Skip to main content
Log in

Visualization of arc and plasma flow patterns for advanced material processing

  • Review Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

Results are presented for physical experiments that illustrate the possibilities and efficiency of visualization for studying the effect of operating conditions (backward-facing stepped forming nozzle, exit diameter of anode, mass flow, and composition of working gas) on plasma flows at low Reynolds numbers for advanced coating and powder processing. In particular, the shadow method, based on adaptive visualization transparency, is used for imaging electric arc and plasma jet flow patterns for different operating conditions. Because of visualization, the optimal geometrical characteristics of the backward-facing stepped forming nozzle, mass flow rate of the working gas, and its composition were found. These provide: (1) the absence of micro-shunting of the arc inside the backward-facing stepped nozzle for a transfer arc and twin arcs; and (2) compared to transient and turbulent jets, a higher density for the heat flux from a quasi-laminar flow to the surface of a flat substrate and the powder material to be treated, for nontransfer arc DC (direct current) torches and DC–RF (direct current and radio frequency) hybrid plasma flow system.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Ando Y, Tobe S, Tahara H (2009) High-rate diamond deposition by combustion flame method using twin acetylene/oxygen gas welding torch. J Therm Spray Technol 18(4):483–489

    Article  Google Scholar 

  • Bernecki T, Varley K, Rusch W, Wlodarczyk J, Klein J (1988) Plasma gun with adjustable cathode, US Patent 4780591

  • Bica I (2005) Formation of iron macro-spheres in plasma. Plasma Chem Plasma Process 25:121–135

    Article  MathSciNet  Google Scholar 

  • Bini R, Monno M, Boulos MI (2007) Effect of cathode nozzle geometry and process parameters on the energy distribution for an argon transferred arc. Plasma Chem Plasma Process 27:359–380

    Article  Google Scholar 

  • Chen D, Dambra C, Sabouni O (2014) Influence of process parameters and feedstock selection on coating microstructures with a cascaded SinplexPro™ plasma torch. In: Proceeding of ITSC’2014, May 2014, Barcelona, Spain; 48–52

  • Cheng K, Chen X, Pan W (2006) Comparison of laminar and turbulent thermal plasma jet characteristics—a modeling study. Plasma Chem Plasma Process 26:211–235

    Article  Google Scholar 

  • Choi HK, Gauvin WH (1982) Operating characteristics and energy distribution in transferred plasma arc systems. Plasma Chem Plasma Process 2(4):361–386

    Article  Google Scholar 

  • Duan Z, Heberlein J (2002) Arc instabilities in a plasma spray torch. J Therm Spray Technol 11(1):44–51

    Article  Google Scholar 

  • Fauchais P (2004) Understanding plasma spraying. J Phys D Appl Phys 37:86–108

    Article  Google Scholar 

  • Fauchais P, Vardelle A (2000) Pending problems in thermal plasmas and actual development. Plasma Phys Control Fusion 42:B365–B383

    Article  Google Scholar 

  • Frolov V, Matveev I, Ivanov D, Zverev S, Ushin B, Petrov G (2011) Experimental investigations of the hybrid plasma torch with reverse vortex stabilization. Rom J Phys 56(Supplement):36–40

    Google Scholar 

  • Gauvin WH (1989) Some characteristics of transferred-arc plasmas. Plasma Chem Plasma Process 9(1):65S–84S

    Article  Google Scholar 

  • Goutier S, Nogues-Delbos E, Vardelle M, Fauchais P (2008) Particle temperature fluctuations in plasma spraying. J Therm Spray Technol 17(5–6):895–901

    Article  Google Scholar 

  • Hamatani H, Watanabe F, Mizuhashi N et al (2012) Development of laminar plasma shielded HF-ERW process. Advanced welding process of HF-ERW 3. In: Proceedings of the 9th International Pipeline Conference (IPC2012): September 24–28, Calgary, Alberta

  • Han YS, Tarutani Y, Fuji M, Takahash M (2006) Synthesis of hollow silica particle by combination of bubble templating method and Sol-Gel transformation. Adv Mater Res 11–12:673–676

    Article  Google Scholar 

  • Hawley D, Dambra C, Molz R (2010) TriplexPro-200 gun platform: impacting all operational aspects of thermal spraying. In: Proceedings of ITSC’2010, May 2010, Singapore

  • Hsu KC, Pfender E (1984) Modeling of a free-burning, high-intensity arc at elevated pressures. Plasma Chem Plasma Process 4(3):219–234

    Article  Google Scholar 

  • Iwao T, Iwase K, Tashiro S, Tanaka M, Yumoto M (2009) Numerical simulation of argon twin torch plasma arc for high heating efficiency. Vacuum 83:34–38

    Article  Google Scholar 

  • Jang J, Takana H, Solonenko OP, Nishiyama H (2011) Advancement of powder spheroidization process using a small power DC–RF hybrid plasma flow system by sinusoidal gas injection. J Fluid Science Technol 6(5):729–739

    Article  Google Scholar 

  • Karoly Z, Szepvolgyi J (2003) Hollow alumina microspheres prepared by RF thermal plasma. Powder Technol 132:211–215

    Article  Google Scholar 

  • Kawajiri K, Nishiyama H (2006) In-flight particle characteristics in a DC–RF hybrid plasma flow system. Thin Solid Films 506–507:660–664

    Article  Google Scholar 

  • Kawajiri K, Sato T, Nishiyama H (2003) Experimental analysis of a DC–RF hybrid plasma flow. Surf Coat Technol 171(1–3):134–139

    Article  Google Scholar 

  • Kawajiri K, Ramachandran K, Nishiyama H (2005) Statistical optimization of a DC–RF hybrid plasma flow system for in-flight particle treatment. Int J Heat Mass Transfer 48(1):183–190

    Article  Google Scholar 

  • Kim KS, Seo JH, Nam JS, Ju WT, Hong SH (2005) Production of hydrogen and carbon black by methane decomposition using DC–RF hybrid thermal plasmas. IEEE Trans Plasma Sci 33(2):813–823

    Article  Google Scholar 

  • Kittaka S, Wakida S, Sato T, Miyashita M (2005) Twin-torch type tundish plasma heater “NS-Plasma II” for continuous caster. Nippon Steel Technical Report 92 July pp 1–21

  • Kozlov VV, Grek GR, Dovgal AV, Litvinenko YA (2013a) Stability of subsonic jet flows. J Flow Control Meas Vis 1:94–101

    Article  Google Scholar 

  • Kozlov VV, Grek GR, Katasonov MM, Korobeinichev OP, Litvinenko YA, Shmakov AG (2013b) Stability of subsonic microjet flows and combustion. J Flow Control Meas Vis 1:108–111

    Article  Google Scholar 

  • Kuz’min VI, Solonenko OP, Zhukov MF (1995) In: Proceedings of the 8th National Thermal Spray Conference Houston, Texas, Materials Park, OH, ASM International pp 83–88

  • Leblanc L, Moreau C (2000) Study on the long-term stability of plasma spraying. In: Proceeding of ITSC’00, May 2000, Montreal

  • Lemanov VV, Terekhov VI, Sharov KA, Shumeiko AA (2013) Experimental study of submerged jets at low Reynolds numbers. Tech Phys Lett 39(9):34–40

    Google Scholar 

  • McKelliget JW, El-Kaddah N (1990) Modeling of materials synthesis in hybrid plasma reactors: production of silicon by thermal ecomposition of SiCI4. Metall Trans B 21(3):589–598

    Article  Google Scholar 

  • Nishiyama H, Onodera M, Igawa J, Nakajima T (2009) Characterization of in-flight processing of alumina powder using a DC–RF hybrid plasma flow system at constant low operating power. J Therm Spray Technol 18(4):593–599

    Article  Google Scholar 

  • Outcalt D, Hallberg M, Yang G, Heberlain J, Pfender E, Strykowski P (2006) Instabilities in plasma spray jets. In: Proceedings ITSC’06, May 2006, Seattle, Washington

  • Pan W, Zhang W, Ma W, Wu C (2002) Characteristics of argon laminar DC plasma jet at atmospheric pressure. Plasma Chem Plasma Process 22(2):271–283

    Article  Google Scholar 

  • Pan W, Meng X, Chen X, Wu C (2006) Experimental study on the thermal argon plasma generation and jet length change characteristics at atmospheric pressure. Plasma Chem Plasma Process 26:335–345

    Article  Google Scholar 

  • Pfender E (1994) Plasma jet behavior and modeling associated with the plasma spray process. Thin Solid Films 238(2):228–241

    Article  Google Scholar 

  • Proulx P, Mostaghimi J, Boulos MI (1987) Heating of powders in an R.F. inductively coupled plasma under dense loading conditions. Plasma Chem Plasma Process 7(1):29–52

    Article  Google Scholar 

  • Seo JH, Park JM, Hong SH (2008) Influence of DC arc jets on flow fields analyzed by an integrated numerical model for a DC–RF hybrid plasma. Plasma Sources Sci Technol 17(2):02501

    Article  Google Scholar 

  • Shevchenko A, Kavun I, Pavlov A, Zapryagaev V (2006) Visualization of wing-tip vortices and of an unsteady flowfield in shock/vortex interaction. In: Proceedings of the 12th International Symposium on Flow Visualization, Gottingen, September 10–14, Paper No. 219 pp 1–10

  • Solonenko OP (1995) State-of-the art of thermophysical fundamentals of plasma spraying. In: Solonenko OP, Zhukov MF (eds) Thermal plasma and new materials technology, 2nd edn. Cambridge International Science Publishing, Cambridge, pp 7–96

    Google Scholar 

  • Solonenko OP, Alkhymov AP, Marusin VV et al (2000) High-energy processes of materials treatment. Nauka Publishing, Siberian Branch, Russian Academy of Sciences (in Russian), Novosibirsk

    Google Scholar 

  • Solonenko OP, Takeda K, Kuz’min VI, Smirnov AV, Sakashita M, Nakamura M (2001) Advanced approach to developing equipment for plasma assisted oil free starting systems for pulverized coal power station. In: Proceedings of the 15th International Symposium on Plasma Chemistry, July 2001, Orleans, France 5; pp 2079–2084

  • Solonenko OP, Takeda K, Smirnov AV (2005) Optimization of transfer arc torch operating at low Reynolds number. In: Proceedings of the 17th International Symposium on Plasma Chemistry, August 7–12, 2005, Toronto, electronic publication: http://www.ispc17.org. 8

  • Solonenko OP, Smirnov AV, Gulyaev IP (2007) Spreading and solidification of hollow molten droplet under its impact onto substrate: Computer simulation and experiment. Complex Systems: 5th Intern. Workshop on Complex Systems, 25–28 September 2007, Sendai, AIP Conference Proceedings, Melville, New York 982 pp 561–568

  • Solonenko OP, Gulyaev IP, Smirnov AV (2011) Thermal plasma processes for production of hollow spherical powders: theory and experiment. J Therm Sci Technol 6(2):219–234

    Article  Google Scholar 

  • Takana H, Jang J, Igawa J, Nakajima T, Solonenko OP, Nishiyama H (2011) Improvement of in-flight alumina spheroidization process using a small power argon DC–RF hybrid plasma flow system by helium mixture. J Therm Spray Technol 20(3):432–439

    Article  Google Scholar 

  • Tanaka M, Terasaki H, Ushio M, Lowke JJ (2003) Numerical study of a free-burning argon arc with anode melting. Plasma Chem Plasma Process 23(3):585–606

    Article  Google Scholar 

  • Tang KM, Yan JD, Chapman C, Fang MTC (2010) Three-dimensional modelling of a dc arc plasma in a twin-torch system. J Phys D Appl Phys 43(345201):1–15

    Google Scholar 

  • Wang H-X, Chen X, Pan W (2007) Modeling study on the entrainment of ambient air into subsonic laminar and turbulent argon plasma jets. Plasma Chem Plasma Process 27:141–162

    Article  Google Scholar 

  • Williams JK, lddles DM, Chapman CD, Forde AJ, Heanley CP, Dede ED, Jordan J, Baronnet J-M, Ageorges H, Megy S, Bousrih S, Ershov-Pavlov E, Rand B, Fries R (1995) Development of a twin DC plasma arc for the production of ultra fine ceramic powders, their evaluation and processing. Synthesis Report, Project Funded by the European Community Under the Brite/Euram Programme:1–14

  • Wu XF, Chen YF, Li QY, Wei LQ (2007) Preparation and characterization of integral hollow microspheres of nickel hydroxide and nickel oxide. Solid State Phenom 121–123:187–190

    Article  Google Scholar 

  • Yamamoto T, Takeda K, Toh T, Tanaka J (2005) Production of broad arc by alternating magnetic field. In: Proceedings 17th International Symposium Plasma Chemistry, August 7–12, 2005, Toronto, electronic publication: http://www.ispc17.org

  • Ye R, Ishigaki T, Jurewicz J, Proulx P, Boulos MI (2004) Inflight spheroidization of alumina powders in Ar-H2 and Ar-N2 induction plasmas. Plasma Chem Plasma Process 24(4):555–571

    Article  Google Scholar 

  • Ye R, Li J-G, Ishigaki T (2007) Controlled synthesis of alumina nanoparticles using inductively coupled thermal plasma with enhanced quenching. Thin Solid Films 515(9):4251–4257

    Article  Google Scholar 

  • Yoshida T, Tani T, Nishimura H, Akashi K (1983) Characterization of a hybrid plasma and its application to chemical synthesis. J Appl Phys 54(2):640–646

    Article  Google Scholar 

  • Zheenbaev ZhZh, Engelsht VS (1983) Two-jet plasma torch. Institute of Physics and Mathematics Academy of Sciences of Kirg.SSR (in Russian), Frunze

  • Zhukov MF (1994) Linear direct current plasma torches. In: Solonenko OP, Zhukov MF (eds) Thermal plasma and new materials technology, vol 1., Investigation and design of thermal plasma generatorsCambridge Interscience Publishing, Cambridge, pp 5–43

    Google Scholar 

  • Zhukov MF, Solonenko OP (1990) High-temperature dusted jets in the powder materials processing. Institute of Thermophysics, Siberian Branch of the USSR Academy of Sciences (in Russian), Novosibirsk

    Google Scholar 

  • Zhukov MF, An’shakov AS, Zasypkin IM et al (1985) Electric-arc generators with interelectrode inserts. Nauka Publishing (in Russian), Novosibirsk

    Google Scholar 

Download references

Acknowledgments

This work was supported in part within the framework of Interdisciplinary Integration Projects No. 2 and 98, of the Siberian Branch of the Russian Academy of Sciences for 2012–2014. Part of the work was also carried out under International Collaborative Research Project J13060, J14012 at the Institute of Fluid Science, Tohoku University, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Solonenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solonenko, O.P., Nishiyama, H., Smirnov, A.V. et al. Visualization of arc and plasma flow patterns for advanced material processing. J Vis 18, 1–15 (2015). https://doi.org/10.1007/s12650-014-0221-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-014-0221-6

Keywords

Navigation