Skip to main content
Log in

An interactive visualization approach to the overview of geoscience data

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

Geoscience observation data refer to the datasets consisting of time series of multiple parameters generated from the sensors at fixed locations. Although a few works have attempted to visualize such data, none of them views these data as a specific type and attempts to show the overview in all the space, time and attribute aspects. It is important for domain experts to select the subsets of interest from huge amounts of observation data according to the high level patterns shown in the overview. We present a novel approach to visualize geoscience observation data in a compact radial view. Our solution consists of three visual elements. A map showing the spatial aspect is in the center of the visualization, while temporal and attribute aspects are seamlessly combined with the spatial information. Our approach is equipped with interactive mechanisms for highlighting the selected features, adjusting the display range, as well as interactively generating a fisheye view. We demonstrate the usability of our approach with three case studies of different domains. Eye tracking records and user feedbacks obtained in a small experiment also prove the effectiveness of our approach.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Andrienko N, Andrienko G (2006) Exploratory analysis of spatial and temporal data: a systematic approach. Springer Science and Business Media, Berlin

    MATH  Google Scholar 

  • Andrienko G, Andrienko N, Schumann H, Tominski C (2014) Visualization of trajectory attributes in space–time cube and trajectory wall. Cartography from Pole to Pole, pp 157–163

  • Brewer CA, Harrower MA (2009) ColorBrewer 2.0: color advice for cartography. http://colorbrewer2.org/, Penn State University

  • Burch M, Diehl S (2008) TimeRadarTrees: visualizing dynamic compound digraphs. Comput Graph Forum 27(3):823–830

    Article  Google Scholar 

  • Carenini G, Conati C, Hoque E, Steichen B, Toker D, Enns J (2014) Highlighting interventions and user differences: informing adaptive information visualization support. In: Proceedings of the 32nd ACM Conference on Human Factors in Computing Systems, pp 1835–1844

  • Cressie N, Wikle CK (2011) Statistics for spatio-temporal data. Wiley, USA

    MATH  Google Scholar 

  • Draper G, Riesenfeld RF (2008) Who votes for what? A visual query language for opinion data. IEEE Trans Vis Comput Graph 14(6):1197–1204

    Article  Google Scholar 

  • Draper G, Livnat Y, Riesenfeld RF (2009) A survey of radial methods for information visualization. IEEE Trans Vis Comput Graph 15(5):759–776

    Article  Google Scholar 

  • Drocourt Y, Borgo R, Scharrer K, Murray T, Bevan SI, Chen M (2011) Temporal visualization of boundary-based geo-information using radial projection. Comput Graph Forum 30(3):981–990

    Article  Google Scholar 

  • Faghmous JH, Kumar V (2014) Spatio-temporal data mining for climate data: advances, challenges, and opportunities. Data mining and knowledge discovery for big data, pp 83–116

  • Frey S, Sadlo F, Ertl T (2012) Visualization of temporal similarity in field data. IEEE Trans Vis Comput Graph 18(12):2023–2032

    Article  Google Scholar 

  • Gratzl S, Lex A, Gehlenborg N, Pfister H, Streit M (2013) Lineup: visual analysis of multi-attribute rankings. IEEE Trans Vis Comput Graph 19(12):2277–2286

    Article  Google Scholar 

  • Guo H, Wang Z, Yu B, Zhao H, Yuan X (2011) TripVista: triple perspective visual trajectory analytics and its application on microscopic traffic data at a road intersection. In: Proceedings of IEEE PacificVis’11, pp 163–170

  • Hartigan JA and Wong MA (1979) Algorithm AS 136: A k-means clustering algorithm. Appl Stat 100–108

  • Havre S, Hetzler B, Nowell L (2000) Themeriver: visualizing theme changes over time. In: Proceedings of the IEEE InfoVis 2000, pp 115–123

  • Havre S, Hetzler E, Whitney P, Nowell L (2002) ThemeRiver: visualizing thematic changes in large document collections. IEEE Trans Vis Comput Graph 8(1):9–20

    Article  Google Scholar 

  • Hornbæk K, Hertzum M (2011) The notion of overview in information visualization. Int J Hum Comput Stud 69(7):509–525

    Article  Google Scholar 

  • Inselberg A, Dimsdale B (1991) Parallel coordinates. In: Proceedings of Human-Machine Interactive Systems, pp 199–233

  • Jakobsen MR, Hornbæk K (2011) Fisheye interfaces—research problems and practical challenges. In: Proceedings of Human Aspects of Visualization, pp 76–91

  • Javed W, Mcdonnel B, Elmqvist N (2010) Graphical perception of multiple time series. IEEE Trans Vis Comput Graph 16(6):927–934

    Article  Google Scholar 

  • Johansson S, Jern M (2007) GeoAnalytics visual inquiry and filtering tools in parallel coordinates plots. In: Proceedings of the 15th Annual ACM International Symposium on Advances in Geographic Information Systems, pp 33

  • Kim SY, Maciejewski R, Malik A, Jang Y, Ebert DS, Isenberg T (2013) Bristle Maps: a multivariate abstraction technique for geovisualization. IEEE Trans Vis Comput Graph 19(9):1438–1454

    Article  Google Scholar 

  • Kraak MJ (2003) The space–time cube revisited from a geovisualization perspective. In: Proceedings of the 21st International Cartographic Conference 1988–1996

  • Kurzhals K, Fisher B, Burch M, Weiskop D (2014) Evaluating visual analytics with eye tracking. In: Proceedings of the Fifth Workshop on Beyond Time and Errors: Novel Evaluation Methods for Visualization, pp 61–69

  • Landesberger T, Bremm S, Andrienko N, Andrienko G, Tekusov M (2012) Visual analytics methods for categoric spatio-temporal data. In: Proceedings of the IEEE VAST’12, pp 183–192

  • Li J, Meng ZP, Zhang K (2014) Visualization of oceanographic applications using a common data model. In: Proceedings of the 29th ACM Symposium of Applied Computing (SAC’2014), pp 933–938

  • Li J, Zhang K, Meng ZP (2014) Vismate: interactive visual analysis of station-based observation data on climate changes. In: Proceedings of the IEEE VAST’14, pp 133–142

  • Malik A, Maciejewskiet R, Jang Y, Huang W (2012) A correlative analysis process in a visual analytics environment. In: Proceedings of the IEEE VAST’12, pp 33–42

  • Ministry of Environmental Protection (2012) HJ633-2012. People’s Republic of China National Standard-Technical Regulation on Ambient Air Quality Index (on trial). Beijing: China Environmental Science Press

  • Nocke T, Schumann H, Bohm U (2004) Methods for the visualization of clustered climate data. Comput Stat 19(1):75–94

    Article  MathSciNet  MATH  Google Scholar 

  • Nocke T, Sterzel T, Bottinger M, Wrobel M (2008) Visualization of climate and climate change data: an overview. In: Digital earth summit on geoinformatics, pp 226–232

  • Qu H, Chan WY, Xu A, Chung KL, Guo P (2007) Visual analysis of the air pollution problem in Hong Kong. IEEE Trans Vis Comput Graph 13(6):1408–1415

    Article  Google Scholar 

  • Ren G, Ding Y, Zhao Z, Zheng Z, Wu T, Tang G, Xu Y (2012) Recent progress in studies of climate change in China. Adv Atmos Sci 29:958–977 (In Chinese)

    Article  Google Scholar 

  • Shneiderman B (1996) The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings of IEEE Symposium on Visual Languages, pp 336–343

  • Slocum TA, Mcmaster RB, Kessler FC, Howard HH (2009) Thematic cartography and geographic visualization, 3rd edn. Pearson Education

  • Snyder JP (1987) Map projections—a working manual (US geological survey professional paper 1395), United States Government Printing

  • Sun JQ, Wang HJ, Yuan W (2011) Decadal variability of the extreme hot event in China and its association with atmospheric circulations. Clim Environ Res 16(2):199–208

    Google Scholar 

  • Tominski C, Schulz HJ (2012) The great wall of space–time. In: Proceedings of Vision, Modeling and Visualization, pp 199–206

  • Tominski C, Abello J, Schumann H (2004) Axes-based visualizations with radial layouts. In: Proceedings of the 2004 ACM Symposium on Applied Computing (SAC’04), pp 1242–1247

  • Tominski C, Donges JF, Nocke T (2011) Information visualization in climate research. In: Proceedings of the International Conference on Information Visualization (IV’2011), pp 298–305

  • Tominski C, Schumann H, Andrienko G, Andrienko N (2012) Stacking-based visualization of trajectory attribute data. IEEE Trans Vis Comput Graph 18(12):2565–2574

    Article  Google Scholar 

  • Wang Z, Ye T, Lu M, Yuan X, Qu HM, Yuan J, Wu Q (2014) Visual exploration of sparse traffic trajectory data. IEEE Trans Vis Comput Graph 20(12):1813–1822

    Article  Google Scholar 

  • Watson DF (1992) Contouring. Pergamon Press

  • Wu Y, Wei F, Liu S, Au N, Cui W, Zhou H, Qu H (2010) OpinionSeer: interactive visualization of hotel customer feedback. IEEE Trans Vis Comput Graph 16(6):1109–1118

    Article  Google Scholar 

  • Yang CC, Chen H, Hong K (2003) Visualization of large category map for Internet browsing. Decis Support Syst 35(1):89–102

    Article  Google Scholar 

  • Yuan X, Ren D, Wang Z, Guo C (2013) Dimension projection matrix/tree: interactive subspace visual exploration and analysis of high dimensional data. IEEE Trans Vis Comput Graph 19(12):2625–2633

    Article  Google Scholar 

  • Zhang M (2009) Color code for products of weather forecast and service GB. Chinese meteorological industry standard (in Chinese)

  • Zhang Z, Wang B, Ahmed F, Ramakrishnan IV, Zhao R, Viccellio A, Mueller K (2013) The Five W’s for Information Visualization with application to healthcare informatics. IEEE Trans Vis Comput Graph 19(11):1895–1910

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Zhao Xiao and Huan Yang for their discussions. We are also grateful to the anonymous reviewers for their insightful comments that have helped us in improving the final presentation. This work was supported by Tianjin “Big Data Algorithms and Applications” project (13CZDGX01099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Meng, ZP., Huang, ML. et al. An interactive visualization approach to the overview of geoscience data. J Vis 20, 433–451 (2017). https://doi.org/10.1007/s12650-016-0352-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-016-0352-z

Keywords

Navigation