Skip to main content
Log in

A dynamic thresholding technique for extracting the automotive spark-ignition direct-injection pulsing spray characteristics

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

The macroscopic characteristics of fuel injection spray are crucial for spark-ignition direct-injection (SIDI) engines. To precisely quantify the macroscopic spray characteristics such as spray penetration length and spray angle, it is essential to determine the boundary of the spray structure from the images. Thresholding method is widely used for the spray boundary detection. It is normally achieved by selecting a single global thresholding value to distinguish the spray boundary from the image background. In this paper, a novel technique of dynamic thresholding, in which the threshold value is dynamically determined by the image local pixel intensity property in the vicinity of the spray boundary, is proposed. To evaluate the accuracy of the technique, a symmetric spray with well-defined geometry was used. The dynamic threshold method effectively reduced the difference between the right and left half-angles of the spray to only 0.5°, which is much smaller than the difference of as large as 3–4° obtained using global thresholding method. Similar results have been obtained for the spray penetration length measurements. Therefore, the proposed thresholding algorithm provides more accurate evaluation of macroscopic spray characteristics than the single-value global thresholding technique.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aleiferis PG, Taylor AMKP, Ishii K, Urata Y (2004) The nature of early flame development in a lean-burn stratified-charge spark-ignition engine. Combust Flame 136(3):283–302. doi:10.1016/j.combustflame.2003.08.011

    Article  Google Scholar 

  • Andriotis A, Spathopoulou M, Gavaises M (2007) Effect of nozzle flow and cavitation structures on spray development in low-speed two-stroke diesel engines. In: Proceedings of international council on combustion engines (CIMAC)

  • Berrocal E, Kristensson E, Hottenbach P, Aldén M, Grünefeld G (2012) Quantitative imaging of a non-combusting diesel spray using structured laser illumination planar imaging. Appl Phys B 109(4):683–694. doi:10.1007/s00340-012-5237-9

    Article  Google Scholar 

  • Chen H, Reuss D, Sick V (2011) Analysis of misfires in a direct injection engine using proper orthogonal decomposition. Exp Fluids 51(4):1139–1151. doi:10.1007/s00348-011-1133-z

    Article  Google Scholar 

  • Chen H, Reuss DL, Sick V (2012) On the use and interpretation of proper orthogonal decomposition of in-cylinder engine flows. Meas Sci Technol 23(8):085302. doi:10.1088/0957-0233/23/8/085302

    Article  Google Scholar 

  • Chen H, Hung DLS, Xu M, Zhong J (2013) Analyzing the cycle-to-cycle variations of pulsing spray characteristics by means of the proper orthogonal decomposition. At Sprays 23(7):623–641. doi:10.1615/AtomizSpr007851

    Article  Google Scholar 

  • Hargrave GK, Wigley G, Allen J, Bacon A (2000) Optical diagnostics and direct injection of liquid fuel sprays. J Vis 2(3–4):293–300. doi:10.1007/bf03181445

    Article  Google Scholar 

  • Hung DLS, Chmiel DM, Markle LE (2003) Application of an imaging-based diagnostic technique to quantify the fuel spray variations in a direct-injection spark-ignition engine. SAE Technical Paper 2003-01-0062

  • Hung DLS, Zhu GG, Winkelman JR, Stuecken T, Schock H, Fedewa A (2007) A high speed flow visualization study of fuel spray pattern effect on mixture formation in a low pressure direct injection gasoline engine. SAE Technical Paper 2007-01-1411

  • Hung DLS, Harrington DL, Gandhi AH, Markle LE, Parrish SE, Shakal JS, Sayar H, Cummings SD, Kramer JL (2009) Gasoline fuel injector spray measurement and characterization: a new SAE J2715 Recommended Practice. SAE Int J Fuels and Lubr 1(1):534–548. doi:10.4271/2008-01-1068

    Google Scholar 

  • Koh H, Jung K, Yoon Y, Lee K, Jeong KS (2006) Development of quantitative measurement of fuel mass distribution using planar imaging technique. J Vis 9(2):161–170. doi:10.1007/bf03181759

    Article  Google Scholar 

  • Lefebrve AH (1989) Atomization and sprays. Combustion: an international series. Taylor & Francis, New York

    Google Scholar 

  • Macian V, Payri R, Garcia A, Bardi M (2012) Experimental evaluation of the best approach for diesel spray images segmentation. Exp Tech 36(6):26–34. doi:10.1111/j.1747-1567.2011.00730.x

    Article  Google Scholar 

  • Marchi A, Nouri J, Yan Y, Arcoumanis C (2010) Spray stability of outwards opening pintle injectors for stratified direct injection spark ignition engine operation. Int J Engine Res 11(6):413–437. doi:10.1243/14680874jer605

    Article  Google Scholar 

  • Mitroglou N, Nouri JM, Gavaises M, Arcoumanis C (2006) Spray characteristics of a multi-hole injector for direct-injection gasoline engines. Int J Engine Res 7(3):255–270. doi:10.1243/146808705x62922

    Article  Google Scholar 

  • Mittal M, Hung DS, Zhu G, Schock H (2011) Fuel spray visualization and its impingement analysis on in-cylinder surfaces in a direct-injection spark-ignition engine. J Vis 14(2):149–160. doi:10.1007/s12650-011-0083-0

    Article  Google Scholar 

  • Parrish SE, Zink RJ (2012) Development and application of imaging system to evaluate liquid and vapor envelopes of multi-hole gasoline fuel injector sprays under engine-like conditions. At Sprays 22(8):647–661. doi:10.1615/AtomizSpr006215

    Article  Google Scholar 

  • Peterson B, Reuss DL, Sick V (2011) High-speed imaging analysis of misfires in a spray-guided direct injection engine. Proc Combust Inst 33(2):3089–3096. doi:10.1016/j.proci.2010.07.079

    Article  Google Scholar 

  • Sahoo PK, Soltani S, Wong AKC (1988) A survey of thresholding techniques. Comput Vis Gr Image Process 41(2):233–260. doi:10.1016/0734-189X(88)90022-9

    Article  Google Scholar 

  • Sezgin M, Bl Sankur (2004) Survey over image thresholding techniques and quantitative performance evaluation. ELECTIM 13(1):146–168. doi:10.1117/1.1631315

    Google Scholar 

  • Sick V, Drake MC, Fansler TD (2010) High-speed imaging for direct-injection gasoline engine research and development. Exp Fluids 49(4):937–947. doi:10.1007/s00348-010-0891-3

    Article  Google Scholar 

  • Smith SW (1997) The scientist and engineer’s guide to digital signal processing. California Technical Publishing, San Diego

    Google Scholar 

  • Soid SN, Zainal ZA (2011) Spray and combustion characterization for internal combustion engines using optical measuring techniques: a review. Energy 36(2):724–741. doi:10.1016/j.energy.2010.11.022

    Article  Google Scholar 

  • Stojkovic BD, Fansler TD, Drake MC, Sick V (2005) High-Speed Imaging of OH* and Soot Temperature and Concentration in a Stratified-Charge Direct-Injection Gasoline Engine. Proc Combust Inst 30(2):2657–2665

    Article  Google Scholar 

  • Zhao F, Lai MC, Harrington DL (1999) Automotive spark-ignited direct-injection gasoline engines. Prog Energy Combust Sci 25(5):437–562

    Article  Google Scholar 

  • Zigan L, Schmitz I, Flügel A, Knorsch T, Wensing M, Leipertz A (2010) Effect of fuel properties on spray breakup and evaporation studied for a multihole direct injection spark ignition injector. Energy Fuels 24(8):4341–4350

    Article  Google Scholar 

  • Zigan L, Shi J-M, Krotow I, Schmitz I, Wensing M, Leipertz A (2013) Fuel property and fuel temperature effects on internal nozzle flow, atomization and cyclic spray fluctuations of a direct injection spark ignition–injector. Int J Engine Res 14(6):543–556. doi:10.1177/1468087413482320

    Article  Google Scholar 

Download references

Acknowledgments

This research is sponsored by GM R&D and NSFC under grants No. 51076093/E060702 and 51176115/E060404. It is carried out at the National Engineering Laboratory for Automotive Electronic Control Technology of the Shanghai Jiao Tong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. S. Hung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Hung, D.L.S., Xu, M. et al. A dynamic thresholding technique for extracting the automotive spark-ignition direct-injection pulsing spray characteristics. J Vis 17, 197–209 (2014). https://doi.org/10.1007/s12650-014-0203-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-014-0203-8

Keywords

Navigation