Skip to main content
Log in

A fractal-based 2D expansion method for multi-scale volume data visualization

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

Visualization of volume data is difficult to realize and control because the most common output device is a two-dimensional (2D) display and the most common input device is a mouse, which only allows 2D operation. For example, volume rendering projects the data structure onto a 2D image plane, but this type of view-dependent method gives rise to occlusion. In addition, 2D mouse operation does not allow direct selection of three-dimensional (3D) regions or coordinates. In this article, we propose a method that expands the octree structure of volume data onto a 2D plane. The proposed method uses the self-similarity of the fractal diagram and achieves multi-scale visualization of volume data in two dimensions. With this method, we can browse the entire domain of volume data without occlusion. For greater effectiveness, we combined the proposed method and existing 3D-based methods. Since each cell has a one-to-one correspondence with squares in the Sierpinski carpet, we can assign arbitrary 3D regions or positions by selecting the corresponding squares. This provides direct access to 3D regions and coordinates by 2D mouse operation. We propose some functions for interactive visualization and discuss how to exploit the advantages and lessen the disadvantages of the proposed method.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  • Akiba H and Ma KL (2007) A tri-space visualization interface for analyzing time-varying multivariate volume data. In: IEEE-VGTC Symposium on Visualization, Lisbon, pp 115–122

  • Bentley CL and Ward MO (1996) Animating multidimensional scaling to visualize n-dimensional data sets. In: Proceedings of the IEEE Symposium on Information Visualization, San Francisco, pp 72–73

  • Correa C, Ma KL (2009) The occlusions spectrum for volume classification and visualization. IEEE Trans Vis Comput Graph 15(6):1465–1472

    Article  Google Scholar 

  • Correa C, Ma KL (2011) Visibility histograms and visibility-driven transfer function. IEEE Trans Vis Comput Graph 17(2):192–204

    Article  Google Scholar 

  • Drebin RA, Carpenter L, Hanrahan P (1988) Volume rendering. ACM SIGGRAPH Comput Graph 22(4):65–74

    Article  Google Scholar 

  • Hao M, Dayal U, Keim DA, Schreck T (2007) Multi-resolution techniques for visual exploration of large time-series data. In: The Proceedings of Eurographics/IEEE-VGTC Symposium on Visualization, Norrköping, pp 27–34

  • He S, Dai R, Lu B, Cao C, Bai H, Jing B (2001) Medial axis reformation: a new visualization method for CT angiography. Acad Radiol 8:726–733

    Article  Google Scholar 

  • Hsu WH, Mei J, Correa CD, Ma KL (2009) Depicting time evolving flow with illustrative visualization techniques. In: The Proceedings of International Conference on Arts and Technology, Yi-Lan

  • Johnson B, Shneiderman B (1991) Tree-maps: a space filling approach to the visualization of hierarchical information space. In: IEEE Visualization ’91. IEEE Computer Society Press, Los Alamitos, pp 275–282

  • Kanitsar A, Fleischmann D, Wegenkittl R, Felkel P, Groller ME (2002) CPR—curved planar reformation. In: The Proceedings of IEEE Vis, pp 37–44

  • Kaufman A, Mueller K (2004) Overview of volume rendering. The Visualization Handbook. Academic Press, New York, pp 127–174

  • Keim DA (2000) Designing pixel-oriented visualization techniques: theory and applications. IEEE Trans Vis Comput Graph 6(1):1–20

    Article  Google Scholar 

  • Keim DA, Kriegel HP (1994) VisDB: database exploration using multidimensional visualization. IEEE Comput Graph Appl 14(5):16–19

    Article  Google Scholar 

  • Keim DA, Hao MC, Dayal U (2002) Hierarchical pixel bar charts. IEEE Trans Vis Comput Graph 8:255–269

    Article  Google Scholar 

  • Koike H (1995) Fractal views: a fractal-based method for controlling information display. ACM Trans Inf Syst 13(3):305–323

    Article  Google Scholar 

  • Lampe O, Correa C, Ma KL, Hauser H (2009) Curve-centric volume reformation for comparative visualization. IEEE Trans Vis Comput Graph 15(6):1235–1242

    Article  Google Scholar 

  • Levoy M (1988) Display of surfaces from volume data. IEEE Comput Graph 8(3):29–37

    Article  Google Scholar 

  • Ma KL (2003) Visualizing time-varying volume data. Comput Sci Eng 5(2):34–42

    Article  Google Scholar 

  • Mak WH, Chan MY, Wu Y, Chung KK, Qu H (2008) VoxelBars: an informative interface for volume visualization. Advances in Visual Computing. Princeton, New Jersey, pp 161–170

  • Muelder C, Ma KL (2008) Rapid graph layout using space filling curves. IEEE Trans Vis Comput Graph 14(6):1301–1308

    Article  Google Scholar 

  • Piringer H, Kosara R, Hauser H (2004) Interactive focus + context visualization with linked 2D 3D scatterplots. In: The Proceedings of the 2nd International Conference on Coordinated and Multiple Views in Exploratory Visualization, Washington DC, pp 49–60

  • Sabella P (1988) A rendering algorithm for visualizing 3D scalar fields. Comput Graph 22(4):51–58

    Article  Google Scholar 

  • Teyseyre A, Camp M (2009) An overview of 3D software visualization. IEEE Trans Vis Comput Graph 15(1):87–105

    Article  Google Scholar 

  • Tory M, Muller T, Atkins MS, Kirkpatrick AE (2004) Combining 2D and 3D views for orientation and relative position tasks. In: The Proceedings of the SIGCHI, Anaheim, pp 73–80

  • Tsubokura M, Kobayashi T, Nakashima T, Nouzawa T, Nakamura T, Zhang H, Onishi K, Oshima N (2009) Computational visualization of unsteady flow around vehicles using high performance computing. Comput Fluids 38(5):981–990

    Article  MATH  Google Scholar 

  • Upson C, Keeler M (1988) V-buffer visible volume rendering. Comput Graph 22(4):59–64

    Article  Google Scholar 

  • Wang C, Shen HW (2006) LOD Map—a visual interface for navigating multiresolution volume visualization. IEEE Trans Vis Comp Graph 12(5):1029–1036

    Article  Google Scholar 

  • Wattenberg M (2005) A note on space-filling visualizations and space-filling curves. In: The Proceedings IEEE Symposium on Information Visualization, Minneapolis, pp 181–186

  • Yang CC, Wang FL (2003) Fractal summarization for mobile device to access large documents on the web. In: The Proceedings of the 12th international conference on World Wide Web, New York, pp 215–224

  • Yang J, Hubball D, Ward MO (2007) Value and relation display: interactive visual exploration of large data sets with hundreds of dimensions. IEEE Trans Vis Comput Graph 13(3):494–507

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Takuji Nakashima of Hiroshima University, Japan for providing the simulation data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Fujiwara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujiwara, T., Iwamaru, M., Tange, M. et al. A fractal-based 2D expansion method for multi-scale volume data visualization. J Vis 14, 171–190 (2011). https://doi.org/10.1007/s12650-011-0084-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-011-0084-z

Keywords

Navigation