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Abstract To achieve ambitious climate goals, it is neces-

sary to increase the rate of purposeful retrofit measures in

the building sector. As a result, Energy Performance Cer-

tificates have been designed as important evaluation and

rating criterion to increase the retrofit rate in the EU and

Germany. Yet, today’s most frequently used and legally

required methods to quantify building energy performance

show low prediction accuracy, as recent research reveals.

To enhance prediction accuracy, the research community

introduced data-driven methods which obtained promising

results. However, there are no insights in how far Energy

Quantification Methods are particularly suited for energy

performance prediction. In this research article the data-

driven methods Artificial Neural Network, D-vine copula

quantile regression, Extreme Gradient Boosting, Random

Forest, and Support Vector Regression are compared with

and validated by real-world Energy Performance Certifi-

cates of German residential buildings issued by qualified

auditors using the engineering method required by law. The

results, tested for robustness and systematic bias, show that

all data-driven methods exceed the engineering method by

almost 50% in terms of prediction accuracy. In contrast to

existing literature favoring Artificial Neural Networks and

Support Vector Regression, all tested methods show simi-

lar prediction accuracy with marginal advantages for

Extreme Gradient Boosting and Support Vector Regression

in terms of prediction accuracy. Given the higher predic-

tion accuracy of data-driven methods, it seems appropriate

to revise the current legislation prescribing engineering

methods. In addition, data-driven methods could support

different organizations, e.g., asset management, in deci-

sion-making in order to reduce financial risk and to cut

expenses.

Keywords Energy informatics � Energy quantification

methods � Energy performance certificates �
Benchmarking � Data-driven methods � Machine learning

algorithms � Building energy � Data analytics

1 Introduction

Human-made climate change is in full swing and revealing

first negative effects (Larsen et al. 2020). The United

Nations’ Paris Agreement declared ambitious climate goals

and aims to decrease energy end-use below 1990 levels by

2030 (Boden et al. 2017). However, current efforts are not

sufficient to achieve the intended goals and therefore

additional steps are necessary (European Environment

Agency 2019). One of the largest single energy consuming

sectors in Germany are residential single- and two-family

buildings, accounting for 11% of the overall final energy

consumption, 84% of which relates to heating and hot
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the Fraunhofer FIT, Universitätsstraße 12, 86159 Augsburg,

Germany

C. Wiethe

FIM Research Center, University of Augsburg,
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water production, with similar figures for many other

countries (Cao et al. 2016; Federal Ministry for Economic

Affairs and Energy 2018). Moreover, 64% of the German

residential buildings were erected before 1979, which were

subject to less strict construction codes than today, thus

offering considerable energy savings potential when con-

ducting retrofits (Federal Statistical Office of Germany

2011). Nevertheless, retrofit measures on these buildings

are carried out sparsely and the retrofit rate – the percent-

age of buildings that undergo retrofits in one year – is too

low to reach the climate goals (Achtnicht and Madlener

2014).

In this vein, Energy Performance Certificates (EPC)

have been designed to support achieving the climate goals

in the EU and particularly in Germany (European Parlia-

ment and the Council 2002). EPCs are issued by qualified

auditors and are intended to increase the retrofit rate by

providing general information about buildings, their Final

Energy Performance (FEP) – the annual amount of energy

required for space and water heating, cooling, and venti-

lation per square meter effective building area – and pos-

sible retrofit measures (Arcipowska et al. 2014). To

achieve its full effect, accurate prediction of the FEP is

important to decide on purposeful retrofit measures, as

uncertainty and incomplete information are substantial

investment barriers (Amecke 2012). However, today’s

most frequently used and by law prescribed Energy

Quantification Methods (EQM) are hotly debated in the

research community, as they exhibit low prediction accu-

racy (Hardy and Glew 2019). The prescribed engineering

EQM bases on physical laws to calculate thermal dynamics

and energy behavior (Zhao and Magoulès 2012) and

requires detailed information on building components,

gathered by auditors during on-site inspections (Ar-

cipowska et al. 2014). If the input data quality is low, e.g.,

because the insulation materials are not known and cannot

be determined with reasonable effort, the result will also be

erroneous.

To enhance the prediction accuracy, data-driven EQMs

were introduced in research and obtained promising results

in preliminary studies (Sutherland 2020). They learn

underlying dependency structures from available data

without relying on expert knowledge of building physics or

precise information on building components (Amasyali and

El-Gohary 2018). This allows data-driven EQMs to

potentially overcome the shortcomings of engineering

EQMs. However, there is a lack of studies on data-driven

EQMs in residential buildings considering heating energy

with a focus on long-term (annual) energy prediction, as

required for EPCs (Amasyali and El-Gohary 2018). Fur-

thermore, most studies are based on simulated building and

energy data, which limits their practical applicability and

the validity of the findings (Wei et al. 2018). It is therefore

unclear whether data-driven methods can outperform the

engineering EQM with respect to annual energy prediction

of residential buildings necessary for EPCs, and, if so,

which data-driven EQMs are particularly suited. Even

though different EQMs have been applied in several case

studies (Buratti et al. 2014; Tsanas and Xifara 2012), to the

best of our knowledge no benchmarking of different EQMs

on the same underlying real-world data has been per-

formed, which is nonetheless essential for full compara-

bility and transparency of the algorithms’ performance in

practice. Thus, we formulate our guiding research question

as follows:

Which of the investigated energy quantification methods

yields the highest accuracy for predicting final energy

performance of real-world residential single- and two-

family buildings in Germany?

In this sense, our goal on the methodological level is not

to explain the underlying causality, but to predict energy

consumption, allowing us to benchmark prediction accu-

racy (Shmueli and Koppius 2011). Since the computational

performance of data-driven methods generally exceeds that

of engineering methods after initial training, we focus on

the prediction accuracy, i.e., effectiveness, and not

efficiency.

We address the research question by implementing and

tuning several machine learning algorithms – Artificial

Neural Network (ANN), D-vine copula quantile regression,

Extreme Gradient Boosting (XGB), Random Forest (RF),

and Support Vector Regression (SVR) – on an extensive

first dataset containing 25,000 real-world single and two-

family buildings in Germany. We subsequently calculate

the output accuracy (predictive power) by predicting the

FEP of 345 additional buildings from a second dataset and

comparing the prediction with the actual metered energy

consumption. As the second dataset was gathered by

qualified energy auditors and also encompasses the FEP

stated in the EPCs based on the prescribed engineering

EQM, we can further compare the data-driven EQMs to the

engineering EQM. To ensure robust results and to comply

with state-of-the-art machine learning practices, we

benchmark the machine learning algorithms against each

other in depth based on nested cross-validation on both

building datasets, which is not possible for the engineering

EQM due to data restrictions. By stratifying the Perfor-

mance Evaluation Measures (PEM) based on a third dataset

which contains information on the German building stock,

we ensure representativeness.

Even though the applied solutions and the respective

problem in this research are technically known, we argue

that we contribute an improvement to existing solutions in

terms of Gregor and Hevner (2013) for the following rea-

sons: (1) We are among the first to compare existing

solutions (i.e., different EQMs) in terms of solution
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maturity within a new application domain of the annual

FEP prediction for residential buildings, filling the research

gap of missing data at the residential building level and the

application of data-driven EQMs. (2) Because data-driven

EQMs must be designed for specific applications to unleash

their full potential (Mosavi et al. 2019), existing knowledge

about the performance of data-driven EQMs on non-resi-

dential buildings cannot be transferred to the residential

building stock directly. Especially in countries like Ger-

many, which have a very high percentage of single- and

two-family buildings (Federal Statistical Office of Ger-

many 2011), the improvement of the quantification of the

energy efficiency of buildings is relevant to advance

towards the set climate goals.

The remainder of this study is structured in seven sec-

tions: Sect. 2 summarizes the theoretical background of

EPCs, previous research on EQMs, and PEMs to assess the

EQMs’ prediction accuracy. Section 3 presents the

methodology and the study design for the benchmarking

process. The datasets and pre-processing procedure are

then introduced in Sect. 4. In Sect. 5 we display the model

training as well as the model optimization and present the

results in Sect. 6. We discuss the results and provide

managerial and policy implications as well as limitations

and prospects for further research in Sect. 7 before the final

Sect. 8 concludes.

2 Problem Context and Theoretical Background

2.1 Energy Performance Certificates

The European parliament and council passed a directive in

2002 that declares the need for EPCs to improve the energy

performance of buildings, aiming to inform owners,

occupants, and property developers about the energetic

building state and related operating costs (European Par-

liament and the Council 2002). EPCs are issued by quali-

fied auditors and illustrate the energy performance of

individual buildings as well as further information like

building age, energy source of the heating system, rec-

ommendations for energetic retrofit measures, or the

building’s position in an energy efficiency ranking

scheme which allows to compare different buildings (Poel

et al. 2007).

Both literature and practice manifold discuss different

aspects of EPCs (Li et al. 2019). Next to investigations about

to which extent EPCs influence the real estate market as well

as the impact and relevance of EPCs on retrofit and pur-

chasing decisions, the energy performance gap is a major

challenge of EPCs (Pasichnyi et al. 2019). The energy per-

formance gap describes the phenomenon that the actually

metered FEP differs significantly from the predicted FEP,

with studies depicting deviations of up to 287% (Calı̀ et al.

2016; Wilde 2014). Many studies are dedicated to the gap’s

existence, causes, and solutions to minimize it (Burman

et al. 2014; Herrando et al. 2016; Menezes et al. 2012). One

possible solution to address the energy performance gap are

data-driven EQMs instead of engineering EQMs (Foucquier

et al. 2013). Another option that can be used to minimize this

gap is a demand-consumption comparison, which is regu-

lated in addendum 1 of DIN V 18599 for retrofitting con-

sulting, but not part of official EPCs (Beuth Verlag GmbH

2010). The norm defines key figures and correlations, in

order to stepwise approximate the calculated demand to the

measured consumption and thus to minimize the perfor-

mance gap by improving retrofitting decisions (Bigalke and

Marcinek 2016).

In Germany, the Energy Saving Ordinance forms the

regulatory framework for EPCs with the FEP as target

measure (Deutscher Bundestag 2013). EPCs for residential

buildings concentrate mostly on space and water heating,

as cooling and controlled ventilation systems are not

common in Germany (Federal Ministry for Economic

Affairs and Energy 2018). Thus, in our research, we focus

on the FEP for space and water heating. Broadly speaking,

an EPC is issued either by metering (measured EPC) or by

calculations (calculated EPC). Measured EPCs reflect the

actually metered annual consumption of all energy sources

that have contributed to the heating, ventilation, and

cooling of a house within the last three consecutive years,

thus implicitly including occupant behavior. Calculated

EPCs reflect the energy demand and determine the FEP by

means of a technical analysis of a multitude of building

parameters prescribed by the Energy Saving Ordinance. To

collect the required information to carry out calculated

EPCs, on-site inspections of qualified auditors are needed.

The German engineering norm DIN V 18599 is the stan-

dard calculation scheme to determine the FEP of buildings

(DIN e.V. and Beuth Verlag 2016). For residential build-

ings the norm DIN V 4108–6 can also be applied in

combination with DIN V 4701–10 or DIN V 4701–12

(Deutscher Bundestag 2013). The current guidelines

necessitate calculated EPCs for nearly two-thirds of all

residential buildings in Germany. As a large part of these

buildings was constructed before the heat insulation ordi-

nance of 1977, thus offering great energy savings potential,

we focus on calculated EPCs in the following (Federal

Statistical Office of Germany 2011).

For a better understanding of the following sections, we

describe necessary calculation rules of EPCs. The FEP is

related to the effective building area Ae [m2], which does

not correspond to the more common living space Al [m
2]

(Deutscher Bundestag 2013). The effective building area

includes areas that are heated indirectly like corridors or

stairways, and thus turns out to be larger than the living
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space. According to national legislation, the effective

building area depends on the heated building volume and

the story height, but can also be approximated with the

living space and the factor f c using Eq. (1).1 The factor f c
is used for approximating the effective area Ae with the

living space Al, which is more commonly available for

tenants or homeowners. The conversion factor f c is 1.35 for

buildings which contain no more than two apartment units

with a heated basement, and 1.2 for all other buildings

(Deutscher Bundestag 2013).

Ae ¼ f c � Al: ð1Þ

To meaningfully compare buildings from different

locations, i.e., with different climatic conditions, the FEP is

weather-rectified by referring to the climate of the refer-

ence location of Potsdam in a test reference year (Deut-

scher Bundestag 2013). To extract weather effects, the

broadly accepted and normative formalized method of

climate factors CFð Þ based on heating degree days (HDD)

is established in research (You et al. 2014). A degree day is

defined as the difference between an indoor comfort tem-

perature (sI) and the average daily outdoor temperature

(si). The HDD equal the sum of degree days over a certain

period of N days, where si is below the heating limit (sL)
(e.g., 15 �C in Germany for existing buildings (Olonscheck

et al. 2011)), as depicted in Eq. (2) (Baltuttis et al. 2019):

HDD sL; sIð Þ ¼
XN

i¼1

1sL � siðsI � siÞ: ð2Þ

The indicator function 1sL � si takes the value 1 if the

average outdoor temperature si is below or equal to the

heating limit sL and is 0 for all other cases. By calculating

the HDD for two locations (X; YÞ the climate factor CF can

be derived according to Eq. 3:

CF ¼ HDD Xð Þ
HDD Yð Þ : ð3Þ

Based on the climate factor CF, the measured con-

sumption of location Y can be adjusted to the weather

conditions of location X. With the help of the climate factor

and the effective building area, we can calculate the FEP of

a building from any location the same way it is given in

EPCs by rectifying the final energy demand or measured

consumption C using Eq. (4). For EPCs the HDDs of

location X refer to the climatic conditions of the reference

location of Potsdam and the corresponding test reference

year (Deutscher Bundestag 2013). This enables us to

compare buildings’ energy performance independently of

their location, size, and weather-related temperature

effects.

FEP ¼ C � CF
Ae

: ð4Þ

2.2 Energy Quantification Methods

Quantifying buildings’ energy performance is a challeng-

ing task with multiple influencing factors like building

geometry, occupant behavior, thermal properties, or

weather (Wei et al. 2018). Accordingly, the field of EQM

research is diverse and methods differ significantly

regarding their level of detail and purpose (Wang et al.

2012). Common dimensions to distinguish the scope of

EQM studies are building types, prediction time horizon,

and the scope of energy performance (Amasyali and El-

Gohary 2018). Thereby, most studies currently focus on the

prediction of overall energy performance for commercial

and/or educational buildings with an hourly time horizon

(Wei et al. 2018). In their extensive literature reviews,

where they examined collectively over 200 articles, Ama-

syali and El-Gohary (2018), Bourdeau et al. (2019), and

Wei et al. (2018) independently conclude that there is a

lack of research for residential buildings and specifically

for long-term annual energy prediction. Especially, the

combination necessary for EPCs in residential buildings

has not been sufficiently analyzed by means of data-driven

EQMs. This also holds true for 2019 onwards, as indicated

in Table 1. Real-world applications and data are necessary

to obtain reliable results, because synthetic data from

simulation models use simplifications and required input

parameters are often not available (Wei et al. 2018).

Nonetheless most studies currently use synthetic data

instead. There are many reasons for the lack of large and

reliable real-world datasets for residential buildings, as

collecting data for residential buildings is a difficult and

time-consuming task. The building stock is extremely

diverse (Bourdeau et al. 2019), and the data sources are not

standardized, which requires extensive questionnaires and

tools for data collection. In addition, parameters and terms

are often interpreted differently, making it difficult to align

datasets (Carpino et al. 2019). With our study we directly

address this research gap, focusing on residential buildings,

using real-world data, and predicting annual heating energy

performance.

In general, EQMs are categorized into engineering

methods, data-driven methods, and hybrid methods com-

bining the former (Foucquier et al. 2013). In literature there

is no consistent terminology for EQMs. As a generic term,

methods or approaches are often used, both for engineering

and for data-driven methods (Bourdeau et al. 2019). For

data-driven methods, depending on the research domain,

1 For the sake of completeness, we refer to the Energy Saving

Ordinance for further details on the determination of the effective area

for calculated EPCs. In our study we make use of the simplification

for measured EPCs, as our datasets do not contain any information

about the heated building volume and story height necessary for the

calculation scheme of calculated EPCs (cf. Sect. 4).
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the term (machine learning) algorithm is widely established

(Amasyali and El-Gohary 2018). In this study we use the

terminology ‘‘methods’’ when referring to data-driven,

engineering, or hybrid EQMs in general and ‘‘machine

learning algorithms’’ when referring to individual instances

of data-driven EQMs, e.g., RF or ANN. Even though

hybrid methods try to exploit the advantages of engineering

as well as data-driven methods while simultaneously

minimizing their disadvantages, the necessary knowledge

about both EQMs as well as computational inefficiencies

poses a great challenge, which makes the hybrid methods

less attractive (Wei et al. 2018). Thus, in our study we

focus on engineering and data-driven EQMs. Engineering

EQMs model the thermal behavior of heat flows in build-

ings based on physical laws (Amasyali and El-Gohary

2018). Figure 1 displays exemplarily the heat flows con-

sidered in engineering EQMs. These include, for example,

transmission heat losses HT through the building shell

(e.g., walls, windows, roof, etc.), ventilation heat losses

HV , caused by airing or leakages in the building shell, solar

heat gains QS, and internal heat gains Qi (e.g., electrical

consumers or heat radiated by occupants). The heating

energy demand Qh provided with a heating system is

consequently calculated from the heat losses, to ensure a

constant room temperature. In addition, the demand for hot

water heating Qtw must be calculated and the heating sys-

tem’s efficiency considered (Ettrich 2008).

Over the past 50 years, different types of engineering

EQMs varying in model complexity and prediction accu-

racy were developed (Zhao and Magoulès 2012). For the

case of calculated EPCs from Germany, quasi-steady-state

methods are prescribed by the Energy Savings Ordinance

(Eicker et al. 2018). Generally, engineering EQMs require

detailed information about all building components and its

environment, like external climate conditions, geometrical

data, building construction, material properties, or opera-

tion (Zhao and Magoulès 2012). Especially for existing

buildings the required information and parameters are

hardly accessible, thus costly and time consuming to

collect (Wang et al. 2012). Furthermore, engineering

EQMs are widely discussed for their prediction accuracy,

revealing high energy performance gaps, as highlighted in

Sect. 2.1.

In contrast to engineering EQMs, data-driven EQMs do

not require detailed knowledge about building physics and

technical aspects, but use machine learning algorithms to

predict building energy performance by learning from

available data (Amasyali and El-Gohary 2018). Data-dri-

ven EQMs require algorithm training, testing, and valida-

tion (Bourdeau et al. 2019). In addition, previous work has

to be put in data collection and pre-processing (Kaymakci

et al. 2021). Data-driven EQMs have shown convincing

results in research regarding prediction accuracy and have

surpassed engineering EQMs in several studies (Wei et al.

2018). Researchers agree that data-driven EQMs designed

for a particular application achieve the highest degree of

accuracy (Mosavi et al. 2019). Yet, a major limitation of

data-driven EQMs is the data availability and data quality

(Foucquier et al. 2013).

ANN, SVR, and decision trees (or RF and XGB as

decision tree ensembles) are the three most used machine

learning algorithms for predicting building energy perfor-

mance (Amasyali and El-Gohary 2018). Even though

Bourdeau et al. (2019) and Amasyali and El-Gohary (2018)

indicate that SVM and ANN may be the best performing

data-driven EQMs to predict building energy performance,

there is no consistent picture in the literature yet as to

which EQM performs best in terms of prediction accuracy

(Ahmad et al. 2018; Aydinalp et al. 2004; Wei et al. 2018).

Different advantages and disadvantages of data-driven

EQMs like dealing with incomplete data, complexity of the

models’ training process, or computation speed are dis-

cussed. Particularly interesting is the novel D-vine copula

quantile regression. Copulas are essentially d-dimensional

distribution functions, which can also be used for energy

quantification or prediction. They are especially suited for

complex prediction tasks, as copulas are able to capture

complex dependence patterns even in the tails of the

Table 1 Recent studies (2019–2021) of data-driven energy quantification methods and energy prediction (list not conclusive)

Source Building type Time horizon Type of energy performance Type of datasets

Ciulla and D’Amico (2019) Non-residential Annually Heating/cooling Simulated

Ali et al. (2020) Residential Annually Overall Simulated/real-world

Gao et al. (2020) Non-residential Daily Electricity Real-world

Sendra-Arranz and Gutiérrez (2020) Non-residential Hourly Ventilation Real-world

Pan and Zhang (2020) Non-residential Annually Overall Real-world

Seyedzadeh et al. (2020) Non-residential Annually Overall/Emissions Simulated

Thrampoulidis et al. (2021) Residential Annually Overall/Emissions Simulated

This work’s focus Residential Annually Heating Real-world
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distributions (Czado 2019; Nelsen 2010). So far, copulas

have been applied to various fields of study and have

convinced with promising results (Kraus and Czado 2017;

Schallhorn et al. 2017; Töppel et al. 2019).

2.3 Performance Evaluation Measures

Predictive analytics requires empirical predictive models

and methods for evaluating their predictive power – PEMs

(Shmueli and Koppius 2011). In literature several PEMs

are broadly discussed. Amasyali and El-Gohary (2018)

provide an overview of the most commonly-used PEMs for

predicting building energy consumption. As the most

widely used PEMs they mention the Coefficient of Varia-

tion (CV), the Mean Absolute Percentage Error (MAPE),

the Root-Mean-Square Error (RMSE), and the Mean

Absolute Error (MAE). Table 2 gives an overview of the

respective PEMs, including their formal definitions, units,

value ranges, and optima.

Fi and Ai are the predicted and actual values for the FEP

for an instance i;N is the sample size, and �
A is the mean of

all actual values Ai. Each PEM exhibits different charac-

teristics, leading to different outcomes of prediction accu-

racy. Outlier sensitivity is an important characteristic, as

high deviations between predicted and actual values are not

beneficial for EQMs. Furthermore, a unitless measure

provides intuitive interpretation and understanding of the

PEMs for readers not familiar with this subject. Both

characteristics support the fact that the CV is the most

commonly-used PEM, as well as its recommendation for

energy consumption prediction models by the American

Society of Heating, Refrigerating, and Air-Conditioning

Engineers (American Society of Heating, Refrigerating and

Air-Conditioning Engineers 2002). As the selection of the

best suited PEM is not trivial, comparing several PEMs is

preferable (Botchkarev 2019). Therefore, in this study,

despite focusing primarily on the CV, we additionally

provide information on the other three PEMs as well.

3 Methodology and Study Design

To address the research question and benchmark different

EQMs, a suitable methodology and study design are nec-

essary. Benchmarking is a well-known and often used term

recognized as an essential instrument for improving pro-

duct and organizational performance, even if benchmark-

ing activities may vary strongly today (Ketter et al. 2015).

To meaningfully structure the benchmarking of different

EQMs, we derived a seven-step process illustrated in

Fig. 2, which is based on the Cross Industry Standard

Process for Data Mining (CRISP DM) and the guidelines

by Müller et al. (2016) for conducting big data analysis.

Generally, the CRISP DM provides a standardized

process to increase business understanding by applying

data mining methods in six steps: ‘‘Business

HS*

* HS = hea�ng system

Fig. 1 Generic illustration of heat flows considered in engineering

EQMs to calculate the heating energy demand (own illustration based

on Ettrich (2008))

Table 2 Overview of the most common Performance Evaluation Measures in analogy to Amasyali and El-Gohary (2018) and the Mean-Squared

Error used for model learning

Equation number Performance evaluation measure Equation Unit, value range Best value

(5) Coefficient of variation (CV)

CV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN

i¼1
Fi�Aið Þ2

q

�
A

�; 0;1½ Þ 0

(6) Mean absolute percentage error (MAPE) MAPE ¼ 1
N

PN
i¼1

Fi�Ai

Ai

���
��� � 100 %; 0;1½ Þ 0

(7) Root-mean-square error (RMSE)
RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1
Fi�Aið Þ2

N

r
kWh
m2a

; 0;1½ Þ 0

(8) Mean absolute error (MAE) MAE ¼ 1
N

PN
i¼1 Fi � Aij j kWh

m2a ; 0;1½ Þ 0

(9) Mean-squared error (MSE)
MSE ¼

PN

i¼1
Fi�Aið Þ2

N

kWh
m2a

� �2
; 0;1½ Þ 0
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Understanding’’, ‘‘Data Understanding’’, ‘‘Data Prepara-

tion’’, ‘‘Modeling’’, ‘‘Evaluation’’, and ‘‘Deployment’’

(Wirth and Hipp 2000). We explain our derived process

steps in the following:

‘‘Business Understanding and Benchmarking Prob-

lem’’: We extend the initial first stage of ‘‘Business

Understanding’’ with our main objective of solving the

benchmarking problem of different EQMs. In addition, we

modify the intention of the business understanding to col-

lect domain specific knowledge about building energy

performance and EQMs, which is necessary for the

benchmarking problem, as we do not intend to get deeper

business insights by applying data mining methods. We

presented domain specific knowledge in Sect. 2 providing

the theoretical background for EPCs and EQMs. As

benchmarking candidates, we choose the legally required

standard engineering EQM and some well-selected data-

driven EQMs. We use the three most commonly used

machine learning algorithms in literature for predicting the

energy performance of buildings, namely ANN, SVR, and

RF (Amasyali and El-Gohary 2018). In addition, we con-

sider the ensemble learning algorithm XGB and D-vine

copula quantile regression that showed promising results in

recent case studies (Schallhorn et al. 2017; Touzani et al.

2018). With this selection, we can investigate a wide range

of models from simpler models like RF to more complex

models like SVR. After selecting our benchmarking can-

didates, we modify the CRISP DM again by introducing

our target measure the FEP, before proceeding with data

understanding.2

‘‘Data Understanding’’: This step was not modified. In

our study we dispose of a training and a separately col-

lected validation dataset, which will be explained in

Sect. 4.

‘‘Data Preparation’’: This step was not modified either.

We prepare the data, such that they are available in high

quality and can be further used appropriately. For this

purpose, we apply the two-stage LANG approach to check

for semantic and syntactic data constraints in Sect. 4

(Zhang et al. 2019).

‘‘Modeling and Evaluation’’: In these steps we

implement, train, and tune our EQMs (c.f. Sect. 5). With

the trained models we predict the FEP for each building in

the validation dataset, which allows us to meaningfully

compare the different EQMs based on the PEMs in Sect. 6.

Thereby, we conduct two benchmarking analyses. (1) We

train the data-driven EQMs on the first dataset and

benchmark them against the engineering EQM on the out-

of-sample second dataset encompassing the FEP calculated

by the energy auditors according to the normative frame-

work. (2) We subsequently benchmark only the data-driven

EQMs based on nested cross-validation on all available

data to get the most robust results while complying with

state-of-the-art machine learning techniques. Since the

calculated FEP is not given for the first dataset, we do not

include the engineering EQM in the second benchmarking

analysis.

‘‘Deployment’’: This step largely coincides with the

step of deployment in the original CRISP DM. We discuss

our results and present derived implications for policy,

research, and commercial application in Sect. 7.

Last, our results contribute to solve the defined bench-

marking problem with our research question in the first step

and close the process cycle. Further iterative rounds of the

process could be used to adapt single process steps for

further insights.

4 Data and Pre-processing

In this study, we used three real-world datasets to derive

the target measure FEP for the benchmarking of the EQMs.

The first dataset comprises 25,000 single and two-family

buildings from Germany with 74 attributes containing

information on the building characteristics, e.g., physical

Fig. 2 Derived process to benchmark energy quantification methods

for predicting building energy performance (own illustration based on

Wirth and Hipp (2000))

2 Note, that our datasets were already at our disposal when we started

with our study. Hence, we did not include ‘‘Data Collection’’ to our

derived process. Nevertheless, this step could be set in parallel with

the definition of the target measure to allow a general process

application and to enable further studies starting without available

datasets.
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building attributes and geometry, the installed heating

system, the location, and the annual metered thermal

energy consumption.3 Information about the occupants is

not available. This dataset serves as training and test data

for the data-driven EQMs. The second dataset originates

from two German energy consulting companies that

employ qualified energy auditors and includes 345 addi-

tional single and two-family buildings with 35 attributes

each, which were collected during on-site inspections by

the employed auditors in the period between 2016 and

2018. Next to the metered annual thermal energy con-

sumption, the dataset also contains the calculated annual

energy demand from EPCs, which represents the engi-

neering EQM. We therefore use this second dataset as

validation data for the benchmarking against the engi-

neering EQM. The calculation rules and specifics for the

creation of EPCs are updated frequently (Platten et al.

2019). To compare EPCs correctly requires that they fol-

low the same calculation rules. The calculated EPCs in this

dataset were each created according to the standard DIN V

4108–6 in combination with DIN V 4701–10. As there

were no normative changes concerning the FEP during the

period of the survey, the dataset does not need to be

adjusted (Beuth Verlag GmbH 2004, 2016). The third

dataset is a statistical survey from the German micro cen-

sus 2011, which represents the household and building

stock of Germany (Federal Statistical Office of Germany

2011). This dataset will later be used for stratification

purposes to ensure representative results.

To calculate the target measure FEP we had to make

some assumptions. Following Eq. 4, the FEP is calculated

from the consumption, the climate factor, and the effective

building area. Since the latter two were not directly

included in the datasets, we assumed that each building

contains a heated basement and applied Eq. (1) with f c ¼
1:35 to derive the effective building area. We further

retrieved the mean climate factor over the period the

datasets were gathered from historical data by mapping the

buildings to the nearest weather station based on the zip

code. Finally, we inserted these values in Eq. 4 to calculate

the FEP.

To ensure high data quality we cleansed the training and

validation datasets. First, we reduced the attributes to the

intersection between the two datasets. This is necessary,

because otherwise we would train the EQMs on data we

cannot provide for validation. Nonetheless, the datasets

shared a large intersection in the most important attributes,

containing identical or similar attributes that could be

easily converted. Second, we excluded attributes lacking

explanatory power for the FEP, like identification numbers,

as well as attributes with few entries. Also, we deleted

faulty or contradicting data entries, e.g., when the age of

the roof is older than the building age itself. Third, we

eliminated outliers in the attributes living space and final

energy consumption, using the thresholds of Metzger et al.

(2019). The resulting datasets contained 20,348 and 330

data entries, respectively, with a total of 15 attributes,

illustrated in Table 3.

Some data-driven EQMs require further processing steps

to increase their prediction accuracy. Because these pro-

cessing steps are not identical for all EQMs, we further

processed the data algorithm-specifically. For the ANN,

this involved normalizing all numerical attributes to [0,1]

and one-hot encoding all non-numerical attributes, i.e.,

introducing a binary dummy variable for n� 1 instantia-

tions (Jovanović et al. 2015). For SVR, we only performed

one-hot encoding, while no further pre-processing is

required for the RF and XGB. For the copula, we applied

continuous convolution to each attribute (Nagler 2018a, b).

To ensure representativeness of our study, we post-

stratified our results with regard to building age based on

the third dataset according to the German building stock.4

Stratification describes a sampling procedure, in which

representativeness with regard to a desired attribute is

ensured by sampling in the respective relation from the

different subpopulations (Bowley 1925). Post-stratification

takes place after data collection. We post-stratify our

results by adjusting the PEM to the German building stock.

First, we calculate the PEM for each subpopulation – in our

case the building age class –, then calculate a weighted

average according to the building age class distribution in

the German building stock. This method is used with great

success in various fields of study (Bowley 1925); Heinisch

1965; Miratrix et al. 2012). Table 4 shows the percentages

of the overall German building stock and our datasets,

illustrating why post-stratification is necessary. Henceforth,

when we refer to our PEMs, we use the stratified PEMs

when applicable.

Table 5 summarizes the individual pre-processing steps.

3 The data originate from the nationwide ‘‘Modernisierungs-Kom-

pass’’ (Modernization Compass) offered by the EN-OP Institute

(enop.de). It comprises free written modernization consultation for

owner-occupied single- and two-family buildings, which was used

more than 300,000 times between 1983 and 2014. The data used in

this study were transmitted between 2007 and 2014. The service was

discontinued in 2014 and the company ISO GmbH became a legal

successor of the EN-OP Institute.

4 Note, that the census only provides aggregated information to

mitigate the risk of information leakage. Further, the census

distinguishes between a total of eight classes. Due to the low retrofit

potential, the newest two classes were considered jointly as class 7.
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5 Model Fitting and Tuning

As mentioned, the results for the engineering EQM are

only available for the validation dataset. This in turn

means, that benchmarking the engineering EQM is also

only possible on this dataset and, consequently, bench-

marking against the engineering EQM applying nested

cross-validation on the larger training dataset is not pos-

sible. Thus, to receive the most reliable results and make

the best use of our available data, we conducted two

benchmarking analyses. In the first analysis, we applied

cross-validation on the training dataset and evaluated the

prediction accuracy on the validation dataset for all EQMs

including the engineering EQM, while in the second

analysis we further benchmarked only the data-driven

EQMs against each other based on nested cross-validation

on all data. We implemented and tuned each algorithm in

the statistical programming language R.

For the first analysis, we applied cross-validation on the

training dataset with hyperparameter tuning based on

genetic algorithms (Friedrichs and Igel 2005; Goldberg

2012). In this vein, we defined areas for all relevant

hyperparameters and randomly initialized a population. For

each hyperparameter specification we trained a model and

evaluated its fit based on the CV, handing the best per-

forming specifications over to the next generation. Addi-

tionally, new hyperparameter specifications were added by

crossbreeding and mutating the more successful

Table 3 Input parameters for data-driven Energy Quantification Methods

Category Attributes Values

Miscellaneous Basement available Yes, no

Building construction year Year

Building type Detached, attached

Living space m2

Wall insulation Double skin construction insulation cm

Outer wall construction year Year

Outer wall insulation thickness cm

Presence of double skin construction insulation Yes, no

Heating system Type of energy source Oil, gas, district heat, etc

Boiler construction year Year

Roof Presence of roof insulation Unknown/none, partial, full

Year of the last roof covering Year

Windows Material of window frame Wood, plastic, aluminum

Type of window-glazing Single, double old, double modern, triple-glazing thermal

insulated

Window construction year Year

Final energy
consumption

(Target measure) kWh
m2a

Weather effects adjusted final energy consumption

Final energy demand (Representing the engineering EQM) kWh
m2a

Calculated final energy demand by energy auditors from

the EPCs

Table 4 Distribution of building age classes in Germany (census) and in our datasets

Classes Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7

Building age - 1918 1919–1948 1949–1978 1979–1986 1987–1990 1991–2000 2001-

Percentage in census 14% 13% 46% 10% 3% 8% 6%

Percentage in training dataset 6% 10% 55% 14% 5% 8% 2%

Percentage in validation dataset 6% 11% 43% 15% 9% 14% 3%
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specifications while ensuring parameter constraints (e.g.,

integer values for the hidden layers or non-negativity

constraints). This procedure was applied over 200 genera-

tions, or until an early callback indicated no further

improvement in CV. Once we identified the best per-

forming hyperparameter specification, we trained a model

with the tuned hyperparameters on the entire training

dataset to not lose any information before evaluating their

prediction accuracy on the validation dataset.

For the second analysis, i.e., to benchmark only the data-

driven EQMs in-depth, we proceeded mostly in the same

way with the sole difference, that we applied nested cross-

validation on all data instead, which had not been possible

before due to missing results for the engineering EQM in

the larger training dataset. This two-stage approach

allowed us to compare the data-driven methods against the

engineering EQM while still receiving robust results for the

benchmarking of the data-driven methods.

In what follows we cover method-specific details on the

model tuning process. However, because a holistic intro-

duction to all relevant hyperparameters for the different

algorithms is neither content wise nor in terms of space

within the scope of this manuscript, we refer to the liter-

ature for thorough explanations and only provide the

information necessary to reproduce this study. To lever

comparability, we used MSE where applicable for model

training and CV for (outer-)fold performance evaluation.

The respective tables in the Appendix A1 (available online

via http://link.springer.com) show the final set of hyper-

parameters and their value ranges during the tuning

process.

Random Forest: For the RF we used the R package

‘‘randomForest’’ (Breiman et al. 2018). Because we apply

regression, we fitted each individual tree minimizing the

MSE as error metric instead of the information gain used

for classification.

Extreme Gradient Boosting: For the XGB we used the

R package ‘‘xgboost’’ (Chen et al. 2020) and proceeded

similar to the RF. We again used regression minimizing the

MSE.

ANN: For the ANN we used the R packages ‘‘keras’’

and ‘‘tensorflow’’ (Falbel et al. 2020a, b). We fitted the

individual models using Adam as optimizer based on rec-

tified linear units as activation functions for the hidden

layers and a linear output function. The model was trained

minimizing the MSE on 500 epochs, however using early

callback if there was no significant improvement in the test

data to avoid overfitting.

SVR: For the SVR we used the R package ‘‘e1071’’

(Meyer et al. 2019). We used radial basis kernel functions

and applied Epsilon-regression. This procedure prioritizes

good model fit over simple solutions, which is in line with

the overall goal of this study. We then fitted the individual

models according to the underlying optimization function.

Copula: For the copula we used the R packages

‘‘vinereg’’ and ‘‘VineCopula’’ (Nagler et al. 2019; Nagler

2019). For the copula there are no hyperparameters to be

tuned in the classical sense. Instead, we applied a parsi-

monious forward selection algorithm by Kraus and Czado

(2017), which sequentially builds up the model using the

Akaike Information Criterion based on conditional log-

likelihood as termination criterion. The algorithm thereby

Table 5 Methods used for data pre-processing

Step Method/procedure Applied to

1 Pre-screening of variables and underlying EPC calculation rules Train and validation

data

2 Identification of variable intersection Train and validation

data

3 Conversion of data to same scales and ordinal specifications Train and validation

data

4 Calculation of the FEP (including effective building area and climate factors) Train and validation

data

5 Deletion of variables lacking relevance and completeness (explanatory power for the FEP, missing information,

etc.)

Train and validation

data

6 Deletion of data entries lacking correctness (exceeding definition ranges, contradictory, etc.) Train and validation

data

7 Outlier deletion according to Metzger (living space and FEP) Train and validation

data

8 Algorithm-specific pre-processing and feature engineering Train and validation

data

9 Post-stratification on the predictions with respect to the building age Results
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automatically fixes the tree sequences in the vine copula

structure. Once the termination criterion threshold is no

longer breached when adding variables, the algorithm

stops. The resulting variable selection and tree structure

can be found in the Appendix A2.

6 Results

6.1 Benchmarking against the Engineering Energy

Quantification Method

The prediction accuracy of the different EQMs measured

by the PEMs is presented in Fig. 3. Here, the EQMs are

depicted on the x-axis, while the y-axis indicates the

magnitude of the PEMs. Focusing first on the CV, we

notice that the engineering EQM lags significantly behind

with a CV of 0.614, while the data-driven EQMs provide

results in approximately the same range between 0.33 and

0.35. This means that the prediction of the engineering

EQM deviates roughly 60% on average from the mean

actual FEP. The XGB shows the highest prediction accu-

racy with a CV of 0.329 which equals a decrease in error of

almost 50%. To ensure robustness, we validated these

results by means of further PEMs.5 Thereby, the general

tendency remains the same with only minor variations in

the exact outcomes. The only notable difference occurs for

the MAPE, where the ANN shows the highest prediction

accuracy, reducing error by more than 50% compared to

the engineering EQM. However, the difference is slight

and minor variations in the order of EQMs were expected.

Table 6 provides detailed numeric values.

Next, we have a closer look at the individual predictions

of the EQMs. Figure 4 shows scatterplots in which we

compare the predicted and the metered (weather rectified)

FEP for each EQM. The x-axes show the predicted values,

while the y-axes show the metered values. The blue circles

represent the buildings in the validation dataset. For easier

interpretation, we provide an angle bisector and a regres-

sion line. Ideally, we want all observations to lie on the

angle bisector.

The engineering EQM exhibits the highest standard

deviation in the errors with rEng ¼ 55:45 kWh=ðm2
aÞ, for a

mean metered FEP of 126.44 kWh=ðm2
aÞ over the whole

dataset. The engineering EQM is followed by the SVR with

rSVR ¼ 43:99 kWh=ðm2
aÞ and ANN with

rANN ¼ 43:28 kWh=ðm2
aÞ. The copula and the RF on the

other hand exhibit slightly less standard deviation in the

errors with rCop ¼ 42:84 kWh=ðm2
aÞ and

rRF ¼ 42:72 kWh=ðm2
aÞ. The XGB has the smallest stan-

dard deviation of rXGB ¼ 42:07 kWh=ðm2
aÞ. At the same

time, the engineering EQM and the RF both overestimate

the FEP on average by 50 and 4 kWh=ðm2
aÞ, respectively,

while the ANN, SVR, and XGB underestimate the FEP on

average by 15, 6, and 5 kWh=ðm2
aÞ, respectively. The

copula underestimates the FEP on average very slightly by

0.05 kWh=ðm2
aÞ. Again, we notice that there is high

unexplained variance which could stem from different

factors like occupant behavior and cannot be explained by

the EQMs based on the building characteristics alone.

To obtain a more complete picture, we disaggregated the

predictions for different instantiations of the variables

building age and living space, and analyzed whether there

are significant differences. The idea behind this is that

systematic errors might have been made when one of the

variables takes extreme values, e.g., a very poor prediction

accuracy for old buildings. For better readability we

aggregated the variables into building age classes and liv-

ing space bins. For the building age we chose the building

age classes from the census to obtain comparability with

other studies. For the living space bins, we took the dif-

ferent deciles as separators for a total of ten living space

bins.6 Figure 5 shows the results for the building age

classes on the left-hand side and for the living space bins

on the right-hand side. The figures are structured analo-

gously, with the x-axes indicating the instantiations of the

variables and the y-axes indicating the CV.

For the building age classes, the XGB, copula, and RF

show slightly higher prediction accuracy, as expected

Fig. 3 Performance evaluation measures for the different energy

quantification methods

5 Note that hyperparameter tuning was applied based on the CV, thus

the remaining PEMs probably leave room for further optimization.

The appendix (Table A 5) provides further information on the

performance metrics and on overfitting assessments.

6 We also checked other categorizations for building age classes and

living space bins, which yielded similar results.
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based on the aggregated results. While the data-driven

EQMs produce similar results throughout all building age

classes, the engineering EQM increases in prediction

accuracy towards newer buildings until 1990. This is in line

with findings in literature of higher measurement errors for

buildings with lower energetic efficiency in England and

Wales (Crawley et al. 2019), thus older buildings with less

strict regulations, which can be explained by the underlying

data quality. As mentioned, engineering EQMs require

exact inputs and expert knowledge to produce viable out-

comes. For older buildings this is often not the case,

especially when construction methods or building materials

used are unknown. The final increase in the last two

building age classes is partially explained by the CV being

a relative PEM. Stricter building construction regulations

came into place in Germany from 1977, followed by fur-

ther aggravations leading to lower overall FEP, which in

turn yields higher CVs for the same absolute error

(Deutsche Energie-Agentur GmbH 2016). For the living

space, we notice an overall trend towards more accurate

predictions for larger buildings. However, this trend is less

pronounced when compared to the building age classes and

therefore does not allow for conclusions. Again, the XGB

and RF show superior prediction accuracy for most living

space bins.

Last, we evaluated the individual over- and underesti-

mations for different building age classes, as literature

describes a general overestimation bias of FEP for older

Table 6 Performance evaluation measures for the different energy quantification methods

CV Mean absolute error Root-mean-square error Mean absolute percentage error

ANN 0.347 33.829 44.314 27.541

Copula 0.337 33.673 42.819 30.982

XGB 0.329 32.724 41.921 28.917

RF 0.344 34.359 43.441 32.983

SVR 0.347 34.446 44.021 31.073

Engineering (Benchmark) 0.614 63.577 77.273 61.549

Fig. 4 Scatterplots of predicted

and metered final energy

performance for the different

energy quantification methods
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and an underestimation for newer buildings (Greller et al.

2010). Figure 6 reports on the results, whereby the x-axis

again depicts the building age classes and the y-axis depicts

the mean prediction error as the difference between pre-

dicted/calculated and the real measured values. We note

that the EQMs indeed overestimate the FEP for older

buildings, however, cannot validate an underestimation of

newer buildings. Analogously, in Fig. 4 the slope of the

regression line from the engineering EQM is lower than the

bisector. This supports the findings of Cozza et al. (2020),

who found a lower actual consumption for energy ineffi-

cient residential buildings and a higher actual consumption

for efficient residential buildings in the Swiss building

stock. The fact that the overestimation is greater in older

buildings with poorer energy efficiency must be urgently

improved, so that the negative publicity and unreliable

statements for buildings in need of renovation do not pre-

vent investments in retrofitting measures. The lower esti-

mation error for data-driven EQMs may result from the fact

that the training dataset contains measured energy con-

sumption and thus implicitly considers occupant behavior.

Following Greller et al. (2010), the higher deviations in

older buildings could be due to a more savings-conscious

user behavior on average for less energetic efficient

buildings, which is associated with a higher rejection of

temperature comfort than assumed in the standards for

calculation.

6.2 Benchmarking the Data-driven Methods

In this subsection we present the results for the in-depth

benchmarking of the data-driven EQMs only. Because we

applied nested cross-validation with five outer folds and ten

inner folds, we obtain as a result not one but five tuned

models per algorithm which performed best for their

respective outer folds. To still present the results in a clear

and understandable way, we aggregated the prediction

accuracies by calculating the mean PEMs. Figure 7 pre-

sents an overview over the prediction accuracies of the

different EQMs measured by the PEMs.

We notice that the differences in prediction accuracy

almost completely vanish when we use nested cross-vali-

dation for performance evaluation instead of the validation

set. When aggregated, the accuracies differ by less than 1%

regarding CV. We further notice that the overall prediction

accuracy increases slightly for most PEMs. Both effects are

to be expected, as the repeated evaluation procedure yields

more robust results and allows for in-sample training. The

XGB and SVR slightly outperform their competitors in

most cases. Table 7 further reports on the exact values and

the standard deviations given in brackets. The standard

deviations in the results reveal that the ANN mostly

exhibits the highest standard deviation in prediction accu-

racy, thus its results should be treated with more caution.

RF on the other hand scores very consistently.

Last, we provide some insights into variable importance

to increase the explainability of the models. However,

Shmueli and Koppius (2011) state that explanation and

prediction should be best thought of as separate modeling

goals. Consequently, any model trying to encompass both

will have to compromise. This means that the following

analyses should be interpreted with caution, as our goal

was prediction and not explanation. To derive the variable

importance for each of the models, we used the method

initially proposed by Breiman (2001). The importance is

derived by permuting the predictor variables and measur-

ing the decrease in accuracy. Figure 8 shows the results for

the five most important variables of the data-driven EQMs,

Fig. 5 Coefficient of Variation for the different Energy Quantification Methods for instantiations of the variables building age on the left-hand

side, aggregated into building age classes, and living space on the right-hand side, aggregated into living space bins
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with higher values corresponding to higher importance. A

complete enumeration of all variables and their respective

importance for each algorithm can be found in the appen-

dix (Figure A 2).

We notice that the living space is highly important for

all data-driven methods. This is explained by changing

heating behavior and usage patterns of rooms depending on

the available living space. Because the number of residents

in single and two-family houses does not generally increase

with the living space, the utilization of all rooms decreases.

For example, rooms are used as storage rooms, for sports or

as repair shops and are not necessarily heated. Since the

data-driven EQMs were trained on measured consumption,

they could learn this correlation. Next to the living space,

the energy source is consistently important. This is also not

surprising, as the heating system is of central importance

for the overall energy efficiency. The remaining variables

are less consistent in their importance. Nonetheless, we

notice similarities between the two tree-based algorithms

XGB and RF, as well as between the ANN and SVR which

both use one-hot-encoding. For the copula, the importance

can be inferred to a certain degree from the tree structure

for the bivariate copula building blocks. Moreover, due to

the parsimonious forward selection algorithm applied for

model fitting, the copula disposes of less variables (c.f.

Figure A 1 and Figure A 2).

7 Discussion

Our results show that the energy performance gap gener-

ally holds true for single- and two-family buildings in

Germany. The engineering EQM produces approximately

the values for the energy performance gap as expected in

literature. The data-driven EQMs are also in the expected

range but exhibit a considerably lower error. The lack of

literature for our specific benchmarking problem of pre-

dicting annual heating energy performance in residential

buildings does not allow a holistic discussion of the

accuracy gap between data-driven and engineering EQMs.

Nevertheless, compared to the results of Neto and Fiorelli

(2008), who compared an engineering EQM with an ANN

for time series prediction of energy consumption of

buildings, the data-driven EQMs in our study show an even

Fig. 6 Mean prediction error of the Final Energy Performance for the

building age classes

Fig. 7 Mean performance evaluation measures for the different data-

driven energy quantification Methods over the five outer folds

Table 7 Mean performance evaluation measures for the different data-driven energy quantification methods over the five outer folds (standard

deviation given in brackets)

CV Mean absolute error Root-mean-square error Mean absolute percentage error

ANN 0.328 (0.0081) 34.003 (0.7381) 44.505 (0.9654) 29.577 (1.0671)

Copula 0.329 (0.0057) 33.736 (0.4565) 44.689 (0.8473) 28.805 (0.2716)

XGB 0.321 (0.0060) 33.173 (0.4735) 43.618 (0.7638) 28.784 (0.5329)

RF 0.323 (0.0052) 33.384 (0.4559) 43.865 (0.7199) 29.114 (0.4757)

SVR 0.322 (0.0064) 33.212 (0.4566) 43.773 (0.8201) 28.544 (0.4189)
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greater advantage in terms of prediction accuracy. In their

study the ANN achieved a 3-percentage point advantage,

whereas our data-driven EQMs achieve almost a 30-per-

centage point advantage over the engineering EQM.

However, our analyses do not confirm previous findings in

literature that ANN and SVR possess generally better

prediction accuracy for building energy performance than

less complex machine learning algorithms like RF (Ama-

syali and El-Gohary 2018). Rather, XGB exhibited the

highest prediction accuracy for most analyses conducted,

closely followed by SVR and RF. ANN, on the other hand,

performed worst to second worst among the tested data-

driven EQMs. However, the differences in prediction

accuracy were slight and the standard deviations indicate

that these results should be treated with caution. Conse-

quently, we refrain from stating that one data-driven EQM

is particularly suited for this task. Nonetheless, this sup-

ports that each application requires a specifically designed

EQM to reach its highest accuracy, and that there is no

strictly dominant EQM (Mosavi et al. 2019). Because our

data-driven EQMs rely solely on few attributes which are

relatively easy to grasp compared to the engineering

EQMs, we argue that data-driven EQMs exhibit further

advantages regarding their handling and applicability.

Thus, using data-driven EQMs instead of engineering

EQMs saves money and time while simultaneously

increasing prediction accuracy.

Our results have several managerial and policy impli-

cations. First, they provide clear guidelines for policy-

makers. The current state of the low-carbon transition paths

requires higher retrofitting rates for residential buildings to

still reach the climate goals. Therefore, we advocate to

revise the current legislation to allow for data-driven

EQMs instead of the prescribed engineering EQM with

significantly worse prediction accuracy. This potentially

raises the residential building retrofitting rate by decreasing

the uncertainty of energy efficiency measures, thereby

removing investment barriers and contributing to achieving

the climate goals. Two different applications are conceiv-

able at present, either the direct replacement of the engi-

neering EQM, or the complementary application used for

transitional quality assurance of the engineering EQM to

check for outliers or incorrect data. The verification could

be automated and thus be realized cost-efficiently and

without human involvement. The quality assurance can be

rolled out nationwide and increase confidence in the EPC,

thus offering a more reliable foundation for decision-

making. Potential challenges are the acceptance and

ensured quality of the underlying models. Homeowners

may perceive unfair treatment if EPCs depicting low

energy efficiency are issued based on calculation methods

Fig. 8 Variable importance

plots for the data-driven energy

quantification methods
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that are not or hardly comprehensible such as black-box

approaches, as this reduces the resale value of houses.

Using more explainable methods, like RF or XGB might

mitigate this challenge. However, there is a whole field of

Explainable Artificial Intelligence discussed controver-

sially in literature (Rudin 2019). In addition, inexplicable

miscalculations can arise for the data-driven methods,

resulting in highly distorted results. We argue, however,

that the currently prescribed methods are also highly error-

prone if not performed correctly, therefore data-driven

methods are to be preferred, due to the generally signifi-

cantly higher prediction accuracy. When putting data-dri-

ven EQMs into a use case perspective, a distinction must

be made between EPCs for existing and new buildings.

Data-driven EQMs learn from available data, limiting their

suitability for creating EPCs for new buildings. Since the

construction rate in Germany is comparatively low and the

energy saving potentials in existing buildings are much

greater, as well as the determination of consumption being

more costly and error-prone, the focus should be placed on

this use case (Deutsche Energie-Agentur GmbH 2016).

Second, we suggest the usage of data-driven EQMs for

other applications as well, such as asset management, city

planning, insurance, etc., to enhance their business models

with more economic decision-making, minimization of

risk, and higher profits. The energy efficiency evaluation of

buildings is a central element in many areas and can be

decisive for the economic success of companies (Bozorgi

2015). To collect cost-efficient information is particularly

relevant for the initial energy evaluation of real estate if

EPCs are not yet at hand, as energy-efficient buildings

yield higher returns and higher rents than energy-inefficient

buildings (Cajias and Piazolo 2013). Insurance companies

could enhance claim prediction models, or asset manage-

ment companies could optimize their portfolios with data-

driven investment strategies. However, both should be

extremely careful with the implementation since miscal-

culations in investment portfolios are comparatively worse

than miscalculations in EPCs. Third, our results imply that

more focus should be put onto the benchmarking of dif-

ferent machine learning algorithms, as for our specific use

case XGB almost consistently yielded better results than

the algorithms ANN and SVR which are favored in liter-

ature. Most literature investigated focused on one machine

learning algorithm only and disregarded comparisons and

benchmarks. This, however, results in a limited general-

izability of their results.

Naturally, this research is beset with some limitations.

First, we focused on annual heating FEP of German resi-

dential buildings. Other results might hold true for, e.g.,

commercial, or industrial buildings, as well as for other

geographical regions or time horizons. Second, because the

validation dataset was gathered by qualified energy

auditors, there might be a systematic selection bias in the

individual data points. However, the fact that we validated

out of sample, i.e., that the data-driven EQMs could not

learn this potential systematic bias, suggests that the rela-

tive improvement over the engineering EQM is presumably

even more substantial than this study predicts. Third, sev-

eral important building characteristics were missing in the

dataset, e.g., upper floor insulation and basement insula-

tion. More importantly, we also have no information on

socio-economic factors or occupant behavior. This leaves a

large margin of variance in the data unexplained. Fourth,

for the calculation of the target measure in accordance with

the current norms, some assumptions were made regarding

basement availability and heating. We approximated the

effective building area for all buildings where only the

living space was given, but did not find any signs in our

analysis that this approximation would lead to higher

errors. In contrast, in the case of the buildings that are

approximated by the living space, the errors in the building

energy performance are consistently smaller. Nevertheless,

future research could start here by training and analyzing

on a complete dataset also including this information.

Moreover, for the rectification of weather effects, we used

the mean of the climate factor for each weather station over

the period the datasets were gathered, because the datasets

did not contain the exact year of data collection, but a span

of seven years. These assumptions and simplifications

could possibly lead to minor deviations in the final out-

comes. In addition, the measured consumption could have

been further rectified with regard to room and heating

threshold temperatures that deviate from the standard

assumption, vacancies, or measurement inaccuracies for

non-network-bound energy sources (e.g., wood pellets or

heating oil) if corresponding data were at hand (Bigalke

and Marcinek 2016). Fifth, there exist further EQMs that

were not considered in this study, which does not allow to

state a final recommendation. Nevertheless, these EQMs

can also be benchmarked by applying our methodology

adapted from the CRIPS DM cycle. We are convinced that

our derived process is generally applicable in the context of

benchmarking and can be used in the future for comparison

and benchmarking in various situations. Also, even though

we tried to provide a comparable basis for all EQMs, by

changing individual steps and spending more time in the

optimization procedures improvements in prediction

accuracy could have been achieved.

However, these limitations give rise to new research

potential. One natural direction includes gathering addi-

tional high-quality data points, which include all necessary

building characteristics as well as occupant behavior.

However, this procedure might prove cumbersome.

Another direction includes examining further EQMs as

well as tuning them to a higher extent. In particular for the
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copula, we expect the more general R-vines to perform

significantly better. To the best of our knowledge, no

implementations of R-vine quantile regression exist in any

statistical programming language, but promising theoreti-

cal advances have been recently made. Also, the focus on

only one country may be relaxed, incorporating other

geographical areas with different characteristics of build-

ings, climate conditions, and other normative frameworks

for EPC calculation to assess whether our findings are

generalizable for these areas and circumstances. This could

also be an interesting task for transfer or federated machine

learning to take advantage of decentralized datasets for

large scale machine learning. All in all, further research is

necessary in this field, as current research is scarce. This is

most likely due to scarce publicly available and process-

able data as highlighted in literature (Carpino et al. 2019).

Since most institutions with the necessary database are

state-regulated, we suggest that policymakers enter into

cooperation with scientific institutions, since a sufficiently

large and high-quality database is essential to obtain reli-

able and more generally valid results from which to derive

meaningful long-term political incentive mechanisms to

curb climate change. In the same course of the structured

recording of large quantities of quality-assured data, data

on occupant behavior should be recorded. This would make

it possible to analyze the causes of the significant differ-

ences between measured and calculated EPCs as well as

between the different EQMs. Based on the obtained

knowledge, more precise statements can be made about

energy consumption and savings after potential retrofit

measures. This in turn enables investment decisions to be

taken on a sound basis, while at the same time reducing

barriers to energy efficiency investments by minimizing the

investment risk (Ahlrichs et al. 2020). In addition, a large

high-quality database might allow to reproduce our results

and benchmark further EQMs more systematically over all

regions in Germany, to essentially mitigate the major

drawbacks of our study. Our research also contributes to

the theoretical body of knowledge by identifying potential

for improvement in the currently established methods and

benchmarking multiple EQMs in terms of predictability.

Regarding the classification of Shmueli and Koppius

(2011), this corresponds to role six (assessing predictability

of empirical phenomena) and peripherally touches role four

(comparing existing methods).

8 Conclusion

In this study, we benchmarked different Energy Quantifi-

cation Methods (EQM) for residential buildings, applying a

derived process based on the CRISP DM. In doing so, we

are among the first to focus on the interface of predicting

heating Final Energy Performance for residential buildings,

based on real-world data with annual energy predictions.

More precisely, we compared Artificial Neural Net-

works, D-vine copula quantile regression, Extreme Gradi-

ent Boosting, Random Forest, and Support Vector

Regression with the engineering EQM currently estab-

lished by German law. We used an extensive real-world

dataset of 25,000 German single- and two-family buildings

for model training and testing and another out of sample

dataset of 345 additional buildings for validation, also

containing Energy Performance Certificates issued by

qualified auditors, which represent the engineering EQM.

Our results provide strong evidence that the data-driven

EQMs outperform the engineering EQM by a large margin,

reducing the prediction error by almost 50%. We addi-

tionally benchmarked only the data-driven EQMs against

each other based on nested cross-validation. In contrast to

existing literature, Extreme Gradient Boosting exhibits the

highest prediction accuracy for most cases, closely fol-

lowed by Support Vector Regression, which is favored in

literature, and Random Forest. To ensure robustness of our

results, we examined several Performance Evaluation

Measures and analyzed two variables – the building age

and the living space – in more detail to account for

potential systematic biases. Despite minor variations, the

general tendency holds, indicating robust results. We

conclude that data-driven EQMs in general are more suit-

able for residential building energy quantification. There-

fore, we advocate to revise the current legislation to allow

for the use of data-driven EQMs in Energy Performance

Certificates for existing buildings.
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Larsen M, Petrović S, Radoszynski AM, McKenna R, Balyk O (2020)

Climate change impacts on trends and extremes in future heating

and cooling demands over Europe. Energy Build 226:110397.

https://doi.org/10.1016/j.enbuild.2020.110397

Li Y, Kubicki S, Guerriero A, Rezgui Y (2019) Review of building

energy performance certification schemes towards future

improvement. Renew Sustain Energy Rev 113:109244. https://

doi.org/10.1016/j.rser.2019.109244

Menezes AC, Cripps A, Bouchlaghem D, Buswell R (2012) Predicted

vs. actual energy performance of non-domestic buildings: using

post-occupancy evaluation data to reduce the performance gap.

Appl Energy 97:355–364. https://doi.org/10.1016/j.apenergy.

2011.11.075

Metzger S, Jahnke, Katy, Walikewitz, Nadine, Otto M, Grondey A,

Fritz S (2019) Wohnen und Sanieren: Empirische
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