Skip to main content
Log in

Particle-based simulation and visualization of fluid flows through porous media

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

We propose a method of fluid simulation where boundary conditions are designed in such a way that fluid flow through porous media, pipes, and chokes can be realistically simulated. Such flows are known to be low Reynolds number incompressible flows and occur in many real life situations. To obtain a high quality fluid surface, we include a scalar value in isofunction. The scalar value indicates the relative position of each particle with respect to the fluid surface.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adams B, Pauly M, Keiser R, Guibas LJ (2007) Adaptively sampled particle fluids. ACM Trans Graph (Proc of SIGGRAPH’07) 26(3):8; Article no. 48

    Google Scholar 

  • Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Clarendon Press, New York

    MATH  Google Scholar 

  • Bayraktar S, Güdükbay U, Özgüç B (2009) GPU-based neighbor-search algorithm for particle simulations. J Graph GPU Game Tools 14(1):31–42

    Google Scholar 

  • Bear J (1988) Dynamics of fluids in porous media. Courier Dover, New York

    MATH  Google Scholar 

  • Becker M, Teschner M (2007) Weakly compressible SPH for free surface flows. In: Proceedings of ACM SIGGRAPH/Eurographics symposium on computer animation, pp 209–217

  • Carlson M, Mucha PJ, Turk G (2004) Rigid fluid: animating the interplay between rigid bodies and fluid. ACM Trans Graph 23(3):377–384

    Article  Google Scholar 

  • Cleary PW, Pyo SH, Prakash M, Koo BK (2007) Bubbling and frothing liquids. ACM Trans Graph (Proc of SIGGRAPH’07) 26(3):6; Article no. 97

    Google Scholar 

  • Desbrun M, Cani M (1996) Smoothed particles: a new paradigm for animating highly deformable bodies. In: Eurographics workshop on computer animation and simulation (EGCAS), pp 61–76

  • Enright D, Marschner S, Fedkiw R (2002) Animation and rendering of complex water surfaces. ACM Trans Graph (Proc of SIGGRAPH ’02) 21(3):736–744

    Google Scholar 

  • Foster N, Fedkiw R (2001) Practical animation of liquids. ACM Comp Graph (Proc. of SIGGRAPH ’01), 23–30

  • Foster N, Metaxas D (1996) Realistic animation of liquids. Graph Model Image Process 58(5):471–483

    Article  Google Scholar 

  • Guendelman E, Selle A, Losasso F, Fedkiw R (2005) Coupling water and smoke to thin deformable and rigid shells. ACM Trans Graph 24(3):973–981

    Article  Google Scholar 

  • Hadap S, Magnenat-Thalmann N (2001) Modeling dynamic hair as a continuum. Comp Graph Forum 20(3):329–338

    Article  Google Scholar 

  • Kipfer P, Westermann R (2006) Realistic and interactive simulation of rivers. In: Proceedings of graphics interface, pp 41–48

  • Kruger J, Kipfer P, Kondratieva P, Westermann R (2005) A particle system for interactive visualization of 3D flows. IEEE Trans Vis Comp Graph 11(6):744–756

    Article  Google Scholar 

  • Lenaerts T, Adams B, Dutré P (2008) Porous flow in particle-based fluid simulations. ACM Trans Graph (Proc. of SIGGRAPH’08) 27(3):8; Article no. 49

    Google Scholar 

  • Lorensen W, Cline H (1987) Marching cubes: a high resolution 3D surface construction algorithm. ACM Comp Graph (Proc of SIGGRAPH’87) 21(4):163–169

    Google Scholar 

  • Losasso F, Talton JO, Kwatra N, Fedkiw R (2008) Two-way coupled SPH and particle level set fluid simulation. IEEE Trans Vis Comp Graph 14(4):797–804

    Article  Google Scholar 

  • Miller G, Pearce A (1989) Globular dynamics: a connected particle system for animating viscous fluids. Comp Graph 13(3):305–309

    Article  Google Scholar 

  • Monaghan J (1994) Simulating free surface flows with SPH. J Comp Phys 110(2):399–406

    Article  MATH  Google Scholar 

  • Morris JP, Fox PJ, Zhu Y (1997) Modeling low Reynolds number incompressible flows using SPH. J Comp Phys 136(1):214–226

    Article  MATH  Google Scholar 

  • Müller M, Schirm S, Teschner M, Heidelberger B, Gross M (2004) Interaction of fluids with deformable solids. J Comp Anim Virtual Worlds 15(3–4):159–171

    Article  Google Scholar 

  • POVRay (2009) The persistence of vision raytracer. http://www.povray.org/

  • Premoze S, Tasdizen T, Bigler J, Lefohn AE, Whitaker RT (2003) Particle-based simulation of fluids. Comp Graph Forum (Proc of Eurographics’03) 22(3):401–410

    Google Scholar 

  • Reeves WT (1983) Particle systems: a technique for modeling a class of fuzzy objects. ACM Trans Graph 2(2):91–108

    Article  Google Scholar 

  • Solenthaler B, Schläfli J, Pajarola R (2007) A unified particle model for fluid–solid interactions. Comp Anim Virtual Worlds 18(1):69–82

    Article  Google Scholar 

  • Song OY, Kim D, Ko HS (2007) Derivative particles for simulating detailed movements of fluids. IEEE Trans Vis Comp Graph 13(4):711–719

    Article  Google Scholar 

  • Stam J (1999) Stable fluids. In: ACM Comp Graph (Proc. of SIGGRAPH ’99), Addison Wesley, Los Angeles, pp 121–128

  • Steele K, Cline D, Egbert PK, Dinerstein J (2004) Modeling and rendering viscous liquids. Comp Anim Virtual Worlds 15(3–4):183–192

    Article  Google Scholar 

  • Stora D, Agliati PO, Cani MP, Neyret F, Gascuel JD (1999) Animating lava flows. In: Proceedings of graphical interface, pp 203–210

  • Terzopoulos D, Platt J, Fleischer K (1991) Heating and melting deformable models. J Vis Comp Anim 2(2):68–73

    Article  Google Scholar 

  • Tonnesen D (1991) Modeling liquids and solids using thermal particles. In: Proceedings of graphical interace, pp 255–262

  • Zhu Y, Fox PJ (2002) Simulation of pore-scale dispersion in periodic porous media using smoothed particle hydrodynamics. J Comp Phys 182(2):622–645

    Article  MATH  Google Scholar 

  • Zhu Y, Fox PJ, Morris JP (1999) A pore-scale numerical model for flow through porous media. Int J Numer Anal Methods Geomech 23:881–904

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uğur Güdükbay.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MPEG 1932 kb)

Supplementary material 2 (MPEG 4857 kb)

Supplementary material 3 (MPEG 2969 kb)

Supplementary material 4 (MPEG 4394 kb)

Supplementary material 5 (MPEG 3496 kb)

Supplementary material 6 (MPEG 4700 kb)

Supplementary material 7 (MPEG 1918 kb)

Supplementary material 8 (MPEG 3786 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayraktar, S., Güdükbay, U. & Özgüç, B. Particle-based simulation and visualization of fluid flows through porous media. J Vis 13, 327–336 (2010). https://doi.org/10.1007/s12650-010-0041-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-010-0041-2

Keywords

Navigation