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Abstract Arguably, automation is fast transforming many

enterprise business processes, transforming operational

jobs into monitoring tasks. Consequently, the ability to

sustain attention during extended periods of monitoring is

becoming a critical skill. This manuscript presents a Brain-

Computer Interface (BCI) prototype which seeks to combat

decrements in sustained attention during monitoring tasks

within an enterprise system. A brain-computer interface is

a system which uses physiological signals output by the

user as an input. The goal is to better understand human

responses while performing tasks involving decision and

monitoring cycles, finding ways to improve performance

and decrease on-task error. Decision readiness and the

ability to synthesize complex and abundant information in

a brief period during critical events has never been more

important. Closed-loop control and motivational control

theory were synthesized to provide the basis from which a

framework for a prototype was developed to demonstrate

the feasibility and value of a BCI in critical enterprise

activities. In this pilot study, the BCI was implemented and

evaluated through laboratory experimentation using an

ecologically valid task. The results show that the techno-

logical artifact allowed users to regulate sustained attention

positively while performing the task. Levels of sustained

attention were shown to be higher in the conditions assisted

by the BCI. Furthermore, this increased cognitive response

seems to be related to increased on-task action and a small

reduction in on-task errors. The research concludes with a

discussion of the future research directions and their

application in the enterprise.

Keywords Brain-computer interface � ERP � Sustained
attention � Neurophysiology � Closed loop control theory

1 Introduction

The role of human labor in the workplace is being trans-

formed profoundly by rapid improvements in technology

and automation (Autor 2015). This transformation can be

seen in the number of ‘‘knowledge worker’’ tasks being

automated, leading to increased productivity among a wide

variety of professions, replacing tasks requiring operational

skills with those requiring monitoring and decision skills

(Lacity and Willcocks 2015).

Research in human factors has identified issues con-

cerning how humans interact with automated processes,

suggesting that workers must now adapt to changes in the
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type of task, task structure, and the information available

required to perform those tasks (Lee and Seppelt 2009).

Adaptions such as these will require humans to better

manage cognitive-energetic resources in terms of motiva-

tion, fatigue, cognitive load, and sustained attention (SA)

while monitoring automated systems to avert or respond to

system failures.

Multiple factors can impair human operator levels of SA

and thus performance when monitoring automated systems.

Mackworth (1948) demonstrated that the ability to detect

visual signals declines after 30 min of visual search, this

was later correlated with an increase in reaction times

(McCormack 1960; Buck 1966). Additionally, human

factors research has shown that interacting with automated

systems also affects SA, workload, and complacency,

which can influence operator performance (Parasuraman

et al. 2008; Parasuraman and Manzey 2010). Furthermore,

neurophysiological studies have identified other negative

factors that affect an operator’s SA, such as drowsiness,

motivation, stress, and habituation (Oken et al. 2006). This

accumulation of information concerning sustained atten-

tion and automated systems highlights a need for systems

that either adapt to low levels of operator SA or promote

higher levels of SA within the operator.

A novel approach to tackling the problem of reduced SA

and other attentional mechanisms is the use of a brain-

computer interface (BCI) as assistive technology (Venthur

et al. 2010). BCI’s are systems that utilize signals from the

brain as an input to a computer system to provide a control

mechanism, decision support, adapt an interface, or display

feedback. These signals are recorded using electroen-

cephalography (EEG) through electrodes on the surface of

the scalp. BCI’s have been utilized in clinical settings to

improve communication and rehabilitation outcomes [see

Chaudhary et al. (2016) for a review] and, in some cases, to

augment cognitive phenomena in real-world contexts [see

Lotte and Roy (2019) for a review].

Creating BCIs for use within real-world contexts has

become part of the emerging interdisciplinary field of

neuroergonomics, which aims to study the human brain and

behavior in real-world settings through the merger of

neuroscience, human factors, and design (Parasuraman and

Rizzo 2008). This community aims to understand the

human-artifact relationship better to enhance human per-

formance and safety in complex environments (Johnson

and Proctor 2013). BCIs are also gaining traction in the

information system community following several calls for

research in neuro-adaptive information systems (vom

Brocke et al. 2020; Riedl and Léger 2016) and their inte-

gration into ‘‘adaptive enterprise systems’’ (Adam et al.

2017). Moreover, EEG, the favored instrument in BCI

research, was introduced to the Information Systems (IS)

community by Müller-Putz et al. (2015) who produced a

methodological paper on EEG use.

The research objective presented in this manuscript is to

answer the following research question: Will integrating a

BCI within a long duration monitoring task allow the user

to sustain attention over a prolonged period in order to

perform better and with less error? Thus, we detail the

development of a passive brain-computer interface (pBCI)

prototype to combat drops in SA during extended moni-

toring IT task, through the regulation of a user’s SA to

increase task performance and reduce on-task error. We

applied the design science research framework to inform

the business task’s design based on business needs, and

applicable IS methods. We then operationalized the con-

struct of sustained attention using EEG to serve as input to

the BCI following standard EEG methods (Mikulka et al.

2002; Müller-Putz et al. 2015). The artifact design was

theoretically supported by the motivational control theory

of cognitive fatigue (Hockey 2011) to provide a theoretical

foundation with closed-loop control theory (Marken 2009)

to integrate the pBCI neurofeedback mechanism that

allows users to regulate SA passively. We contribute to the

IS and NeuroIS fields by providing prescriptive knowledge

concerning the design process of a BCI artifact for long-

duration IT monitoring tasks, and propose a novel classi-

fication algorithm for the assessment of sustained attention.

2 Background

2.1 Brain-Computer Interfaces

BCI’s are part of a multidisciplinary field at the intersection

of neuropsychology, physiology, engineering, and com-

puter science (Mason and Birch 2003), and more recently

as tools for neuroergonomics research to produce inputs to

drive computer, robotic or automated systems (Gramann

et al. 2017). Advances in sensor technologies and cerebral

activity classification enabled BCIs to be both a useful

medical assistive technology (Vaughan 2003; Venthur

et al. 2010) and as a general interface technology for

human-machine systems (Zander and Kothe 2011).

In information system research, BCIs can be categorized

in the family of ‘‘neuro-adaptive information systems’’

(Riedl et al. 2014). Neuro-adaptive information systems

comprehend brain-computer interfaces as well as biofeed-

back systems. Riedl and Léger (2016) differentiate

biofeedback systems from BCIs with different contribu-

tions. They defined the BCI objective as ‘‘to replace input

devices (e.g., mouse or keyboard) through specific elec-

troencephalographical measures of brain function that are

typically assessed based on EEG’’. At the same time,

biofeedback systems use physiological measures to

123

654 T. Demazure et al.: Enhancing Sustained Attention, Bus Inf Syst Eng 63(6):653–668 (2021)



recognize user states, adapt the system or make users aware

of the adaptations so action can be taken. This BCI view

emphasizes the notion of control of the IS artifact driven by

the electrophysiological measures. On the contrary,

biofeedback systems tend to focus on helping users’ self-

regulation of physiological activity, stress, emotion, or

behaviors (Lux et al. 2018; Noorbergen et al. 2019). For

example, Astor et al. (2013) presented one of the first

biofeedback systems in IS using electrocardiography to

measure arousal in an auction game. In this case, arousal

was linked to the game difficulty and visual biofeedback,

enabling users to self-regulate arousal and increase their

performance. Current literature in IS and adaptive systems

focus on physiological sensors such as electrocardiography

(Hillege et al. 2020; Astor et al. 2013), photoplethysmog-

raphy (Rouast et al. 2017), or electrodermal activity

(Snyder et al. 2015).

A more nuanced approach to BCIs considers similar

artifacts to biofeedback systems (neurofeedback). Based on

Zander et al. (2009), BCI’s can be categorized into three

types: active, reactive, and passive BCI. Active and reac-

tive BCI’s are used to directly control an interface, whereas

passive BCIs (pBCI) are utilized for cognitive-state

detection within user support or neurofeedback systems.

State of the art development in BCI technology is driven

primarily by active and reactive medical applications [see

Lahane et al. (2019) for a detailed review]. In this domain,

brain signals primarily derived from motor-imagery tasks

are used to enable the control of a prosthesis (Hong and

Khan 2017) such as a robotic arm for users with spinal cord

injury (Nicolas-Alonso and Gomez-Gil 2012; Müller-Putz

et al. 2005, 2018) or as input to controllers for wheelchairs

(Carlson and Millan 2013). In these applications, machine

learning classifiers such as LDA and K-nearest neighbors

(Bhattacharyya et al. 2010), Support Vector Machine

(SVM), and Convolutional Neural Networks (CNN) (Tang

et al. 2017) are used in conjunction with specific features of

brain activity such as the P300 response (Thulasidas et al.

2006) or steady-state evoked potentials (SSVEP) (Prasad

et al. 2017) to classify brain signals and provide the input

that drives the prosthesis. Currently, training these classi-

fiers involves using synthetic laboratory-based tasks to

elicit the desired response, resulting in lengthy training

sessions, large preprocessed data sets and increased com-

putational cost. Furthermore, due to their specificity, and

the active or reactive nature of these BCIs, they do not

derive any information concerning the cognitive state of

the user.

Outside of the medical domain, BCI researchers are

seeking new applications such as within information sys-

tem research (Riedl and Léger 2016; vom Brocke et al.

2020), user experience research and entertainment (Muñoz

et al. 2017), or in aerospace to explore the effects of mental

workload and fatigue upon the P300 response and the

alpha-theta EEG bands (Käthner et al. 2014). In addition,

there is a recent movement within the BCI community to

integrate other psychophysiological signal types into ’hy-

brid BCIs’ (Pfurtscheller et al. 2010; Müller-Putz et al.

2015) to increase the granularity of the monitored response

and identify cognitive states as they emerge.

2.2 Sustained Attention

It has been proposed that the human attention system is

composed of three networks: alerting, orienting, executive

control (Petersen and Posner 2012). The Alerting network

refers to the ability to maintain focus and performance

during visual search tasks (Posner and Petersen 1990). The

Orienting network corresponds to the capacity to focus on

specific and essential signal sources or an internal semantic

structure previously memorized (Posner 1980). Finally, the

Executive control network represents the cognitive process

of selecting sensory inputs, resolving conflicting feedback,

monitoring and resolving errors (Posner and Rothbart

1998). We refer to the term sustained attention within the

current work to cover tonic alertness, attention, and the

vigilance decrement as proposed by (Oken et al. 2006).

Work investigating the underlying neuroscience of sus-

tained attention (Sarter et al. 2001), posits that maintaining

SA determines performance and effectiveness while per-

forming long-duration tasks requiring a high degree of

focus. SA represents the ‘‘higher’’ aspects of attention and

cognitive capacity in general. Operationalizing the atten-

tional system as a means to measure sustained attention

was first proposed by Pope (1995) who developed an

‘‘engagement index’’ to provide a scalar value of SA. This

index is derived from oscillations in frequency bands

within the brain, consisting of beta (a measure of focus and

alertness), alpha (a measure of inhibition or relaxation) and

theta (a measure of active inhibition) to give the ratio b/
(a ? h). This research was later reproduced by (Freeman

1999), and the index was utilized for a vigilance task

(Mikulka et al. 2002). The engagement index rests on the

hypothesis that increased beta power represents an increase

in arousal and attention, while decreases in alpha and theta

power represent a reduction of attention (Scerbo et al.

2003). The ‘‘engagement index’’ has been used in several

more recent studies, such as modulating signal event rates

in real-time on a vigilance task (Mikulka et al. 2002) and

adapting the difficulty of a Tetris game in real-time (Ewing

et al. 2016; Fairclough 2007).

These same frequency bands have shown potential in

learning contexts to enhance engagement with passive

brain-computer interfaces (Andujar and Gilbert 2013). By

combining these bands to create a ratio, Szafir and Mutlu

(2013) observed gains in recall and learning when using a
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BCI that adapted learning content to users. In this research,

they extracted the a, b, and h frequency bands and derived

an attention index using b/(a ? h), then smoothed the

index values using a 5-s moving average. Hassib et al.

(2017) applied the same method to determine an audience’s

cognitive state to provide engagement information to a

presenter in real-time. Kosmyna et al. (2018) used the same

index to provide haptic and audio feedbacks for attention

regulation in real-time to participants using glasses in a

learning context. Pham et al. (2020) developed a similar

BCI for drone pilots providing visual feedback of the level

of attention rendered upon the operator’s glasses. In work

by Muñoz et al. (2020), the index was used in VR firearms

training scenarios as a proxy for ‘‘cognitive readiness’’ in a

pilot study aimed at creating adaptive training practices for

police officers. Specifically, they observed that levels of

frontal theta changed in response to difficulty within the

training scenario. Oken et al. (2018) proposed a BCI

measuring drowsiness based on multi-modal features (i.e.,

amplitude, theta power, alpha power, and blink rate)

showing that a hybrid BCI can also be applied in this

context.

The work presented in this manuscript outlines the

methods and procedures used to develop a novel working

prototype of a BCI-neuroadaptive system. The artifact

seeks, in real-time, to combat decrements in sustained

attention during monitoring tasks within an enterprise

system and proposes a novel computational classifier to

classify sustained attention. We utilize the b/(a ? h) index
proposed by Pope (1995) with a series of dynamic

thresholds to address volatility issues that can happen when

using hardcoded and conservative thresholds (Ewing et al.

2016; Fairclough 2007).

2.3 Motivational Control Theory of Cognitive Fatigue

Theoretical developments and experimental findings con-

cerning mental effort and cognitive fatigue often assume

cognitive resource depletion to be a natural consequence of

tasks’ demands (Kahneman 1973). However, when speak-

ing in terms of cognitive resource allocation and depletion,

there appears to be little evidence to support this view.

Hockey (1997) proposed a cognitive-energetical frame-

work by analyzing the effects of stress and high workload

on human performance. Within this framework, they state

that human performance may be maintained under stress by

the recruitment of further resources, but only at the expense

of increased subjective effort, and associated behavioural

and physiological costs. Furthermore, they state that,

alternatively, stability can be achieved by reducing per-

formance goals without further costs.

In later work, Hockey (2011) proposed that effort should

be considered an optional response to the awareness and

assessment of task demands under the individual’s control.

In their view, it is the adoption of high effort responses to

task demands which drive the fatigue process, rather than

the presence of the demands themselves. They further

expand upon this by adding controllability as a moderator

of the workload-fatigue relationship, in which controlla-

bility refers to an individual’s perception that they have

control over work activities. They support this moderating

effect in an experimental study of office work in which

workload was manipulated by time pressure and opportu-

nity to schedule tasks (Hockey and Earle 2006). They

concluded that, in general, when cognitive activities are

self-motivated, particularly when they are regarded as

’play’, cognitive effort does not appear to give rise to high

fatigue levels.

We utilize the cognitive energetical framework as the

theoretical foundation for the design and development of

the neurofeedback mechanism of the prototype pBCI and

base its architecture upon closed-loop control theory.

3 Artifact Objectives and Requirements

To create the artifact, we started by forming a problem

statement: design an artifact that allows users to regulate

sustained attention while performing an ecologically valid

business task. Following a design science methodology

process (Peffers et al. 2007), we formed an objective-

centred solution to achieve instantiation validity (Lukya-

nenko et al. 2014) by applying closed-loop control and the

theory of motivational control of cognitive fatigue.

Instantiation Validity refers to ‘‘the validity of IT artifacts

as instantiations of theoretical constructs’’ (Lukyanenko

et al. 2014). Thus, the theoretical foundation of closed-loop

and motivational control was operationalized as a novel

classification algorithm. This algorithm is then integrated

within a technological artifact consisting of a business

logistics task, a passive BCI control loop, and a neuro-

feedback controller driven by the classification algorithm.

We reduced the logistics task to the minimum of required

actions and took measures to mitigate external factors that

could impact closed-loop control. We addressed the sci-

entific and managerial literature to be confident that the

proposed prototype meets the research need and theoretical

foundations. To this end, we derived a series of require-

ments for the artifact and supported our design with pre-

vious research from the fields of neurophysiology,

NeuroIS, human factors and physiological computing.

As discussed previously, we identified a need for a

mechanism that allows an operator to regulate sustained

attention while performing long-duration tasks such as

those found in tasks involving highly automated processes
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that require extended periods of monitoring interrupted by

short decision periods.

Using this problem statement, we derived three

requirements:

• The design of the artifact needs to integrate with and

drive an ecologically valid IS environment.

• The IS task should be of sufficient duration to ensure

that a decrease in sustained attention can be observed

under normal circumstances.

• The BCI’s core functionality should provide, through

neurofeedback and signaling, a means to allow oper-

ators to regulate sustained attention and enhance

performance without obstructing the IS task.

We identified several essential features needed for both

the artifact and the interactive task interface in addition to

these core requirements. The task must feel both useful and

business-oriented. The user must be consistently engaged

in a task that requires business decisions and assesses the

impact of these decisions over time.

Furthermore, based on research involving task and

process automation (Parasuraman et al. 2000), automating

any decisions and actions within the task should be care-

fully selected to allow careful monitoring and consecutive

decision cycles. The timeframe between events should

induce a need to be attentive to that task, such that a task

requiring sustained attention must test a subject’s readiness

to detect decision events after a long period of monitoring

(Petersen and Posner 2012). Lastly, the artifact needs to

display any information required to support the user’s

decisions and provide feedback concerning performance

and the current system state to perform projections (End-

sley 1995).

We applied closed-loop control theory to aid in the

development of the neurofeedback and signaling require-

ments (Marken 2009). Closed-loop control (CCT) can

shape behavior by mitigating the influence of psychologi-

cal states and promoting others. The concept of CCT

considers every stimulus input as affecting behavioral

output, and each behavioral output looping back to affect

the sensory input. Within this loop, the effect of output on

input is referred to as feedback. Closed-loop neurotech-

nology works on the same principle but by shaping neu-

rophysiological activation patterns, and by default, related

psychological processes and states. From this, we derived a

CCT schema (see Fig. 1). This schema integrates neuro-

physiological input into a system that infers, then classifies

SA, and proposes visual neurofeedback as an interface

adaption.

Figure 2 shows the conceptual schema for how the

proposed artifact will operate as part of a decision-adaption

cycle. Sustained attention is measured via EEG and inte-

grated into the pBCI, and then a classification decision is

taken. Depending on the level of measured sustained

attention, visual interface neurofeedback is actioned to

encourage a positive change in sustained attention if

required, which then feeds back to begin the next classi-

fication – decision cycle.

We hypothesized that this decision-adaption cycle

would increase task performance and decrease on-task

error throughout a long-duration monitoring task mediated

by the mechanisms proposed in the motivational control

theory of cognitive fatigue (Hockey 2011).

4 Design and Development

4.1 Integrating the Task Interface and Feedback

Controller

We further iterated the design process as outlined above to

differentiate between two development cycles, one for

interface development and one for the pBCI, referred to as

the feedback controller. The system architecture resulting

from this separation is shown in Fig. 3. in which can be

seen the technical elements of the closed-loop control and

decision-adaption schema. This starts with the user’s

implicit measurement, then routes through the system

architecture for a decision-adaption cycle, before returning

to the interface as visual feedback based on the user’s SA,

which starts the closed-loop cycle again.

We took inspiration from the ecological interface design

framework (Rasmussen and Vicente 1989; Vicente and

Rasmussen 1992) to aid in designing both the task and the

neurofeedback mechanism. In this framework, a user must

have the ability to make decisions directly within the

monitoring interface. Thus, information displayed upon the

interface must follow an isomorphic structure which sup-

ports the mapping of the process structure to help the user

externalize a mental model of the task and facilitate

problem-solving.

To address these requirements, we formed several

actionable development goals to create the monitoring task

interface to ensure that the user interacts with a partially

automated business logistics process task where long

periods of monitoring are interrupted by short decision

periods. Within the task interface, all the information

needed – including neurofeedback – to support the task is

displayed and updated in real-time, allowing the user to

monitor the automated process and make timely decisions.

Finally, to function effectively as a real-time tool and to

allow for post-hoc analysis, all data from the enterprise

system concerning the running of the task, behavioral

measures, and the pBCI neurological data are saved in

secured storage.
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5 Instantiation and Implementation

We employed an asynchronous approach to operationaliz-

ing the task and BCI architecture (Fig. 3) into a useable

prototype that allowed fluid, seamless interface interactions

and data captured at each stage of the task and pBCI pro-

cess. To achieve this, we utilized a web-based application

programming directly connected within SAP architecture

(Appendix A, available online via http://link.springer.com).

The ‘‘meaningfulness’’ of the feedback is a crucial factor

for the user in understanding the adaptive system (Lux

et al. 2018). The interface visual neurofeedback design

followed a traffic lighting signal paradigm for quick cog-

nitive association: red for critical, amber for unfocused,

and white for decision-ready. Research in human factors

outlines some principles for interface ‘‘alert’’ design, in

which placement, visibility, prioritization, color, and

habituation have to be considered (Phansalkar et al. 2010).

Thus, traffic lights are an easily generalizable cognitive

association and one that has been used in previous related

research (Lal et al. 2003).

Participants were introduced to the traffic lighting color

scheme during a 15-min baselining task involving a visual

search task involving the identification of a moving target

and a target signaling task (see Fig. 4). During the target

Fig. 1 A closed-loop control

schema for the proposed pBCI

adapted from Marken (2009)

Fig. 2 Conceptual Decision-Adaption Schema Representing the

Feedback Loop of the Artifact

Fig. 3 Simplified BCI Architecture Design with both Front-end and Back-end elements and the Neurofeedback loop represented by the blue

arrow
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signaling task, participants needed to identify a target

shape and outline from a pool of 3 shapes randomly dis-

played on a screen and outlined using the traffic lighting

paradigm, in which the color red was the target outline.

Each task lasted 7 min with a 1-min return to baseline

period between task types.

For the adaptive interface, we utilize the term neuro-

feedback here not to signify a direct intervention at the

interface but rather in the passive sense, in which the user

is aware of a component of the interface changing color in

response to their current level of sustained attention. Lux

et al. (2018) noted that obstructive biofeedback design

could be perceived as distracting and stressful, leading to

unattended consequences. Thus, the pBCI (feedback con-

troller) provides an assessment of the user’s sustained

attention through a visual interface element that does not

interfere with the task interface. We first opted for a ded-

icated UI element, however subjective feedback from

participants during the pre-testing phase of development, in

which multiple elements of the interface changed in

response to the level of sustained attention (Fig. 5), sug-

gested that such changes were too intrusive and detrimental

to performing the task.

To address the design constraint that the visual feedback

should be visible yet unobtrusive, we opted for an alerting

mechanism that followed an ascending color gradient,

controlled by the user’s level of SA; this would change the

color of the background behind the information dashboard

unobtrusively (Fig. 6).

5.1 Use Case: A Business Logistics Task

To create an ecologically valid IS task that fulfils the

design and interface requirements, we utilized an ERP

(Enterprise Resource Planning) system that offers an

environment simulating a real-life business. ERPsim is a

business simulation based on SAP (Léger 2006). ERPsim

provides a simulation environment with enough granularity

to provide a platform for experimental research in NeuroIS

(Loos et al. 2010). The simulation was modified to allow a

task that required several monitoring and decision cycles.

The business task interface (Fig. 5) consists of 5 KPIs

(Key Performance Indicators) to help the user complete the

task: product contribution margin, percentage of sales per

area, total quantity sold per area, current stock, and

inventory turnover in days. KPIs were updated every 5 s to

present participants with the opportunity to make sales

decisions as needed. To develop the information dash-

board, we followed design concepts on information pre-

sentation (Few 2006, 2012). These same KPI were used to

derive performance metrics to determine task completion

performance.

Drawing from the design requirements, an ecologically

valid business logistics task was created and presented

using an information dashboard similar to those found in

enterprise planning and resource systems. Task duration

was set to 90 min, then event timing between decision and

monitoring periods was manipulated to create prolonged

periods of monitoring followed by shorter periods of crit-

ical decision-making (Fig. 7). The timing was chosen to

induce attentional depletion. The participant receives new

stocks every 22.5 min, and sales occur every 4.5 min.

The participant was instructed to maximize sales by

maintaining minimal stocks in three different regions.

When stocks are available, regional sales decisions are

required. Decisions are informed by the information dis-

played within the interface concerning the current state of

the ‘‘business.’’ The fictitious business follows trends that

the participant must identify during the monitoring phase

of the task. Right decisions increase sales as stock is con-

sumed, bad decisions accumulate unsold stock in a region

and reduce final total sales.

5.2 Classification: Threshold Reactive Adaptive

Dynamic Spectrum (ThReADS)

As shown previously (Fig. 3), before classification, the

EEG signal is forwarded to and processed by Mensia

Fig. 4 Baselining Task, left: Visual Search Task; right: Target Signalling Task
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NeuroRT. The signals were downsampled to 256 Hz.

Motion artifacts were identified and flagged for non-use or

imputation, where appropriate, using the Riemannian

Potato algorithm (Barachant et al. 2013). A bandpass filter

(1–50 Hz) and a notch filter at 60 Hz were applied for

signal frequency isolation and powerline noise removal.

A Butterworth filter bank was incorporated to preprocess

the data in the bands of interest: Theta (4–8 Hz), Alpha

(8–12 Hz), and Beta (12–30 Hz). The engagement index

calculation used within the pBCI is based on the work of

Fig. 5 First iteration interface design

Fig. 6 Left: Task Interface; Right the Color Gradient Scheme (decision-ready attention level and critical attention level) and its implementation

as a background neuroadaptive visual feedback

Fig. 7 Simulation events

process
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Mikulka et al. (2002). We focused on frontal and occipital

cortical areas using channels F3, F4, O1, O2 on the inter-

national 10–20 system. The band power of Theta, Alpha,

and Beta frequency bands are divided by the total power to

create a ratio for each frequency band and then used to

calculate the index b/ (a ? h). Using this index as a basis,

we developed a new algorithmic method to improve its

utility and reduce the volatility of real-time classification

experienced by similar projects (Labonte-Lemoyne et al.

2018).

As discussed earlier, we calibrate the pBCI with a

baseline task inspired by Pattyn et al. (2008). The baseline

task is composed of two sub-tasks. The first sub-task

measures a low state of sustained attention, the second one

a high state, from which a user-specific spectrum is

derived. We posit that any changes in the level of sustained

attention that remain within an ‘‘optimal zone’’ will be due

to self-regulated motivational control of the user’s cogni-

tive resources.

This assertion placed a set of constraints on the devel-

opment of the SA classifier in addition to addressing the

volatility issue of the engagement index values. Thus we

developed a method to drive the neurofeedback mechanism

in such a way as not to place the user of the BCI in a

constant high state of sustained attention but rather to allow

drops in sustained attention mediated by the motivation of

the user.

The algorithm calculates the index’s maximum and

average during the decision signaling (high SA) sub-task

and the minimum and average monitoring (low SA) sub-

task and the two conditions’ total average. A series of

ratios are derived from those values comparing the total

average of the two tasks with high sample maximum, high

sample average, low sample average, and low sample

minimum. These ratios are multiplied by the cumulative

average (CA) of the index to create a moving spectrum

during operation. This spectrum of values adapts to the

user’s attentional state over time. The following example

shows the calculation of the cumulative average (1).

CAnþ1 ¼
xnþ1 þ

Pn
i¼1 xi

nþ 1
ð1Þ

The low average is the low task sample ratio divided by

the total average of the two conditions multiplied by the

cumulative average’s current value (2).

LowAveragenþ1 ¼ CAnþ1 �
l

Pn

i¼1
ðhiþliÞ

nhþnlð Þ

� �

2

6
6
4

3

7
7
5 ð2Þ

where x is the new index data in the real-time index

pipeline, l is the sample collected during the baseline

representing the low attention state, and h the high

cognitive attention, a visual representation of the dynamic

adaptive spectrum as shown in (Fig. 8).

To classify SA, we compute thresholds that will follow

the participant’s dynamic spectrum during the experiment.

We classify three levels of attention: level 0 (white),

level 1 (amber), and level 2 (red) for critically low atten-

tion (Fig. 8). These levels are computed as ratios during the

experiment and multiplied by the current cumulative

average, as explained in the preceding example. Level 1

and level 2 thresholds, examples (3) and (4) below, are at

the midpoint between the cumulative average – low aver-

age and low average – low minimum.

level1 ¼ 1

2
lþ

Pn
i¼1 hi þ lið Þ
nh þ nlð Þ

� �

ð3Þ

level2 ¼ 1

2
l�min lð Þ
� �

ð4Þ

where l is the sample collected during the baseline repre-

senting the low SA state and h the high SA.

A 5 s (seconds) sliding window of the index is calcu-

lated every second and compared in the spectrum space,

where a window of less than 3 s has the potential to

increase volatility, and anything greater than a 5 s window

would not represent the current state of SA. It has been

shown that the effects of changes in sustained attention can

be observed in the brain for up to 60 s (Huang et al. 2007),

post stimuli. However, the artifact required a representative

metric of the cognitive state at the time of feedback.

Moreover, the 5 s response widow has been utilized in

previous research with the same index (Hassib et al. 2017;

Szafir and Mutlu 2013). The presented logic (3,4) is cal-

culated every second. System adaptation decisions occur

every 5 s based on the cumulative value compared against

historical thresholds. The algorithm outputs three possible

classifications of sustained attention: 0 for decision-ready,

1 for unfocused, 2 for a critically low level of sustained

attention. Classification outputs are then integrated into the

adaption model as both real-time measures of SA and

drivers of future levels of SA as per the motivational

control of the user and within a closed feedback loop.

6 Prototype Evaluation

6.1 Experimental Design

A ‘‘between groups’’ experimental design was utilized for

analysis and testing. Participants were split randomly

between three conditions: no feedback (NF), continuous

feedback (CF), event-based feedback (EF). That is, in the

NF condition, participants received no visual feedback at

the interface throughout the task. For the CF condition,
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participants received visual feedback at the interface con-

tinuously during the task. In the final condition (EF), par-

ticipants were provided with visual feedback only during

an event phase and dependent on a low state of SA. The

type of interface feedback delivered by the pBCI was the

only factor manipulated. Participants were given instruc-

tion before the logistics tasks, to explain the functions of

the interface, the KPIs, and the decision phase. They were

told that all this information would also be available during

the task by clicking on the top right corner’s guide button.

When they felt ready, they could start the task

autonomously.

6.2 Experimental Setup

For EEG data collection, a 32 electrodes headset was used

following the international 10–20 system. The signal was

acquired using NeuroRT Acquisition Server, then filtered

to remove artifacts and transformed in real-time using

Mensia NeuroRT (Paris, France). The server directly cap-

tures EEG data from a BrainAmp amplifier connected to an

actiCAP 32 Ch Standard-2 from Brain Products. We chose

to use NeuroRT due to its ability to provide real-time FFT

data, which splits a signal into frequency bands and pro-

vides real-time filtering options. Participants sat at a desk

with an adjustable chair, approx. 80 cm from a 24‘‘ com-

puter monitor, and were provided with a mouse and key-

board to interact with the task interface. No means of

determining the current time was available during the

experiment to prevent any confounds relating to task time

remaining.

From a pool of 31 Participants who took part in the

study, 24 (11 female) average age 26.73 (Max = 43;

Min = 18) provided data usable for analysis. Participants

were screened based on good health, moderate hair thick-

ness, and normal to corrected normal vision. Participants

were all business school students with experience with

information dashboard interfaces and provided written

consent following the University’s ethics committee

guidelines.

6.3 Results

To analyze the level of SA, we tested the values of the

engagement index between condition and event types. We

hypothesized that the reported level of SA would differ

between the three conditions depending on the type of

feedback. The raw index values, aggregated by events and

minute blocks, show a higher mean level of SA during

decision cycles than monitoring cycles. When conditions

are contrasted, this difference becomes more apparent (see

Fig. 9), the two active feedback conditions CF (0.947,

rx = 0.015), and EF(0.949, rx = 0.016), show a signifi-

cantly higher level of SA across both task cycles when

compared to the control condition NF (0.75, rx = 0.010).

Furthermore, on average, decision cycles elicited a higher

SA response than monitoring cycles.

To determine if a significant difference exists between

the conditions, we performed a one-way analysis of vari-

ance (ANOVA). Values were slightly skewed on the left.

A Levene’s test rejected the equality of variances

assumptions. Thus, we used a more conservative nominal

alpha level (a = 0,025). We found a significant statistical

difference between the three conditions (see Fig. 10), EF –

NF and CF – NF (F(2,2297) = 71.78, p\ 0.001***).

However, we found no significant statistical difference

between the CF and EF conditions. The control condition

shows a significantly lower level of SA when compared to

the other groups. A two-way ANOVA revealed that there is

a weak but still significant difference in the level of SA

between decision and monitoring cycles (F(1,2177) = 5.72,

p\ 0.05*) for all conditions.

Fig. 8 Dynamic Thresholds

Spectrum (DAS) Representation
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6.3.1 Classifier Evaluation

To evaluate the SA classification algorithm (ThReADS),

we benchmarked our method (see Sect. 5.2) against the

fixed baseline approach taken by other researchers in the

field. The goal was to compare classifications to determine

the percentage of time spent in each SA zone. Importantly,

each SA zone classification determines the input to the

feedback controller, which then controls the visual inter-

face feedback. The more stable the input, the more accurate

the SA state and the more meaningful the feedback is to the

user. Fixed baseline classifications were calculated from

the average from the baseline tasks to derive high, low, and

average threshold values. Table 1 shows the comparison

between the two methods as the percentage of classifica-

tions throughout the experiment. It can be seen, that the

critical state is classified around 10.56%, 8.36% and 8.60%

of the time for the EF, CF and NF groups respectively

using threads, compared to 23.77%, 19.58% and 26.06%

for the EF, CF and NF groups respectively using baseline

classification; showing that critical state classification is

rarer than the other states in both cases, yet higher for the

baseline condition. Considering the classifications for the

other zones, more critical zone classifications using the

baseline method indicates higher volatility in terms of the

number of classifications across all the classification zones,

providing a less accurate reflection of current SA at the

interface and less meaningful feedback to the user.

The higher classification of the unfocused zone using

threads for both the EF (53.73%) and NF (55.02%) groups

compared to the CF (47.34%) group can be interpreted in

terms of task and lack of active feedback, i.e., no feedback

for the NF group and event synchronized feedback for the

EF group, which potentially promoted a more significant

attention decrement. Interestingly for the CF condition, the

difference between the decision ready and unfocused state

Fig. 9 Mean index level per condition and task

Fig. 10 Mean levels of the index per conditions aggregated minute blocks in tasks
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appears stable, suggesting that continuous feedback

allowed users to regulate SA positively.

We employed a common variation of the NASA Task

Load Index to measure perceived workload and perfor-

mance (NASA-TLX). The Raw-TLX is a simplified ver-

sion; the Raw-TLX scores, mean raw, and subscales per

condition are shown in Table 2. The Raw-TLX is the

average of the six subscales: mental demand, physical

demand, temporal demand, performance, effort, and frus-

tration, scored on a twenty-step scale. The condition with

continuous feedback (CF) shows the lowest total score with

7.27 (r = 3.1). The highest score comes from the event-

related feedback (EF) group, who reported a surprisingly

high level of frustration and lesser self-reported

performance.

We performed a one-way between-groups ANOVA to

determine if there was a significant difference in perceived

workload between participants in each condition. The

normality of the residuals and homogeneity of variance

assumptions across the conditions were satisfied. We found

no statistical difference (F(2,21) = 1.02, p = 0.378)

between the Raw TLX, or the subscales, except for self-

perceived performance (F(2,20) = 4305, p = 0.028*),

where a significant difference between EF and CF condi-

tions was observed.

6.3.2 Human Factors Measurement

To measure ’’maximized sales,‘‘ we created two metrics:

total sales and estimated missed sales (Table 3). The CF

group had the best performance with an average of 7.46%

(r = 1.76) of estimated missed sales and a mean total sales

of 14,785 (r = 423), compared with 14,180 (r = 875),

9.62% (r = 4.91) and 14,529 (r = 5.10), 9.79%

(r = 2.75) for EF and NF respectively. However, when

comparing the conditions via ANOVA, no significant sta-

tistical difference was found.

To calculate the total participant activity spent inter-

acting with the interface, we created a metric: actions per

minute (APM). The objective was to determine if the

feedback type affects the number of user actions during

task completion (see Fig. 11.). For the entire task duration,

both CF and EF conditions have a higher mean APM, of

3.460 (SE = 0.140) and 3.317 (SE = 0.139) respectively.

The NF group displayed a lower APM with 2.65

(rx = 0.097). Figure 11 shows a gradual rise in APM

during decision cycles compared with monitoring cycles,

showing the CF group interacts more with the interface at

these times compared to the two other groups.

Contrasting the APM means during monitoring cycles, a

significant statistical difference was observed between EF

– NF and CF – NF (F(2,2297) = 12.05, p\ 0.001***), but

no significant difference between EF – CF conditions.

7 Discussion and concluding comments

This paper presents the development of a pBCI prototype

directed to support IT tasks requiring SA in an enterprise

context. Our iterative design process highlighted some

Table 1 ThReADS and fixed baseline comparison by the percentage of classification per zones of Sustained Attention

Conditions Zones of Sustained Attention ThReADS

Level

ThReADS Classification Zones in % Fixed Baseline Classification Zones in %

CF Decision Ready Level 0 44.30 47.47

Unfocussed Level 1 47.34 32.96

Critical Level 2 8.36 19.58

EF Decision Ready Level 0 35.71 40.01

Unfocussed Level 1 53.73 36.22

Critical Level 2 10.56 23.77

NF Decision Ready Level 0 36.38 34.93

Unfocussed Level 1 55.02 39.01

Critical Level 2 8.60 26.06

Table 2 NASA-TLX mean (r) scores for each condition

Condition CF (8) EF (8) NF (8)

Raw TLX 7.27 (3.1) 9.7 (3.3) 9.2 (3.4)

Mental demand 9 (5.7) 13.6 (6) 12.8 (5.7)

Physical demand 5.5 (6.4) 2.9 (3.8) 3.9 (3.96)

Temporal demand 5.2 (5.1) 3.3 (4.6) 6.5 (7.2)

Performance 7.8 (2.9) 13.7 (5.1) 8.9 (3.4)

Effort 7.5 (4.9) 10.4 (5.3) 11.4 (5.7)

Frustration 8.8 (4.4) 15.2 (5.8) 11.6 (4.8)
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limitations and future implications for design improve-

ments. Firstly, the integration of physiological data within

an ERP architecture highlighted an important limitation of

the presented design. The use of a transactional database

imposed performance limits upon updating information

within the interface, showing that in this case the database

is reliant on the processing capability of the ERP, which

may or may not prove effective at scale. Furthermore, the

architecture’s composite nature increased the risk of an

inter-component communication error, where a micro ser-

vices-oriented design could mitigate these risks by

embedding the BCI in the ERP architecture, thus reducing

component dependencies.

Secondly, while the engagement index is conveniently

operationalizable and provides useful real-time input for a

pBCI, it is limited to predetermined areas of the scalp and

within strict frequencies, which prevents a more holistic

analysis of the individual’s cognitive response. Finally, we

selected participants based on prior experience of business-

related tasks to reduce the learning curve concerning the

specific key performance measures presented during the

simulation. However, no demographic profiling was per-

formed to determine the level of knowledge each partici-

pant possessed; further revisions of the pBCI should

include this as part of the development cycle.

The present pilot study aimed to develop a prototype

pBCI integrated with an IS, and in this regard, development

was successful. We implemented an artifact that integrated

a pBCI into an ERP architecture that provided visual

feedback to the user regarding their current SA level. We

developed an ecologically valid task specifically for this

purpose. We developed a classification algorithm

(ThReADS) to assess SA in real-time. We hypothesized

that real-time assessment and feedback of sustained atten-

tion would increase task performance and reduce error.

The results indicated a significantly higher level of

sustained attention for the two active visual feedback

groups provided with neurofeedback at the interface com-

pared to the control group. This higher SA level was

expressed as a moderate but still significant improvement

in task performance and a significant decrease in on-task

error. One interesting finding is the observed stability of the

level of SA shown by participants within the continuous

feedback group. Potentially this finding shows that the

pBCI positively influenced user SA, either through closed-

loop feedback control or self-regulation.

While the CF condition showed better performance in

terms of metrics, differences between scores were not

significant. However, a difference between the groups was

observed for actions per minute on the interface. This

Fig. 11 Mean Action per Minute for the three conditions aggregated by total blocks and minute blocks

Table 3 Final performance of the simulation (r)

Condition CF (8) EF (8) NF (8)

Total sales 14,785 (423) 14,180 (875) 14,529 (510)

Estimated missed sales (%) 7.46% (1.76%) 9.62% (4.91%) 9.79% (2.75%)

123

T. Demazure et al.: Enhancing Sustained Attention, Bus Inf Syst Eng 63(6):653–668 (2021) 665



finding has important implications for the understanding of

our SA measure. Did the visual feedback mechanism

increase actions per minute, or did the activity at the

interface, increase the level of SA? We would argue that

the relationship between the two is much more nuanced, as

the level of SA drives the neurofeedback through the pBCI,

which influences APM, which in turn influences SA in a

continuous closed feedback cycle. Moreover, when taken

as a whole, the results point to the pBCI positively influ-

encing on-task action and errors.

These results provide evidence that the continuous

feedback group might have developed a self-regulation

strategy in line with the framework provided by Robert and

Hockey. In contrast, the event-based feedback potentially

created a higher workload level due to a perceived need to

maintain a high SA level to perform the task when sig-

nalled. Moreover, the EF group’s result appears to fit with

the cognitive-energetical framework of motivational con-

trol as this form of feedback moves from self-regulation of

SA through a ’’play‘‘ aspect to a more explicit form of

work as perceived by the user. Future work should seek to

explicitly explore this aspect by capturing the user’s

qualitative experience either during use or as a post-doc

debriefing. Thus, a deeper understanding of the complex

interaction between the user and the artifact may be

uncovered.

Our contribution of a novel approach to classifying the

engagement index using the ThReADS method allows the

feedback controller to adapt to changes in SA over time by

considering previous and current levels of engagement,

providing flexibility and stability. It represents a significant

improvement in SA classification in real-time compared to

previous methods reported in the literature. However,

future iterations of the pBCI would include more cutting-

edge methods based on deep learning and whole-brain

approaches. We compared the algorithm to a fixed

threshold method; the results show that our approach

classifies 8.60% of the critical state compared to 26.06%

for the fixed baseline displayed in Fig. 8 when applied to

data from the NF group. These insights are essential; the

rarity of critical SA classification’s provides more mean-

ingful feedback to the user and avoids habituation (Phan-

salkar et al. 2010; Oken et al. 2006). Moreover, the fixed

baseline method shows a less stable classification of users’

attention levels, between unfocused and decision-ready

states, than with ThReADS. Based on our evaluation, it

appears that, in this case, the classification of SA using

adaptive thresholding provides more meaningful visual

feedback than a classical fixed baseline approach.

We provide, with this research, the first tentative step

towards a pBCI technology embeddable in an enterprise

system. Already a focus in the NeuroIS field (vom Brocke

et al. 2013; vom Brocke et al. 2020), the application of

neuroscience as a built-in function of IS provides exciting

opportunities for reducing operator error and augmenting

the workforce.
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Riedl R, Léger P-M (2016) Fundamentals of NeuroIS. Studies in

neuroscience, psychology and behavioral economics. Springer,

Heidelberg

Rouast PV, Adam MT, Cornforth DJ, Lux E, Weinhardt C (2017)

Using contactless heart rate measurements for real-time assess-

ment of affective states. In: Davis F et al: Information systems

and neuroscience. Springer, Cham, pp 157–163

Sarter M, Givens B, Bruno JP (2001) The cognitive neuroscience of

sustained attention: where top-down meets bottom-up. Brain Res

Rev 35(2):146–160

Scerbo MW, Freeman FG, Mikulka PJ (2003) A brain-based system

for adaptive automation. Theor Issues Ergon Sci 4(1–2):200–219

Snyder J, Matthews M, Chien J, Chang PF, Sun E, Abdullah S, Gay G

(2015) Moodlight: exploring personal and social implications of

ambient display of biosensor data. In: Proceedings of the 18th

ACM conference on computer supported cooperative work &

social computing, pp 143–153

Szafir D, Mutlu B (2013) ARTFul: adaptive review technology for

flipped learning. In: Proceedings of the SIGCHI conference on

human factors in computing systems, pp 1001–1010

Tang Z, Li C, Sun S (2017) Single-trial EEG classification of motor

imagery using deep convolutional neural networks. Optik

130:11–18

Thulasidas M, Guan C, Wu J (2006) Robust classification of EEG

signal for brain-computer interface. IEEE Trans Neur Syst

Rehabil Eng 14(1):24–29

Vaughan TM (2003) Guest editorial brain–computer interface tech-

nology: a review of the second international meeting. IEEE

Trans Neur Syst Rehabil Eng 11(2):94–109

Venthur B, Blankertz B, Gugler MF, Curio G (2010) Novel

applications of BCI technology: psychophysiological optimiza-

tion of working conditions in industry. In: International confer-

ence on systems man and cybernetics. IEEE, pp 417–421

Vicente KJ, Rasmussen J (1992) Ecological interface design:

theoretical foundations. IEEE Trans Syst Man Cybern

22(4):589–606
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vom Brocke J, Riedl R, Léger P-M (2013) Application strategies for

neuroscience in information systems design science research.

J Comput Inf Syst 53(3):1-13

Zander TO, Kothe C (2011) Towards passive brain–computer

interfaces: applying brain-computer interface technology to

human-machine systems in general. J Neural Eng 8(2):025005

Zander TO, Kothe C, Welke S, Rötting M (2009) Utilizing secondary

input from passive brain-computer interfaces for enhancing

human-machine interaction. In: International Conference on

Foundations of Augmented Cognition. Springer, pp 759–771

123

668 T. Demazure et al.: Enhancing Sustained Attention, Bus Inf Syst Eng 63(6):653–668 (2021)


	Enhancing Sustained Attention
	A Pilot Study on the Integration of a Brain-Computer Interface with an Enterprise Information System
	Abstract
	Introduction
	Background
	Brain-Computer Interfaces
	Sustained Attention
	Motivational Control Theory of Cognitive Fatigue

	Artifact Objectives and Requirements
	Design and Development
	Integrating the Task Interface and Feedback Controller

	Instantiation and Implementation
	Use Case: A Business Logistics Task
	Classification: Threshold Reactive Adaptive Dynamic Spectrum (ThReADS)

	Prototype Evaluation
	Experimental Design
	Experimental Setup
	Results
	Classifier Evaluation
	Human Factors Measurement


	Discussion and concluding comments
	Open Access
	References




