Skip to main content
Log in

Impinging jet-based fluidic diodes for hybrid synthetic jet actuators

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

A new variant of a fluidic diode for hybrid synthetic jet actuators (HSJAs) is introduced in this paper, namely the diode in the form of a conical duct. The periodic jet flow from the diode impinges on the wall and the resulting flow differences during blowing and suction increase the volumetric efficiency of the actuator. Two alternative definitions of the volumetric efficiency are used. The HSJs velocities and volumetric efficiencies were experimentally evaluated. The experiments were performed using a phase-locked smoke visualization and hot-wire anemometry with air as the working fluid. The diode-to-wall distance and the driving frequency were varied, and the combination of parameters that provided the highest HSJ velocity and highest volumetric efficiency was obtained.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arwatz G, Fono I, Seifert A (2008) Suction and oscillatory blowing actuator modeling and validation. AIAA J 46:1107–1117

    Article  Google Scholar 

  • Bardell RL (2000) The diodicity mechanism of tesla-type no-moving-parts valves. PhD Thesis, University of Washington, Washington

  • Cater JE, Soria J (2002) The evolution of round zero-net-mass-flux jets. J Fluid Mech 472:167–200

    Article  MATH  Google Scholar 

  • Chaudhari M, Puranik B, Agrawal A (2010) Heat transfer characteristics of synthetic jet impingement cooling. Int J Heat Mass Transf 53:1057–1069

    Article  Google Scholar 

  • Dandois J, Garnier E, Sagaut P (2007) Numerical simulation of active separation control by a synthetic jet. J Fluid Mech 574:25–58

    Article  MATH  Google Scholar 

  • Dauphinee TM (1957) Acoustic air pump. Rev Sci Instrum 28:456

    Google Scholar 

  • Forster FK, Williams BE (2002) Parametric design of fixed-geometry microvalves—the Tesser valve. In: ASME Int. Mech. Eng. Congr. Expo. IMECE2002. IMECE2002-33628, New Orleans, p 7

  • Gamboa AR, Morris CJ, Forster FK (2005) Improvements in fixed-valve micropump performance through shape optimization of valves. J Fluids Eng 127:339–346

    Article  Google Scholar 

  • Gerlach T (1998) Microdiffusers as dynamic passive valves for micropump applications. Sensors Actuators A Phys 69:181–191

    Article  MATH  Google Scholar 

  • Gerlach T, Wurmus H (1995) Working principle and performance of the dynamic micropump. Sensors Actuators A Phys 50:135–140

    Article  Google Scholar 

  • Gillespie MB (1998) Local convective heat transfer from heated flat plates using synthetic air jet. MS Thesis, Georgia Institute of Technology, Atlanta

  • Glezer A, Amitay M (2002) Synthetic jets. Annu Rev Fluid Mech 34:503–529

    Article  MathSciNet  Google Scholar 

  • Haakh F (2003) Vortex chamber diodes as throttle devices in pipe systems. Computation of transient flow. J Hydraul Res 41:53–59

    Article  Google Scholar 

  • Hong G (2006) Effectiveness of micro synthetic jet actuator enhanced by flow instability in controlling laminar separation caused by adverse pressure gradient. Sensors Actuators A Phys 132:607–615

    Article  Google Scholar 

  • Hsu S-S, Kordík J, Trávníček Z, Wang A-B (2012) The performance of hexagonally arranged hybrid synthetic jets. J Flow Vis Image Process 19:1–13

    Article  Google Scholar 

  • Hsu S-S, Trávníček Z, Chou C-C et al (2013) Comparison of double-acting and single-acting synthetic jets. Sensors Actuators A Phys 203:291–299

    Article  Google Scholar 

  • Kordík J (2013) Synthetic and hybrid synthetic jet actutators—theoretical and experimental analysis. LAP LAMBERT Academic Publishing, Saarbruecken

    Google Scholar 

  • Kordík J, Trávníček Z (2013) Novel fluidic diode for hybrid synthetic jet actuator. J Fluids Eng 135:101101-1–101101-7

    Article  Google Scholar 

  • Kordík J (2011) Theoretical and experimental analysis of synthetic and hybrid synthetic jet actuators. PhD Thesis, Czech Technical University, Prague

  • Kordík J, Trávníček Z, Tesař V (2013b) A new method for fluid input into a hybrid synthetic jet actuators. In: Proceedings of Exp. Fluid Mech. EFM 2013, Kutná Hora

  • Kulkarni AA, Ranade VV, Rajeev R, Koganti SB (2009) Pressure drop across vortex diodes: experiments and design guidelines. Chem Eng Sci 64:1285–1292

    Article  Google Scholar 

  • Liu Z, Deng Y, Lin S, Xuan M (2012) Optimization of micro Venturi diode in steady flow at low Reynolds number. Eng Optim 44:1389–1404

    Article  Google Scholar 

  • Morris CJ, Forster FK (2000) Optimization of a circular piezoelectric bimorph for a micropump driver. J Micromech Microeng 10:459–465

    Article  Google Scholar 

  • Olsson A, Stemme G, Stemme E (1996) Diffuser-element design investigation for valve-less pumps. Sensors Actuators A Phys 57:137–143

    Article  Google Scholar 

  • Olsson A, Larsson O, Holn J et al (1998) Valve-less diffuser micropumps fabricated using thermoplastic replication. Sensors Actuators A Phys 64:63–68

    Article  Google Scholar 

  • Olsson A, Stemme G, Stemme E (2000) Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps. Sensors Actuators A Phys 84:165–175

    Article  Google Scholar 

  • Persoons T, McGuinn A, Murray DB (2011) A general correlation for the stagnation point Nusselt number of an axisymmetric impinging synthetic jet. Int J Heat Mass Transf 54:3900–3908

    Article  MATH  Google Scholar 

  • Priestman GH, Tippetts JR (1985) Factors affecting the application of vortex diodes and throttles. In: Harada M (ed) Proc. Symp. Fluid Control Meas. Pergamon, Oxford, pp 241–246

    Google Scholar 

  • Smith BL, Glezer A (1998) The formation and evolution of synthetic jets. Phys Fluids 10:2281–2297

    Article  MathSciNet  MATH  Google Scholar 

  • Smith BL, Glezer A (2002) Jet vectoring using synthetic jets. J Fluid Mech 458:1–34

    Article  MATH  Google Scholar 

  • Stemme E, Stemme G (1993) A valveless diffuser/nozzle-based fluid pump. Sensors Actuators A Phys 39:159–167

    Article  Google Scholar 

  • Tesař V (2007) Pressure-driven microfluidics. Artech House Publishers, Norwood, p 118

    Google Scholar 

  • Tesař V (2008) Valveless rectification pumps. Encycl. Microfluid. Nanofluidics. Springer, New York, pp 2131–2139

    Google Scholar 

  • Tesař V, Kordík J (2013a) Effective hydraulic resistance of a nozzle generating hybrid-synthetic jet in an electrodynamic actuator—Part II: analysis and correlations. Sensors Actuators A Phys 199:391–400

    Article  Google Scholar 

  • Tesař V, Kordík J (2013b) Effective hydraulic resistance of a nozzle in an electrodynamic actuator generating hybrid-synthetic jet—Part I: data acquisition. Sensors Actuators A Phys 199:379–390

    Article  Google Scholar 

  • Tesař V, Trávníček Z, Kordík J, Randa Z (2007) Experimental investigation of a fluidic actuator generating hybrid-synthetic jets. Sensors Actuators A Phys 138:213–220

    Article  Google Scholar 

  • Tesař V, Zhong S, Rasheed F (2013) New fluidic-oscillator concept for flow-separation control. AIAA J 51:397–405

    Article  Google Scholar 

  • Trávníček Z, Tesař V (2003) Annular synthetic jet used for impinging flow mass-transfer. Int J Heat Mass Transf 46:3291–3297

    Article  Google Scholar 

  • Trávníček Z, Fedorchenko A, Wang AB (2005) Enhancement of synthetic jets by means of an integrated valve-less pump: part I. Design of the actuator. Sensors Actuators A Phys 120:232–240. doi:10.1016/j.sna.2004.11.017

    Article  Google Scholar 

  • Trávníček Z, Vít T, Tesař V (2006) Hybrid synthetic jets as the nonzero-net-mass-flux synthetic jets. Phys Fluids 18:081701–1–081701–4

    Google Scholar 

  • Trávníček Z, Tesař V, Kordík J (2008) Performance of synthetic jet actuators based on hybrid and double-acting principles. J Vis 11:221–229

    Article  Google Scholar 

  • Trávníček Z, Broučková Z, Kordík J (2012a) Formation criterion for axisymmetric synthetic jets at high Stokes numbers. AIAA J 50:2012–2017

    Article  Google Scholar 

  • Trávníček Z, Němcová L, Kordík J et al (2012b) Axisymmetric impinging jet excited by a synthetic jet system. Int J Heat Mass Transf 55:1279–1290

    Article  Google Scholar 

  • Trávníček Z, Tesař V, Kordík J, et al. (2013) Způsob vstupu tekutiny do generátoru hybridního syntetizovaného proudu a zařízení k provádění tohoto způsobu, CZ Patent No. 304219, 2013

  • White FM (1991) Viscous Fluid Flow, 2nd edn. McGraw-Hill Inc., New-York

    Google Scholar 

  • Yastrebova EV (1971) Fluidic diodes (review). Autom i Telemech 3:101–106

    Google Scholar 

  • You D, Moin P (2008) Active control of flow separation over an airfoil using synthetic jets. J Fluids Struct 24:1349–1357

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the Grant Agency CR (project number P101/12/P556) and the institutional support RVO:61388998.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kordík.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kordík, J., Broučková, Z. & Trávníček, Z. Impinging jet-based fluidic diodes for hybrid synthetic jet actuators. J Vis 18, 449–458 (2015). https://doi.org/10.1007/s12650-014-0251-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-014-0251-0

Keywords

Navigation