Skip to main content
Log in

The Graph Landscape: using visual analytics for graph set analysis

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

In a variety of research and application areas, graphs are an important structure for data modeling and analysis. While graph properties can have a crucial influence on the performance of graph algorithms, and thus on the outcome of experiments, often only basic analysis of the graphs under investigation in an experimental evaluation is performed and a few characteristics are reported in publications. We present Graph Landscape, a concept for the visual analysis of graph set properties. The Graph Landscape aims to support researchers to explore graphs and graph sets regarding their properties, to allow to select good experimental test sets, analyze newly generated sets, compare sets and assess the validity (or range) of experimental results and corresponding conclusions.

Graphical Abstract

Graphical Abstract text

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bachmaier C, Brandenburg FJ, Effinger P, Gutwenger C, Katajainen J, Klein K, Spönemann M, Stegmaier M, Wybrow M (2012) The open graph archive: a community-driven effort. In: Graph drawing. Springer, Berlin, pp 435–440

  • Batagelj V (2009) Social network analysis, large-scale. In: Meyers RA (ed) Encyclopedia of complexity and systems science. Springer, Berlin, pp 8245–8265

    Chapter  Google Scholar 

  • Chimani M, Klein K (2010) Algorithm engineering: concepts and practice. Experimental methods for the analysis of optimization algorithms. Springer, Berlin, pp 131–158

    Chapter  Google Scholar 

  • Chimani M, Gutwenger C, Jünger M, Klau GW, Klein K, Mutzel P (2013) The open graph drawing framework (OGDF). In: Tamassia R (ed) Handbook on graph drawing and visualization. Chapman and Hall/CRC, Boca Raton, pp 543–569

    Google Scholar 

  • Dionísio A, Menezes R, Mendes DA (2006) Entropy-based independence test. Nonlinear Dyn 44(1–4):351–357

    Article  MATH  Google Scholar 

  • Doncheva NT, Assenov Y, Domingues FS, Albrecht M (2012) Topological analysis and interactive visualization of biological networks and protein structures. Nat Protoc 7(4):670–685

    Article  Google Scholar 

  • Dzemyda G, Marcinkevicius V, Medvedev V (2011) Large-scale multidimensional data visualization: a web service for data mining. In: Abramowicz W, Llorente IM, Surridge M, Zisman A, Vayssière J (eds) Proceedings of ServiceWave 2011. LNCS, vol 6994, pp 14–25. Springer, Berlin

  • Gansner ER, Hu Y, North SC (2013) A maxent-stress model for graph layout. IEEE Trans Vis Comput Graph 19(6):927–940

    Article  Google Scholar 

  • Hakes L, Pinney JW, Robertson DL, Lovell SC (2008) Protein-protein interaction networks and biology—what’s the connection? Nat Biotechnol 26(1):69–72

    Article  Google Scholar 

  • Hartigan J (1975) Printer graphics for clustering. J Stat Comput Simul 4(3):187–213

    Article  MATH  Google Scholar 

  • Heinrich J, Weiskopf D (2013) State of the art of parallel coordinates. In: Eurographics 2013-state of the art reports, pp 95–116. The Eurographics Association

  • Huang T, Huang ML, Nguyen QV, Zhao L (2014) A space-filling multidimensional visualization (SFMDVis) for exploratory data analysis. In: Bednarz T, Huang W, Nguyen QV, Wu Y (eds) The 7th international symposium on visual information communication and interaction, VINCI ’14, Sydney, NSW, Australia, August 5–8, 2014, p 19. ACM, New York

    Google Scholar 

  • Inselberg A (1985) The plane with parallel coordinates. Vis Comput 1(2):69–91

    Article  MathSciNet  MATH  Google Scholar 

  • Kairam S, MacLean D, Savva M, Heer J (2012) Graphprism: compact visualization of network structure. In: Proceedings of the international working conference on advanced visual interfaces, AVI ’12, New York, NY. USA. ACM, New York, pp 498–505

  • Kaski S, Venna J, Kohonen T (1999) Coloring that reveals high-dimensional structures in data. In: 6th international conference on neural information processing, 1999. Proceedings. ICONIP ’99, vol 2, pp 729–734

  • Kennedy A, Klein K, Nguyen A (2015) The graph landscape—a concept for the visual analysis of graph set properties. In: The 8th international symposium on visual information communication and interaction, VINCI

  • Klimenta M, Brandes U (2012) Graph drawing by classical multidimensional scaling: new perspectives. In: Didimo W, Patrignani M (eds) Proceedings of GD 2012, revised selected papers. LNCS, vol 7704. Springer, Berlin, pp 55–66

  • Kobourov SG (2013) Force-directed drawing algorithms. In: Handb Graph Draw Vis. Chapman and Hall/CRC, pp 383–408

  • Kohonen T (1998) The self-organizing map. Neurocomputing 21(1):1–6

    Article  MATH  Google Scholar 

  • Nguyen QV, Zhang K, Simoff S (2015) Unlocking the complexity of port data with visualization. IEEE Trans Hum Mach Syst 45(2):272–279

    Article  Google Scholar 

  • Nhon DT, Wilkinson L (2014) Scagexplorer: exploring scatterplots by their scagnostics. In: Fujishiro I, Brandes U, Hagen H, Takahashi S (eds) IEEE PacificVis 2014. IEEE, pp 73–80

  • Nohno K, Wu H-Y, Watanabe K, Takahashi S, Fujishiro I (2014) Spectral-based contractible parallel coordinates. In: 2014 18th international conference on information visualisation (IV), July 2014, pp 7–12

  • Pagliosa P, Paulovich FV, Minghim R, Levkowitz H, Nonato LG (2015) Projection inspector: assessment and synthesis of multidimensional projections. Neurocomputing 150(Part B(0)):599–610

  • Panagiotidis A, Burch M, Deussen O, Weiskopf D, Ertl T (2014) Graph exploration by multiple linked metric views. In: 2014 18th international conference on information visualisation (IV). IEEE, pp 19–26

  • Pérez D, Zhang L, Schaefer M, Schreck T, Keim D, Díaz I (2015) Interactive feature space extension for multidimensional data projection. Neurocomputing 150:611–626

    Article  Google Scholar 

  • Purchase HC, Hamer J, Nöllenburg M, Kobourov SG (2012) On the usability of Lombardi graph drawings. In: Proceedings of GD 2012. LNCS, vol 7704. Springer, Berlin, pp 451–462

  • Silvestro LD, Burch M, Caccamo M, Weiskopf D, Beck F, Gallo G (2014) Visual analysis of time-dependent multivariate data from dairy farming industry. In: Laramee RS, Kerren A, Braz J (eds) Proceedings of IVAPP 2014. SciTePress, pp 99–106

  • Suematsu H, Zheng Y, Itoh T, Fujimaki R, Morinaga S, Kawahara Y (2013) Arrangement of low-dimensional parallel coordinate plots for high-dimensional data visualization. In: Proceedings of IV 2013, pp 59–65

  • ten Caat M, Maurits NM, Roerdink JBTM (2005) Tiled parallel coordinates for the visualization of time-varying multichannel EEG data. In: Brodlie K, Duke DJ, Joy KI (eds) EuroVis05: joint Eurographics—IEEE VGTC symposium on visualization, Leeds, United Kingdom, 1–3 June 2005. Eurographics Association, pp 61–68

  • Torgerson WS (1952) Multidimensional scaling: I. Theory and method. Psychometrika 30(17):401–419

    Article  MathSciNet  MATH  Google Scholar 

  • Vesanto J (1999) SOM-based data visualization methods. Intell Data Anal 3(2):111–126

    Article  MATH  Google Scholar 

  • Wakita K, Masanori T, Hosobe H (2015) Interactive high-dimensional visualization of social graphs. In: Liu S, Scheuermann G, Takahashi S (eds) IEEE PacificVis 2015. IEEE, pp 303–310

  • Wang Y (Florence), Takatuska M (2013) Enhancing SOM based visualization methods for better data navigation. In: Lee M, Hirose A, Hou Z-G, Kil R (eds) Neural information processing. Lecture notes in computer science, vol 8227, pp 496–503. Springer, Berlin

  • Xu K, Ivona B, Leonid B, Soojin VY (2011) Path lengths in protein-protein interaction networks and biological complexity. Proteomics 11:1857–1867

    Article  Google Scholar 

  • Zheng Y, Suematsu H, Itoh T, Fujimaki R, Morinaga S, Kawahara Y (2015) Scatterplot layout for high-dimensional data visualization. J Vis 18(1):111–119

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of the Australian Research Council through Discovery Project Grant DP140100077. We also thank Peter Eades for fruitful discussions and his advice on and support of the project. Some of the work has been done while K. Klein was with the University of Sydney.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Klein.

Additional information

A preliminary version of this paper has appeared as “The Graph Landscape—a Concept for the Visual Analysis of Graph Set Properties” (Kennedy et al. 2015).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kennedy, A., Klein, K., Nguyen, A. et al. The Graph Landscape: using visual analytics for graph set analysis. J Vis 20, 417–432 (2017). https://doi.org/10.1007/s12650-016-0374-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-016-0374-6

Keywords

Navigation