered

12 selected intermodal transport relations run by operators

from five European nations. Its objective is to demonstrate

the practical value of streamlining exchange of ETA

information and to overcome legal, operational and tech-

nical obstacles in this exchange. However, the focus of

ELETA is on establishing an electronic data exchange link

between all actors and feeding valid ETA information into

it: improvement of ETA predictions itself is not the core of

the project.

4 Methodology

4.1 Research Approach

To address the research question of what the structure of an

ETA prediction for containers in intermodal transport

chains should be, we applied the research methods outlined

in Fig. 3.

The system and demand analysis, along with the asso-

ciated steps, were performed to gain a deeper understand-

ing of the intermodal transport chain and to identify the

benefits and requirements of ETA prediction. This

approach comprises a comprehensive analysis of opera-

tional processes, IT processes and disruptions by means of

literature research and strong involvement of market rep-

resentatives. Partner companies were involved in various

ways: they contributed important technical information,

enabled the inspection various facilities, and provided the

necessary operational data.
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To reduce the problem complexity and address the

diverse objectives and disruptions within the transport

network, the overall ETA prediction problem was split into

several independent but interacting subproblems. These

problems were then solved successively, with the predic-

tion of the first partial model acting as input to the second

partial model and so forth (Fig. 4).

Different results are generated for each transport leg. By

being able to assign an intermodal container to a truck or

wagon and train, all predictions can be transferred to other

reference objects. Travel and arrival times are determined

for transport by both truck and train. In the logistics nodes,

that is, the inland terminal and marshaling yard, the lead

times of containers and departure delays of trains are pre-

dicted. Based on this information, whether a train can be

reached is predicted. A similar approach is taken for ports.

Finally, the individual predictions are intelligently

combined into an overall ETA prediction to determine

whether the intermodal container can reach the planned

ship, regardless of the transport leg in which the sea freight

container currently is.

4.2 Data Selection

The system analysis was accompanied by the acquisition

and transformation of extensive amounts of historical data

for the years 2015–2017. The data include process data

from railway operators (DB Netz AG), railway transport

companies (DB Cargo AG) and inland terminal operators

(Deutsche Umschlaggesellschaft Straße-Schiene mbH),

network data from railway infrastructure companies (DB

Netz AG) and additional data from weather services

(Deutscher Wetterdienst). The data include more than 1

Model development

System 
structuring

Feature 
engineering and 

selection

Model selection
and tuning

System 
validation

Demand analysis

System analysis

Process analysis Data analysis Disruption 
analysis

Potential 
analysis

Analysis of 
application 

cases 

Requirements 
analysis

Fig. 3 Overview of applied

research methods

Departure
and transport 
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Processing 
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connecting 
train
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Idling
and shunting 

time

Processing 
time and 

connecting 
ship

Processing 
time and 

connecting 
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Transport
time
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Port mar-
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Sea 
transport

Rail 
transport

Reaching
train

Reaching
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Segments of intermodal transport

Corresponding partial prediction models

Fig. 4 Segments of intermodal transport and corresponding partial prediction models
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million container movements, 35,000 train runs, 96,000

truck trips, and 33 million weather values (Fig. 5).

Given the qualitative analysis of the system, the two

focal relations, the corresponding data, and the require-

ments of the different actors, the ETA prediction model

itself is developed.

4.3 Machine Learning

Artificial intelligence in the form of ML was employed to

produce algorithms to draw insights from historical data

sets without having to determine the individual relation-

ships of the underlying system. Since data on actual

transport times, processing times and connections reached

are available, supervised learning can be used, which

makes it possible to forecast future transports accurately on

the basis of already realized transports. Thus, ETA pre-

diction can be performed without modeling every detail of

the complex intermodal transport network.

All models are implemented in R and follow the same

four development steps: (1) system structuring, (2) feature

engineering and feature selection, (3) model selection and

model tuning, and (4) system validation. Moreover, the

segments of the IFTN differ considerably in terms of

operational restrictions and data aspects. Therefore, all

development steps must be performed separately for each

transport segment; thus, different technical approaches are

followed for each partial prediction model.

The prediction model that estimates the transport time

on road between the shipper and the inland terminal uses

linear regression trees. The lead-time regression in the

inland terminal is based on random forests, with which the

connecting train is then determined. Random forest and

gradient boosting are used to predict the transport time for

all rail sections between the individual operating points

along the transport route from the inland terminal to the sea

terminal. To predict the connecting train in the marshaling

yard ordinal forests are used.

All prediction models are trained on 70% of the avail-

able data. The remaining 30% of the data is used to test the

prediction quality. Validation is performed via tenfold

cross-validation, and the caret package is used for param-

eter tuning. Training and validation of the individual

models is performed separately. The combination of the

individual predictions to an overall ETA prediction is

based on the trained individual models and raw data in a

web-based tool, which was implemented using R shiny and

Java Script.

4.4 Challenges of Modeling Connections

The following paragraphs explain the difficulties of com-

bining the partial models for tracking a specific container

through the IFTN. The predictions of a partial model for

one transport leg often include a confidence interval that

indicates a range of potential arrival times rather than one

distinct value. The result of this prediction could be plotted

Process data: planed route, events in transport, train number, planed ship, …
Planned times: departure from shipper, departure from inland terminal, …

Actual times: departure from shipper, arrival at and departure from inland terminal,
begin and end of marshalling, …

Disruptions: construction sites, vehicle breakdowns, crane breakdowns, …

Assignment between vehicles: container number, wagon number, train number, license plate…

Weather: temperature, wind, precipitation, …
Geo information: road network, rail network, positions of railway stations, terrain information, …

Calendar dates: public holidays, …

Infrastructure capacities: terminal capacity, number of tracks, number of cranes, …
Utilisation: traffic situation on road and rail, number of containers in terminal, …

Vehicle characteristics: type, mass, length, power, …
Order characteristics: container type, weight, customs, …

Personnel: personnel availability, planned personnel changes, …
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Fig. 5 Structure of the collected data
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as a probability distribution function (pdf) such as that

shown in Fig. 6, where the probability peaks at one point.

This simplistic approach, however, cannot be applied to

IFTNs for several reasons. The amount of data and the

interconnectedness of the data are in the realm of big data,

where empirical approaches might no longer be the best

solution. Moreover, the structural properties of IFTNs pose

problems to empirical analysis, as they introduce breaks

and thus nonlinearity into overall transport times. This

problem arises mainly due to the interaction between

scheduled and unscheduled means of transport.

A truck, for example, can usually arrive and depart to

and from a company’s or terminal’s loading area at any

given time. A train or ship, on the other hand, is restricted

by schedules due to the limited capacity of the rail network

or berths. Hence, trains and ships are generally bound to

their planned arrival and departure times, which can also

deviate, but not to the same extent as for trucks. As a result,

delay of transport during the first leg to the first processing

node can cause a container to miss its connecting train on

the second leg. A train, unlike a truck, carries a load of

many containers and cannot always wait for one or several

late arrivals. Additionally, terminals have processing

schedules and do not always allow for late departures.

Having missed its planned train, the operator of the

terminal will attempt to add the container to a later train.

This could be the next train with the same destination, but

this train could already be fully booked, which would lead

to an even later departure. This delay has important

implications for the prediction of ETAs in IFTNs. In gen-

eral, the overall transport can be divided into two

categories.

1. Transports that do not miss any connecting trains If

delays during all transport processes of the overall

transport stay within manageable ranges, making it

possible for the container to reach all its connecting

rail transports, the ultimate arrival time at the destina-

tion will be within a certain interval around the

planned arrival time. The distribution of potential

arrival times for this case is indicated by the depiction

of the uppermost pdf in Fig. 7. Notably, the arrival

could also be prior to the planned arrival time in some

cases.

2. Transports that miss at least one connecting train If

one or more transport processes of the overall transport

lead to a connecting rail transport being missed by the

container, the container will experience a notable in-

crease in predicted arrival time at the destination. This

delay results from the fact that train schedules are

given and all future uncertainties related to the ultimate

arrival time will evolve around the new planned arrival

time that is based on the new connecting rail transport.

The distribution of arrival times related to the case

where exactly one connecting train is missed is given

by the middle pdf in Fig. 7. Correspondingly, the case

of two missed connecting trains is given by the

lowermost pdf. The description can be extended

accordingly depending on how many connecting trains

are part of the overall transport in question.

Taking into account the fact that trains are, to a certain

extent, bound to schedules leads to the insight that the

overall ETA of a container at the destination follows a

distribution with multiple peaks, as in Fig. 7, if connecting

trains are missed.

It remains to be defined whether this is the case in the

specific IFTN in question. Specifically, the shape of the

distribution of the ETA of a container for all cases in (2)

depends on the assumption regarding the handling of

delays that would normally lead to a missed connecting

train. There are three general options:

(a) The connecting train waits for the delayed container:

This assumption leads to a simplification to case (1).

As a result, all expected deviations along the overall

transport are simply added together to form the

distribution of arrival time at the destination, the

ETA.

Assume an overall transport that consists of three dis-

tinct transport legs and four nodes: a starting point, two

processing nodes and a destination (Fig. 8). The probability

distribution that results from the estimation of transports is

denoted as E tið Þ for any transport leg i 2 1; 2; 3f g. Simi-

larly, the processing time at node j 2 1; 2f g is denoted as

E pj
� �

.

We can model the ETA for this waiting-connection case,

given by ETAW, simply as the convolution of the pdfs of

all travel time distributions of transports and the pdfs of the

processing times at the nodes:

ETAW ¼ E t1ð Þ � E p1ð Þ � E t2ð Þ � E p2ð Þ � E t3ð Þ ð1Þtime

pdf

Fig. 6 Example of a simple pdf for transport arrival times
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where ETAW : distribution of arrival times at the destination

when the train waits for the focal container. E tið Þ: proba-
bility distribution resulting from the estimate of the trans-

port time on leg i. E pj
� �

: probability distribution resulting

from the estimate of the processing time at transition node

j.

(b) The connecting train does not wait, but the container

gets a guaranteed spot on the next train with the

same destination: This assumption can lead to either

one or several breaks in the overall transport,

depending on how many different transport legs

exhibit a critical delay. As a result, the general

probability mass for this segment at the destination

of the overall transport will decrease the further it is

projected into the future. An example of this case is

displayed in Fig. 7, where the curves (probability

mass distributions) decrease for future arrival

periods.

This scenario introduces the necessity of knowing the

schedule in the prediction but still restricts the number of

general possible outcomes, in our setting, to three. The

notation of transports is extended to account for the dif-

ferent connecting trains that the container can be trans-

ported on for each transport leg. Thus, E tc¼k
i

� �
represents

the probability distribution of transport leg i, given that the

container is part of scheduled train number k on this por-

tion of the overall transport.

The prediction model has to account for the different

likelihoods of the container being on all potential trains. At

each transfer point (node), there can only be two options in

the first-in first-out (FIFO) connection case – the con-

necting train is either reached or not reached. It follows that

there are only two probabilities to account for at each

transfer, which we define as:

Pr c ið Þ ¼ kjc i� 1ð Þ ¼ k½ � ¼ x0
i ð2Þ

and

Pr c ið Þ ¼ k þ 1jc i� 1ð Þ ¼ k½ � ¼ x1
i ð3Þ

where x0
i þ x1

i ¼ 1. Equation (2) states the likelihood that

the container will reach its connecting train, given the

container is currently on scheduled train number k.

Accordingly, (3) states the likelihood that the container

will miss its connecting train given train number k. Nota-

bly, the estimates for the processing times in the nodes are

assumed to be independent of the train number k. An

overview of the FIFO connection case is given in Fig. 9.

The general prediction model of the case is considerably

more complex than that for the direct-connection case in

(a). The overall prediction for the ETA can be described as

follows:

Processing node

Transport

Transition 1 Transition 2 Transition 3

Missed train at processing node

Tim
e

Distribution of 
arrival times

Fig. 7 Overview of overall transport segments and resulting arrival time pattern

Starting 
point Node 1 Node 2 Destination

Fig. 8 Generation of ETA predictions for the direct-connection case

123

A. Balster et al.: An ETA Prediction Model for Intermodal Transport Networks Based…, Bus Inf Syst Eng 62(5):403–416 (2020) 411



ETAFIFO ¼ E t1ð Þ � E p1ð Þ � E tc¼1
2

� �
� x0

2 þ E tc¼2
2

� �
� x1

2

� �
� E p2ð Þ

� E tc¼1
3

� �
� x0

2 � x0
3 þ E tc¼2

3

� �
� x0

2 � x1
3 þ x1

2 � x0
3

� ��

þE tc¼3
3

� �
� x1

2 � x1
3

�

ð4Þ

where ETAFIFO: distribution of arrival times at the desti-

nation when the container takes the next free train. E tið Þ:
probability distribution resulting from the estimate of

transport time on leg i. E pj
� �

: probability distribution

resulting from the estimate of processing time at transition

node j. E tc¼k
i

� �
: probability distribution of transport leg I,

given that the container is part of scheduled train number k.

c: indicates which connection the train is ‘‘catching’’, with

c = 1 being the originally planned connection. x0
i : proba-

bility that the connecting train x will be reached on trans-

port leg i. xx
i : probability that a connecting train x will be

reached on transport leg i.

(c) The connecting train does not wait, and the container

gets a spot on the next train that has free capacity.

The difference from the previous assumption is that

the extent of the break resulting from a critical delay

during a transport leg is no longer restricted. If the

next train is already fully booked, the container will

face an even greater overall delay: the subsequent

train may also already be fully booked. Therefore, a

more general form of the overall ETA distribution at

the destination must be considered. Depending on

the schedule and utilization of trains, it may be more

likely that a train arrives at its destination two

periods later than its planned arrival than one period

after its planned arrival.

Since an illustration of all steps for all partial models

would go beyond the scope of this paper, the next section

on numerical results is limited to the prediction of lead

times for one of the inland terminals and for reaching of the

respective connecting train.

5 Findings

5.1 Numerical Results

The considered inland terminal in the east of Germany has

two terminal modules, each with four 700 m tracks and two

gantry cranes. The storage capacity is approximately 600

TEU (twenty-foot equivalent unit, based on the volume of

a 20-foot-long intermodal container) on the ground, which

can be increased to 1800–2400 TEU by stacking.

Approximately 220,000 cargo units are turned over each

year. Figure 10 shows the distribution of the actual lead

times for 2015–2017.

The availability of the actual arrival and departure times

of the containers from which the processing times shown in

Fig. 10 were calculated makes supervised learning possi-

ble. In addition to the historical actual processing times, the

following data were acquired for predicting future lead

times.

Most of these data can be used directly as a feature for

prediction. This includes all data in numerical and factor-

ized form. ML algorithms cannot handle other data types,

such as the date time-format POSIXCT and character. The

booking number and the container number are used to

connect the inland-terminal data to other data, such as the

train operator’s planning data. The train numbers are used

to connect the inland-terminal data to the train schedule

data and actual train run data of the infrastructure operator.

The actual processing time, which serves as the target

value of the ML algorithm, is calculated based on the

actual departure and arrival. The actual arrival time is

important for processing-time prediction: since it cannot be

processed in its present form, feature engineering begins

here.

Feature engineering, the process of using domain

knowledge to create features that enable an ML algorithm

to function, is important in the development of prediction

models, as better features can produce simpler and more

flexible models and often lead to better results. From the

container arrival time at the inland terminal, we extract the

month, weekday and hour as features. Additional more

complex features are also considered, for example, the

container arrival frequency and the number of containers in

the inland terminal. Ten additional features were engi-

neered for the processing time prediction of the inland

terminals.

Together with the ten observations in Table 1, which

can be used directly as features, there are a total of twenty

Starting 
point Node 1 Node 2

Destination
Node 2

Fig. 9 Generation of ETA predictions for the first-in first-out

connection case
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features for prediction. Due to the complexity of the

problem, which features have the greatest impact is diffi-

cult to determine. Some features might be redundant; some,

just irrelevant. An excessive number of features can even

worsen the prediction, as they can generate unnecessary

noise or lead to overfitting. The use of more features also

increases the complexity of the problem and, therefore, the

computational workload. Thus, selection of the best fea-

tures is an essential part of model development (Table 2).

Feature selection enables faster training, reduces model

complexity, facilitates interpretation, reduces overfitting

and improves model accuracy if the correct subset is

selected. One of the best ways to select features is to use

wrapper methods to evaluate subsets of features by deriv-

ing a prediction model from each subset and comparing the

performance. Performance is measured in terms of the root

mean square error (RMSE), the standard deviation of the

distance between the real and the predicted data points. The

higher the RMSE is, the worse the prediction. Wrapper

methods provide the ability to identify possible interactions

between features, and recursive feature elimination is used

within the wrapper method. The process begins with the

Fig. 10 Distribution of the actual processing times for the years 2015–2017

Table 1 Data acquired for the

years 2015–2017
Data Values Type Source Feature

Booking number 10000123456789, … Character Inland terminal No

Container cumber BICU 123456 5, … Character Inland terminal No

Actual arrival 2015-01-03 14:25, … POSIXct Inland terminal No

Planned train 50123, … Character Train operator No

Planned departure 2015-01-04 02:20, … POSIXct Train operator No

Actual train 50123, … Character Inland terminal No

Actual departure 2015-01-04 02:25, … POSIXct Inland terminal No

Container size 20 ft, 40 ft, … Factor Inland terminal Yes

Total weight 27,000 kg, … Numeric Inland terminal Yes

Dangerous goods Yes, no Factor Inland terminal Yes

Customs Yes, no Factor Inland terminal Yes

Operator Operator 1, Operator 2, … Factor Inland terminal Yes

Destination Terminal 1, Terminal 2, …. Factor Inland terminal Yes

Temperature 6, 3 �C, … Numeric Deutscher Wetterdienst Yes

Wind speed 3, 2 m/s, … Numeric Deutscher Wetterdienst Yes

Precipitation 1, 3 mm/qm, … Numeric Deutscher Wetterdienst Yes

Snow height 24 cm, … Numeric Deutscher Wetterdienst Yes

123

A. Balster et al.: An ETA Prediction Model for Intermodal Transport Networks Based…, Bus Inf Syst Eng 62(5):403–416 (2020) 413



full set of features and then iteratively removes the least

useful predictor, one at a time. The results of the feature

selection for the processing time prediction are shown in

Fig. 11.

Under the restriction of finding the best set of 10–19

features, the wrapper method selects twelve features. The

ranking of feature importance is shown in Fig. 12. It

becomes clear that train properties and terminal properties

such as capacity utilization and departure frequencies are

much more important than environmental influences such

as wind speed and container properties such as their weight

or dangerous goods status.

The random forest model with an RMSE of 14 h pro-

vides the best predictions: 52% of the predictions are

within the 10% corridor in Fig. 13 and differ by less than

10% from the values actually observed.

Table 2 Additionally engineered features

Feature Values Type

Month Jan, Feb, Mar, Apr, … Factor

Weekday Mon, Tue, Wed, Thu, … Factor

Hour 0, 1, 2, … Factor

Number of containers 647 Containers, … Numeric

Number of TEU 893 TEU, … Numeric

Arrival frequency 12 Containers/h, … Numeric

Departure frequency 6 Containers/h, … Numeric

Time to next train 34 h, … Numeric

Train length 35 Containers, … Numeric

Number of trains 0, 1, … Numeric

Fig. 11 Root mean square

errors of the feature subsets in

the feature selection process

Train property

Transport property

Terminal property

Terminal property

Terminal property

Terminal property

Container property

Environmental property

Environmental property
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Container property
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Fig. 12 Ranking of the feature importance

123

414 A. Balster et al.: An ETA Prediction Model for Intermodal Transport Networks Based…, Bus Inf Syst Eng 62(5):403–416 (2020)



However, the lead time is not crucial for overall ETA

prediction. More important is which train is expected to be

reached. The departure times and travel times are then

predicted for this train. To determine which train is

reached, the predicted lead time is added to the actual

arrival time of the container, and the next train running

according to the schedule is selected. The comparison

between the predicted train and the train with which the

container was actually transported is shown in Table 3.

5.2 Discussion

Figure 13 shows that the processing times of containers

handled by the terminal are well predicted when the pro-

cessing time is longer than 24 h. In the case of shorter

processing times, there are still deviations. The prediction

algorithm overestimates these values due to the lack of

separation between the storage time and loading time of the

containers. One observation that would help with this

separation is the moment of loading: these data exist but

have not been made available. Integrating the moment of

loading into the prediction algorithm should greatly

improve the prediction quality.

The prediction for the inland terminal is much better if

one considers that the decisive factor is not the processing

time but which train is reached. Since trains depart from

the terminal only every 1–2 days, the classification of

which train is reached is 95% more accurate than the

regression of lead time. Thus, it is much more difficult to

predict the processing times of logistics nodes than those of

pure transports.

6 Conclusion

This computational study of ML techniques shows models

for ETA prediction of sea freight containers in intermodal

transport chains. It presents the proof-of-concept of ETA

predictions in complex IFTNs using ML methods. The

possibilities and limitations of a practice-oriented imple-

mentation of ML to improve reliability in transport net-

works are illustrated.

The results show how important the consideration of

logistic nodes is for ETA prediction in intermodal transport

and emphasize the importance of information about the

logistics process, even if it is not ultimately modeled in

every detail. Moreover, the results also show how impor-

tant data availability and data quality are. If companies

want to make better use of their existing capacities in the

future by using ML algorithms, they will first need to work

on data availability and quality.

The developed models enable actors in the intermodal

transport chains to evaluate the immediate impact of delays

on downstream processes. The ETA information is pri-

marily seen as an instrument for early support for opera-

tional decision-making problems, e.g., disposition of

personnel, vehicles, tools, and infrastructure.
Fig. 13 Comparison of the observed and predicted processing times

in the inland terminal

Table 3 Comparison of predicted and actually used trains

Deviation from observed departure day Count Share (%)

- 11 2 0.01

- 8 2 0.01

- 7 2 0.01

- 6 6 0.04

- 5 8 0.05

- 4 16 0.11

- 3 40 0.27

- 2 114 0.77

- 1 364 2.46

0 14,031 94.96

1 166 1.12

2 19 0.13

3 1 0.01

4 1 0.01

5 2 0.01

7 1 0.01

14,775 100.00
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If made available on modern information-sharing plat-

forms, supply chain actors could use ETA information to

improve capacity management, reduce risk buffers and

increase resource utilization. An automation of decisions

by rule-based application of certain measures depending on

ETA predictions is feasible. In addition, early communi-

cation of delays can contribute to increased customer

satisfaction.
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