Skip to main content
Log in

Electrical impedance spectroscopy (EIS)-based evaluation of biological tissue phantoms to study multifrequency electrical impedance tomography (Mf-EIT) systems

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

Electrical impedance tomography (EIT) phantoms are essential for the calibration, comparison and evaluation of the EIT systems. In EIT, the practical phantoms are typically developed based on inhomogeneities surrounded by a homogeneous background to simulate a suitable conductivity contrast. In multifrequency EIT (Mf-EIT) evaluation, the phantoms must be developed with the materials which have recognizable or distinguishable impedance variations over a wide range of frequencies. In this direction the impedance responses of the saline solution (background) and a number vegetable and fruit tissues (inhomogeneities) are studied with electrical impedance spectroscopy (EIS) and the frequency responses of bioelectrical impedance and conductivity are analyzed. A number of practical phantoms with different tissue inhomogeneities and different inhomogeneity configurations are developed and the multifrequency impedance imaging is studied with the Mf-EIT system to evaluate the phantoms. The conductivity of the vegetable inhomogeneities reconstructed from the EIT imaging is compared with the conductivity values obtained from the EIS studies. Experimental results obtained from multifrequency EIT reconstruction demonstrate that the electrical impedance of all the biological tissues inhomogenity decreases with frequency. The potato tissue phantom produces better impedance image in high frequency ranges compared to the cucumber phantom, because the cucumber impedance at high frequency becomes lesser than that of the potato at the same frequency range.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • AD829 Data Sheet, AD829 IC, high speed, low noise video Op Amp, 2011 Analog Devices, Inc., USA

  • Ahn S, Jun SC, Seo JK, Lee J, Woo EJ, Holder D (2010) Frequency-difference electrical impedance tomography: phantom imaging experiments. J Phys Conf Ser 224:012152

    Article  Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  • Allen MT, Fahrenberg J, Kelsey RM, Lovallo WR, Doornen LJ (1990) Methodological guidelines for impedance cardiography. Psychophysiology 27(1):1–23

    Article  Google Scholar 

  • Ando Y, Mizutani K, Wakatsuki N (2014) Electrical impedance analysis of potato tissues during drying. J Food Eng 121:24–31

    Article  Google Scholar 

  • Azzarello E, Masi E, Mancuso S (2012) Electrochemical impedance spectroscopy. In: Alexander G, Volkov G (eds) Plant Electrophysiology: Methods and Cell Electrophysiology. Springer Berlin Heidelberg, pp 205–223

  • Bagshaw AP, Liston AD, Bayford RH, Tizzard A, Gibson AP, Tidswell AT, Holder DS (2003) Electrical impedance tomography of human brain function using reconstruction algorithms based on the finite element method. NeuroImage 20(2):752–764

    Article  Google Scholar 

  • Barber DC (1989) A review of image reconstruction techniques for electrical impedance tomography. Med Phys 16(2):162–169

    Article  Google Scholar 

  • Barbosa-Silva MCG, Barros AJ (2005) Bioelectrical impedance analysis in clinical practice: a new perspective on its use beyond body composition equations. Curr Opin Clin Nutr Metab Care 8(3):311–317

    Article  Google Scholar 

  • Bayford RH (2006) Bioimpedance tomography (electrical impedance tomography). Annu Rev Biomed Eng 8:63–91

    Article  Google Scholar 

  • Bayford R, Tizzard A (2012) Bioimpedance imaging: an overview of potential clinical applications. Analyst 137(20):4635–4643

    Article  Google Scholar 

  • Bellizzi V, Scalfi L, Terracciano V, De Nicola L, Minutolo R, Marra M, Di Iorio BR (2006) Early changes in bioelectrical estimates of body composition in chronic kidney disease. J Am Soc Nephrol 17(5):1481–1487

    Article  Google Scholar 

  • Bera TK (2013) Studies on multifrequency multifunction electrical impedance tomography (MfMf‐EIT) to improve bio‐impedance imaging. PhD Thesis, Indian Institute of Science, Bangalore, India

  • Bera TK (2014) Bioelectrical impedance methods for noninvasive health monitoring: a review. J Med Eng. doi:10.1155/2014/381251

  • Bera TK (2015) Wireless Electrical Impedance Tomography: LabVIEW Based Automatic Electrode Switching, Telehealth and Mobile Health, chap 30. CRC Press, pp 639–666

  • Bera TK, Jampana N (2010) A multifrequency constant current source suitable for electrical impedance tomography (EIT). In: 2010 international conference on systems in medicine and biology (ICSMB). IEEE, pp 278–283

  • Bera TK, Nagaraju J (2009a) A simple instrumentation calibration technique for electrical impedance tomography (EIT) using a 16 electrode phantom. In: Proceedings of the 5th annual IEEE conference on automation science and engineering (IEEE CASE 2009), Bangalore, August 22–25, pp 347–352

  • Bera TK, Nagaraju J (2009b) A reconfigurable practical phantom for studying the 2 D electrical impedance tomography (EIT) using a FEM based forward solver. In: 10th international conference on biomedical applications of electrical impedance tomography (EIT 2009), School of Mathematics, The University of Manchester, UK, 16th–19th June 2009

  • Bera TK, Nagaraju J (2009c) A FEM-based forward solver for studying the forward problem of electrical impedance tomography (EIT) with a practical biological phantom. In: Proceedings of IEEE international advance computing conference’ 2009 (IEEE IACC—2009), 6–7th March 2009, Patiala, Punjab, India, pp 1375–1381

  • Bera TK, Nagaraju J (2009d) A stainless steel electrode phantom to study the forward problem of electrical impedance tomography (EIT). Sens Transducers J 104(5):33–40

    Google Scholar 

  • Bera TK, Nagaraju J (2010) A multifrequency constant current source for medical electrical impedance tomography. In: The Proceedings of the IEEE international conference on systems in medicine and biology 2010, 16th–18th Dec’ 2010, India, pp 278–283

  • Bera TK, Nagaraju J (2011a) Electrical impedance spectroscopic study of broiler chicken tissues suitable for the development of practical phantoms in multifrequency EIT. J Electr Bioimpedance 2:48–63

    Google Scholar 

  • Bera TK, Nagaraju J (2011b) A chicken tissue phantom for studying an electrical impedance tomography (EIT) system suitable for clinical imaging. Sens Imaging Int J 12(3–4):95–116

    Article  Google Scholar 

  • Bera TK, Nagaraju J (2012a) Studying the resistivity imaging of chicken tissue phantoms with different current patterns in electrical impedance tomography (EIT). Measurement 45:663–682

    Article  Google Scholar 

  • Bera TK, Nagaraju J (2012b) A multifrequency electrical impedance tomography (EIT) system for biomedical imaging. In: 2012 international conference on signal processing and communications (SPCOM). IEEE, pp 1–5

  • Bera TK, Nagaraju J (2012c) Common ground method of current injection in electrical impedance tomography, communications in computer and information science, Springer, Part II, CCIS 270, ObCom 2012, pp 574–587

  • Bera TK, Nagaraju J (2013a) Electrical impedance tomography (EIT): a harmless medical imaging modality, research developments. In: Computer vision and image processing: methodologies and applications, Chapter 13. IGI Global, USA, pp 224–262

  • Bera TK, Nagaraju J (2013b) A MATLAB-based boundary data simulator for studying the resistivity reconstruction using neighbouring current pattern. J Med Eng

  • Bera TK, Nagaraju J (2013c) A LabVIEW based multifunction multifrequency electrical impedance tomography (MfMf-EIT) instrumentation for flexible and versatile impedance imaging. In: 15th international conference on electrical bio-impedance (ICEBI) and 14th conference on electrical impedance tomography (EIT), Germany, vol 216, pp 22–25

  • Bera TK, Nagaraju J (2013d) A battery based multifrequency electrical impedance tomography (BbMf-EIT) system for impedance, imaging of human anatomy. In: 15th international conference on electrical bio-impedance (ICEBI) and 14th conference on electrical impedance tomography (EIT), Germany, vol 216, pp 22–25

  • Bera TK, Nagaraju J (2014a) A labVIEW based data acquisition system for electrical impedance tomography (EIT). In: Proceedings of the 3rd international conference on soft computing for problem solving. Springer India, pp 377–389

  • Bera TK, Nagaraju J (2014b) A low cost electrical impedance tomography (EIT) instrumentation for impedance imaging of practical phantoms: a laboratory study. In: Proceedings of the 3rd international conference on soft computing for problem solving. Springer India, pp 689–701

  • Bera TK, Nagaraju J (2014c) Sensors for electrical impedance tomography. In: Webster JG (ed) The measurement, instrumentation, and sensors handbook, 2nd edn. CRC Press, Part VII: medical, biomedical, and health, Chapter 61, pp 61-1–61-30, ISBN-10: 1439848882

  • Bera TK, Nagaraju J (2014d) Studies on thin film based flexible gold electrode arrays for resistivity imaging in electrical impedance tomography. Measurement 47:264–286

    Article  Google Scholar 

  • Bera TK, Nagaraju J (2015) A gold sensors array for imaging the real tissue phantom in electrical impedance tomography. In: IOP conference series: materials science and engineering, vol 73, no 1. IOP Publishing, p 012083

  • Bera TK, Biswas SK, Rajan K, Nagaraju J (2011a) Improving conductivity image quality using block matrix-based multiple regularization (BMMR) technique in EIT: a simulation study. J Electr Bioimpedance 2:33–47. doi:10.5617/jeb.170

    Google Scholar 

  • Bera TK, Biswas SK, Rajan K, Nagaraju J (2011b) Improving image quality in electrical impedance tomography (EIT) using projection error propagation-based regularization (PEPR) technique: a simulation study. J Electr Bioimpedance 2:2–12. doi:10.5617/jeb.158

    Google Scholar 

  • Bera TK, Maity P, Haldar S, Nagaraju J (2014) A MatLAB based virtual phantom for 2D electrical impedance tomography (MatVP2DEIT): studying the medical electrical impedance tomography reconstruction in computer. J Med Imaging Health Inform 4(2):147–167

    Article  Google Scholar 

  • Boone KG, Holder DS (1996) Current approaches to analogue instrumentation design in electrical impedance tomography. Physiol Meas 17(4):229

    Article  Google Scholar 

  • Borcea L (2002) Electrical impedance tomography. Inverse Prob 18(6):R99–R136

    Article  MathSciNet  MATH  Google Scholar 

  • Brown BH (2003) Electrical impedance tomography (EIT): a review. J Med Eng Technol 27(3):97–108

    Article  Google Scholar 

  • Buffa R, Floris G, Marini E (2008) Age-related variations of the bioelectrical impedance vector. Nutr Metab Cardiovasc Dis 18(6):e29

    Article  Google Scholar 

  • Bushberg JT, Boone JM (2011) The essential physics of medical imaging. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  • CD4067BE Data Sheet, CD4067BE IC, CMOS analog multiplesers/demultiplexers, Texas Instruments Inc., 2012, USA

  • Chang BY, Park SM (2010) Electrochemical impedance spectroscopy. Ann Rev Anal Chem 3:207–229

    Article  Google Scholar 

  • Chen X, Kao TJ, Ashe JM, Boverman G, Sabatini JE, Davenport DM (2014) Multi-channel electrical impedance tomography for regional tissue hydration monitoring. Physiol Meas 35(6):1137

    Article  Google Scholar 

  • Cheney M, Isaacson D, Newell JC (1999) Electrical impedance tomography. SIAM Rev 41(1):85–101

    Article  MathSciNet  MATH  Google Scholar 

  • Chumlea WC, Guo SS (1994) Bioelectrical impedance and body composition: present status and future directions. Nutr Rev 52(4):123–131

    Article  Google Scholar 

  • Chumlea WC, Guo SS (1997) “Bioelectrical impedance: a history, research issues, and recent consensus.” Emerging technologies for nutrition research. Potential for assessing military performance capability, pp 169–192

  • Cox-Reijven PL, van Kreel B, Soeters PB (2003) Bioelectrical impedance measurements in patients with gastrointestinal disease: validation of the spectrum approach and a comparison of different methods for screening for nutritional depletion. Am J Clin Nutr 78(6):1111–1119

    Google Scholar 

  • Cruz JM, Fita IC, Soriano L, Payá J, Borrachero MV (2013) The use of electrical impedance spectroscopy for monitoring the hydration products of Portland cement mortars with high percentage of pozzolans. Cem Concr Res 50:51–61

    Article  Google Scholar 

  • Cybulski G, Strasz A, Niewiadomski W, Gąsiorowska A (2012) Impedance cardiography: recent advancements. Cardiol J. 19(5):550–556

    Article  Google Scholar 

  • Damez JL, Clerjon S, Abouelkaram S, Lepetit J (2007) Dielectric behavior of beef meat in the 1–1500 kHz range: simulation with the Fricke/Cole–Cole model. Meat Sci 77(4):512–519

    Article  Google Scholar 

  • de Castro Martins T, De Camargo EDLB, Lima RG, Amato MBP, de Sales Guerra Tsuzuki M (2012) Image reconstruction using interval simulated annealing in electrical impedance tomography. IEEE Trans Biomed Eng 59(7):1861–1870

  • Dean DA, Ramanathan T, Machado D, Sundararajan R (2008) Electrical impedance spectroscopy study of biological tissues. J Electrostat 66(3–4):165–177

    Article  Google Scholar 

  • Estrela da Silva J, Marques de Sá JP, Jossinet J (2000) Classification of breast tissue by electrical impedance spectroscopy. Med Biol Eng Comput 38(1):26–30

    Article  Google Scholar 

  • Goharian M, Soleimani M, Jegatheesan A, Chin K, Moran GR (2008) A DSP based multi-frequency 3D electrical impedance tomography system. Ann Biomed Eng 36(9):1594–1603

    Article  Google Scholar 

  • Goharian M, Soleimani M, Moran GR (2009) A trust region subproblem for 3D electrical impedance tomography inverse problem using experimental data. Progr Electromagn Res PIER 94:19–32

    Article  Google Scholar 

  • Gomadam PM, Weidnern JW (2005) Analysis of electrochemical impedance spectroscopy in proton exchange membrane fuel cells. Int J Energy Res 29:1133–1151

    Article  Google Scholar 

  • Griffiths H (1988a) A phantom for electrical impedance tomography. Clin Phys Physiol Meas 9(Suppl. A):15–20

    Article  Google Scholar 

  • Griffiths H (1988b) A phantom for electrical impedance tomography. Clin Phys Physiol Meas 9(4A):15

    Article  Google Scholar 

  • Griffiths H (1995) A cole phantom for EIT. Physiol Meas 16(3A):A29

    Article  Google Scholar 

  • Griffiths H, Zhang Z (1989) A dual-frequency electrical impedance tomography system. Phys Med Biol 34(10):1465–1476

    Article  Google Scholar 

  • Griffiths H, Zhang Z, Watts M (1989) A constant-perturbation saline phantom for electrical impedance tomography. Phys Med Biol 34(8):1063

    Article  Google Scholar 

  • Grimnes S, Martinsen OG (2011) History of bioimpedance and bioelectricity, chapter 11, bioimpedance and bioelectricity basics. Academic Press

  • Ha S (2011) A malaria diagnostic system based on electric impedance spectroscopy. Thesis (S.M.), Massachusetts Institute of Technology, USA

  • Halder A, Datta AK, Spanswick RM (2011) Water transport in cellular tissues during thermal processing. AIChE J 57(9):2574–2588

    Article  Google Scholar 

  • Hansen PC (1994) Regularization tools: a Matlab package for analysis and solution of discrete ill-posed problems. Numer Algorithms 6(1):1–35

    Article  MathSciNet  MATH  Google Scholar 

  • Harrach B, Seo JK, Woo EJ (2010) Factorization method and its physical justification in frequency-difference electrical impedance tomography. IEEE Trans Med Imaging 29(11):1918–1926

    Article  Google Scholar 

  • Hayden RI, Moyse CA, Calder FW, Crawford DP, Fensom DS (1969) Electrical impedance studies on potato and alfalfa tissue. J Exp Bot 20(2):177–200

    Article  Google Scholar 

  • Héroux P, Bourdages M (1994) Monitoring living tissues by electrical impedance spectroscopy. Ann Biomed Eng 22(3):328–337

    Article  Google Scholar 

  • Hill RV, Jansen JC, Fling JL (1967) Electrical impedance plethysmography: a critical analysis. J Appl Physiol 22(1):161–168

    Google Scholar 

  • Holder D (1993) Clinical and physiological applications of electrical impedance tomography. CRC Press, Boca Raton

    Google Scholar 

  • Holder DS (ed) (2004) Electrical impedance tomography: methods, history and applications. CRC Press, Boca Raton

    Google Scholar 

  • Holder DS (2008) Electrical impedance tomography of brain function. In: Automation congress, 2008. WAC 2008. World. IEEE, pp 1–6

  • Holder DS, Hanquan Y, Rao A (1996) Some practical biological phantoms for calibrating multifrequency electrical impedance tomography. Physiol Meas 17(4A):A167

    Article  Google Scholar 

  • Inaba A, Manabe T, Tsuji H, Iwamoto T (1995) Electrical impedance analysis of tissue properties associated with ethylene induction by electric currents in cucumber (Cucumis sativus L.) fruit. Plant Physiol 107(1):199–205

    Article  Google Scholar 

  • Jaffrin MY (2009) Body composition determination by bioimpedance: an update. Curr Opin Clin Nutr Metab Care. 12(5):482–486. doi:10.1097/MCO.0b013e32832da22c

    Article  Google Scholar 

  • Jensen L, Yakimets J, Teo KK (1995) A review of impedance cardiography. Heart Lung 24(3):183–193

    Article  Google Scholar 

  • Kalvoy H, Martinsen OG, Grimnes S (2008) Determination of tissue type surrounding a needle tip by electrical bioimpedance. Conf Proc IEEE Eng Med Biol Soc. 2008:2285–2286. doi:10.1109/IEMBS.2008.4649653

    Google Scholar 

  • Kao TJ, Saulnier GJ, Isaacson D, Szabo TL, Newell JC (2008) A versatile high-permittivity phantom for EIT. IEEE Trans Biomed Eng 55(11):2601–2607

    Article  Google Scholar 

  • Khalil SF, Mohktar MS, Ibrahim F (2014) The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors 14(6):10895–10928

    Article  Google Scholar 

  • Kim SM, Oh TI, Woo EJ, Kim SW, Seo JK (2007) Time-and frequency-difference imaging using KHU Mark1 EIT system. In: 13th international conference on electrical bioimpedance and the 8th conference on electrical impedance tomography. Springer Berlin Heidelberg, pp 340–343

  • Kubicek WG, Patterson RP, Witsoe DA (1970) Impedance cardiography as a noninvasive method of monitoring cardiac function and other parameters of the cardiovascular system. Ann N Y Acad Sci 170(2):724–732

    Article  Google Scholar 

  • Kurniawan F (2008) New analytical applications of gold nanoparticles. PhD Thesis, University of Regensburg, Germany

  • Kwon H, McEwan AL, Oh TI, Farooq A, Woo EJ, Seo JK (2013) A local region of interest imaging method for electrical impedance tomography with internal electrodes. Comput Math Methods Med 2013:9

  • Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, Composition of the ESPEN Working Group (2004a) Bioelectrical impedance analysis—part I: review of principles and methods. Clin Nutr 23(5):1226–1243

    Article  Google Scholar 

  • Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, Pichard C (2004b) Bioelectrical impedance analysis—part II: utilization in clinical practice. Clin Nutr 23(6):1430–1453

    Article  Google Scholar 

  • LabVIEW for everyone (2006) graphical programming made easy and fun, 3 edn. Prentice Hall

  • Lasia A (1999) Electrochemical impedance spectroscopy and its applications. In: Conway BE, Bockris J, White RE (eds) Modern aspects of electrochemistry, vol 32. Kluwer Academic/Plenum Publishers, New York, pp 143–248

  • Lasia A (2002) Electrochemical impedance spectroscopy and its applications. In: Conway BE, Bockris J, White RE (eds) Modern aspects of electrochemistry. Springer, US, pp 143–248

  • Liao LD, Wang IJ, Chen SF, Chang JY, Lin CT (2011) Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation. Sensors 11(6):5819–5834

    Article  Google Scholar 

  • Lionheart WRB (2004) EIT reconstruction algorithms: pitfalls, challenges and recent developments, review article. Physiol Meas 25:125–142

  • Loveday D, Peterson P, Rodgers B (2005) Evaluation of organic coatings with electrochemical impedance spectroscopy part 3: protocols for testing coatings with EIS, JCT Coatings Tech, February 2005, pp 22–27

  • Lukaski HC (2013) Evolution of bioimpedance: a circuitous journey from estimation of physiological function to assessment of body composition and a return to clinical research. Eur J Clin Nutr 67:S2–S9

    Article  Google Scholar 

  • Macdonald JR (1992) Impedance spectroscopy. Ann Biomed Eng 20(3):289–305

    Article  Google Scholar 

  • Macdonald JR, Johnson WB (2005) Fundamentals of impedance spectroscopy. In: Impedance spectroscopy: theory, experiment, and applications, 2nd edn, pp 1–26

  • Maddocks M, Kon SS, Jones SE, Canavan JL, Nolan CM, Higginson IJ, Man WDC (2015) Bioelectrical impedance phase angle relates to function, disease severity and prognosis in stable chronic obstructive pulmonary disease. Clin Nutr 34(6):1245–1250

    Article  Google Scholar 

  • Malmivuo J, Plonsey R (1995) Impedance plethysmography. In: Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields. Oxford University Press, Chapter 25, Impedance plethysmography

  • Malone E, Sato Dos Santos G, Holder D, Arridge S (2014) Multifrequency electrical impedance tomography using spectral constraints. IEEE Trans Med Imaging 33(2):340–350. doi:10.1109/TMI.2013.2284966

    Article  Google Scholar 

  • Malone E, Sato Dos Santos G, Holder D, Arridge S (2015) A reconstruction-classification method for multifrequency electrical impedance tomography. IEEE Trans Med Imaging 34(7):1486–1497

  • Metherall P, Barber DC, Smallwood RH, Brown BH (1996) Three dimensional electrical impedance tomography. Nature 380(6574):509–512

    Article  Google Scholar 

  • Mialich MS, Sicchieri JMF, Junior AAJ (2014) Analysis of body composition: a critical review of the use of bioelectrical impedance analysis. Int J Clin Nutr 2(1):1–10

    Google Scholar 

  • Mohktar MS, Ibrahim F, Ismail NA (2005) Bioelectrical impedance analysis in assessing the chances of obtaining coronary heart disease in obese subjects. In: 2005 Asian Conference on sensors and the international conference on new techniques in pharmaceutical and biomedical research. IEEE, pp 140–143

  • Morimoto T, Kimura S, Konishi Y, Komaki K, Uyama T, Monden Y, Kinouchi Y, Iritani T (1993) A study of the electrical bio-impedance of tumors. J Invest Surg 6(1):25–32

    Article  Google Scholar 

  • Morucci JP, Marsili PM (1995) Bioelectrical impedance techniques in medicine. Part III: impedance imaging. Second section: reconstruction algorithms. Crit Rev Biomed Eng 24(4-6):599–654

    Google Scholar 

  • Morucci JP, Rigaud B (1995) Bioelectrical impedance techniques in medicine. Part III: impedance imaging. Third section: medical applications. Crit Rev Biomed Eng 24(4–6):655–677

    Google Scholar 

  • Nyboer J (1944) Electrical impedance plethysmography. Med Phys 1:744

    Google Scholar 

  • Nyboer J, Kreider MM, Hannapel L (1950) Electrical impedance plethysmography: a physical and physiologic approach to peripheral vascular study. Circulation 2(6):811–821

    Article  Google Scholar 

  • Osterman KS, Kerner TE, Williams DB, Hartov A, Poplack SP, Paulsen KD (2000) Multifrequency electrical impedance imaging: preliminary in vivo experience in breast. Physiol Meas 21(1):99–109

    Article  Google Scholar 

  • Polydorides N, Lionheart WR (2002) A Matlab toolkit for three-dimensional electrical impedance tomography: a contribution to the electrical impedance and diffuse optical reconstruction software project. Meas Sci Technol 13(12):1871

    Article  Google Scholar 

  • Repo T, Paine DH, Taylor AG (2002) Electrical impedance spectroscopy in relation to seed viability and moisture content in snap bean (Phaseolus vulgaris L.). Seed Sci Res 12:17–29

    Article  Google Scholar 

  • Rigaud B, Morucci JP (1995) Bioelectrical impedance techniques in medicine. Part III: impedance imaging. First section: general concepts and hardware. Crit Rev Biomed Eng 24(4–6):467–597

    Google Scholar 

  • Rigaud B, Morucci JP, Chauveau N (1995) Bioelectrical impedance techniques in medicine. Part I: bioimpedance measurement. Second section: impedance spectrometry. Crit Rev Biomed Eng 24(4–6):257–351

    Google Scholar 

  • Romsauerova A, McEwan A, Horesh L, Yerworth R, Bayford RH, Holder DS (2006) Multi-frequency electrical impedance tomography (EIT) of the adult human head: initial findings in brain tumours, arteriovenous malformations and chronic stroke, development of an analysis method and calibration. Physiol Meas 27(5):S147–S161 (Epub 2006 Apr 20)

    Article  Google Scholar 

  • Saladino CF (2014) The efficacy of bioelectrical impedance analysis (BIA) in monitoring body composition changes during treatment of restrictive eating disorder patients. J Eating Disord 2(1):34

    Article  Google Scholar 

  • Schloerb PR, Forster J, Delcore R, Kindscher JD (1996) Bioelectrical impedance in the clinical evaluation of liver disease. Am J Clin Nutr 64(3):510S–514S

    Google Scholar 

  • Schneider ID, Kleffel R, Jennings D, Courtenay AJ (2000) Design of an electrical impedance tomography phantom using active elements. Med Biol Eng Comput 8(4):390–394. doi:10.1007/BF02345007

    Article  Google Scholar 

  • Schwan HP (1963) Electric characteristics of tissues. Biophysik 1(3):198–208

    Article  Google Scholar 

  • Schwan HP (1994) Electrical properties of tissues and cell suspensions: mechanisms and models. Engineering in Medicine and Biology Society, 1994. Engineering advances: new opportunities for biomedical engineers. In: Proceedings of the 16th annual international conference of the IEEE. IEEE, 1994

  • Seppel T, Kosel A, Schlaghecke R (1997) Bioelectrical impedance assessment of body composition in thyroid disease. Eur J Endocrinol 136(5):493–498

    Article  Google Scholar 

  • Shuai Z, Guizhi X, Huanli W, Duyan G, Weili Y (2006) Multi-frequency EIT hardware system based on DSP. In: Proceedings of the 28th IEEE Engineering in Medicine and Biology Society annual international conference, New York City, pp 6677–6680

  • Skourou Christina, Jack Hoopes P, Strawbridge RR, Paulsen KD (2004) Feasibility studies of electrical impedance spectroscopy for early tumor detection in rats. Physiol Meas 25:335–346

    Article  Google Scholar 

  • Soni NK, Dehghani H, Hartov A, Paulsen KD (2003) A novel data calibration scheme for electrical impedance tomography. Physiol Meas 24:421–435

    Article  Google Scholar 

  • Tiitta M, Olkkonen H (2002) Electrical impedance spectroscopy device for measurement of moisture gradients in wood. Rev Sci Instrum 73:3093. doi:10.1063/1.1485783 (8 pages)

    Article  Google Scholar 

  • Torrents JM, Juan-Garcıa P, Aguado A (2007) Electrical impedance spectroscopy as a technique for the surveillance of civil engineering structures: considerations on the galvanic insulation of samples. Meas Sci Technol 18:1958–1962

    Article  Google Scholar 

  • Tsadok S (1999) The historical evolution of bioimpedance. AACN Adv Crit Care 10(3):371–384

    Google Scholar 

  • Ueda M, Sasaki K, Utsunomiya N, Shimabayashi Y (2001) Changes in properties during maturation and ripening of’Chiin Hwang No. 1′ mango fruit cultivated in a plastic greenhouse. Food Sci Technol Res 7(3):207–213

    Article  Google Scholar 

  • Valentinuzzi ME (1995) Bioelectrical impedance techniques in medicine. Part I: bioimpedance measurement. First section: general concepts. Crit Rev Biomed Eng 24(4–6):223–255

    Google Scholar 

  • Valentinuzzi ME, Morucci JP, Felice CJ (1995) Bioelectrical impedance techniques in medicine. Part II: monitoring of physiological events by impedance. Crit Rev Biomed Eng 24(4–6):353–466

    Google Scholar 

  • Van De Water JM, Miller TW, Vogel RL, Mount BE, Dalton ML (2003) Impedance cardiography: the next vital sign technology? CHEST J 123(6):2028–2033

    Article  Google Scholar 

  • Vauhkonen M (1997) Electrical impedance tomography and prior information, PhD Thesis, 1997

  • Vauhkonen M, Lionheart WR, Heikkinen LM, Vauhkonen PJ, Kaipio JP (2001) A MATLAB package for the EIDORS project to reconstruct two-dimensional EIT images. Physiol Meas 22(1):107

    Article  Google Scholar 

  • Vozáry E, Jócsák I, Droppa M, Bóka K (2011) Connection between structural changes and electrical parameters of pea root tissue under anoxia. Edited by Pamela Padilla, p 131

  • Walter-Kroker A, Kroker A, Mattiucci-Guehlke M, Glaab T (2011) A practical guide to bioelectrical impedance analysis using the example of chronic obstructive pulmonary disease. Nutr J 10:35

    Article  Google Scholar 

  • Ward LC, Müller MJ (2013) Bioelectrical impedance analysis. Eur J Clin Nutr. doi:10.1038/ejcn.2012.148

    Google Scholar 

  • Webster JG (ed) (1990) Electrical impedance tomography. Taylor and Francis Group

  • Wi H, Sohal H, McEwan AL, Woo EJ, Oh TI (2014) Multi-frequency electrical impedance tomography system with automatic self-calibration for long-term monitoring. IEEE Trans Biomed Circuits Syst 8(1):119–128

    Article  Google Scholar 

  • Wu J, Ben Y, Chang HC (2005) Particle detection by electrical impedance spectroscopy with asymmetric-polarization AC electroosmotic trapping. Microfluid Nanofluid 1:161–167

    Article  Google Scholar 

  • Wu L, Ogawa Y, Tagawa A (2008) Electrical impedance spectroscopy analysis of eggplant pulp and effects of drying and freezing–thawing treatments on its impedance characteristics. J Food Eng 87(2):274–280

    Article  Google Scholar 

  • NI USB-6251 DAQ Data Sheet, USB high-speed M Series multifunction DAQ, National Instrument Inc., USA

  • York T (2001) Status of electrical tomography in industrial applications. J Electron Imaging 10(3):608–619

    Article  Google Scholar 

  • Yorkey TJ, Webster JG (1987) A comparison of impedance tomographic reconstruction algorithms. Clin Phys Physiol Meas 8(4A):55

    Article  Google Scholar 

  • Yorkey TJ, Webster JG, Tompkins WJ (1987) Comparing reconstruction algorithms for electrical impedance tomography. IEEE Trans Biomed Eng 11:843–852

    Article  Google Scholar 

  • Zelinka SL, Rammer DR, Stone DS (2008) Impedance spectroscopy and circuit modeling of Southern pine above 20% moisture content, Holzforschung, vol 62, pp 737–744, Copyright © by Walter de Gruyter, Berlin, New York. doi:10.1515/HF.2008.115

  • Zhang MIN, Willison JHM (1990) Electrical conductance of red onion scale tissue during freeze–thaw injury. Acta Botanica Neerlandica 39(4):359–367

    Article  Google Scholar 

  • Zhang MIN, Willison JHM (1991) Electrical impedance analysis in plant tissues: a double shell model. J Exp Bot 42(11):1465–1475

    Article  Google Scholar 

  • Zhang MIN, Willison JHM (1992) Electrical impedance analysis in plant tissues: the effect of freeze-thaw injury on the electrical properties of potato tuber and carrot root tissues. Can J Plant Sci 72(2):545–553

    Article  Google Scholar 

  • Zhang MIN, Stout DG, Willison JHM (1992) Plant tissue impedance and cold acclimation: a re-analysis. J Exp Bot 43(247):263–266

    Article  Google Scholar 

  • Zhang MIN, Repo T, Willison JHM, Sutinen S (1995) Electrical impedance analysis in plant tissues: on the biological meaning of Cole-Cole α in Scots pine needles. Eur Biophys J 24(2):99–106

    Article  Google Scholar 

  • Zhang X, Wang W, Sze G, Barber D, Chatwin C (2014) An image reconstruction algorithm for 3-D electrical impedance mammography. IEEE Trans Med Imaging 33(12):2223–2241

    Article  Google Scholar 

  • Zhou Z, dos Santos GS, Dowrick T, Avery J, Sun Z, Xu H, Holder DS (2015) Comparison of total variation algorithms for electrical impedance tomography. Physiol Meas 36(6):1193

    Article  Google Scholar 

Download references

Acknowledgments

All the authors acknowledge King Abdullah University of Science and Technology (KAUST), Saudi Arabia and the Indian Institute of Science (IISc), Bangalore, India, for providing the research facilities required to complete this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tushar Kanti Bera or Gilles Lubineau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bera, T.K., Nagaraju, J. & Lubineau, G. Electrical impedance spectroscopy (EIS)-based evaluation of biological tissue phantoms to study multifrequency electrical impedance tomography (Mf-EIT) systems. J Vis 19, 691–713 (2016). https://doi.org/10.1007/s12650-016-0351-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-016-0351-0

Keywords

Navigation