Skip to main content
Log in

Reconstructing flicker-free surfaces in hybrid particle-grid water simulation

Robust tracking of fluid surfaces using dual marching cubes

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

We present a new method for adaptively extracting flicker-free surfaces from time-varying nonuniform point-set data such as a hybrid particle–grid water simulation. When particles are irregularly distributed in hybrid simulations, degenerate triangles and holes may occur when constructing surfaces adaptively. These abnormal surfaces appear unexpectedly between frames, and we call them “flicker” artifacts (see Fig. 1). In this paper, we address this problem by developing: (1) a kernel-based octree technique to avoid degenerate triangles being created because of size discontinuities between adjacent leaf cells; (2) a level-set error compensation algorithm to avoid apertured water surfaces caused by some particles being lost in the triangulation process; and (3) the extraction of sufficient surface particles for efficient reconstruction of surfaces with extreme amounts of spatial adaptivity. Comparisons with previous methods convincingly demonstrate that our technique successfully reduced flicker artifacts.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Akinci G, Akinci N, Oswald E, Teschner M (2013) Adaptive surface reconstruction for SPH using 3-level uniform grids. In: international conferences in Central Europe on computer graphics, visualization and computer vision, pp 195–204

  • Akinci G, Ihmsen M, Akinci N, Teschner M (2012) Parallel surface reconstruction for particle-based fluids. Comput Graph Forum 31(6):1797–1809

    Article  Google Scholar 

  • Akinci N, Cornelis J, Akinci G, Teschner M (2013) Coupling elastic solids with SPH fluids. Comput Anim Virtual Worlds 24(3–4):195–203

    Article  Google Scholar 

  • Akinci N, Ihmsen M, Akinci G, Solenthaler B, Teschner M (2012) Versatile rigid-fluid coupling for incompressible SPH. ACM Trans Graph 31(4):62:1–62:8

    Article  Google Scholar 

  • Ando R, Thurey N, Tsuruno R (2012) Preserving fluid sheets with adaptively sampled anisotropic particles. IEEE Trans Vis Comput Graph 18(8):1202–1214

    Article  Google Scholar 

  • Ando R, Thürey N, Wojtan C (2013) Highly adaptive liquid simulations on tetrahedral meshes. ACM Trans Graph 32(4):103:1–103:10

    Article  MATH  Google Scholar 

  • Ando R, Tsuruno R (2011) A particle-based method for preserving fluid sheets. ACM SIGGRAPH Eurograph Symp Comput Anim 10:7–16

    Google Scholar 

  • Becker M, Ihmsen M, Techner M (2009) Corotated SPH for deformable solids. In: Eurographics workshop on natural phenomena, pp 27–34

  • Becker M, Teschner M (2007) Weakly compressible SPH for free surface flows. In: ACM SIGGRAPH/Eurographics symposium on computer animation, pp 209–217

  • Becker M, Tessendorf H, Teschner M (2009) Direct forcing for Lagrangian rigid-fluid coupling. IEEE Trans Vis Comput Graph 15(3):493–503

    Article  Google Scholar 

  • Cornelis J, Ihmsen M, Peer A, Teschner M (2014) IISPH-FLIP for incompressible fluids. Comput Graph Forum 33(2):255–262

    Article  Google Scholar 

  • Elseberg J, Borrmann D, Nüchter A (2013) One billion points in the cloud an octree for efficient processing of 3D laser scans. J Photogramm Remote Sens 76:76–88

    Article  Google Scholar 

  • Foster N, Fedkiw R (2001) Practical animation of liquids. ACM transactions on graphics, pp 23–30

  • Holmlid E (2010) Manifold contouring of an adaptively sampled distance field

  • Ihmsen M, Cornelis J, Solenthaler B, Horvath C, Teschner M (2014) Implicit incompressible SPH. IEEE Trans Vis Comput Graph 20(3):426–435

    Article  Google Scholar 

  • Ju T, Losasso F, Schaefer S, Warren J (2002) Dual contouring of hermite data. ACM Trans Graph 21(3):339–346

    Article  Google Scholar 

  • Kim JH, Kim CH, Lee J (2015) A hybrid sdf for the detailed representation of liquid–solid mixed surfaces. Comput Anim Virtual Worlds

  • Kim PR, Lee HY, Kim JH, Kim CH (2012) Controlling shapes of air bubbles in a multi-phase fluid simulation. Vis Comput 28(6–8):597–602

    Article  Google Scholar 

  • Lenaerts T, Adams B, Dutré P (2008) Porous flow in particle-based fluid simulations. ACM Trans Graph 27(3)

  • Lenaerts T, Dutré P (2008) Unified SPH model for fluid-shell simulations. In: ACM SIGGRAPH Posters, pp 12–13

  • Löffler F, Rybacki S, Schumann H (2009) Error-bounded gpu-supported terrain visualisation. In: International conferences in Central Europe on computer graphics, visualization and computer vision. Václav Skala-UNION Agency

  • Löffler F, Schumann H (2010) Qem-filtering: a new technique for feature-sensitive terrain mesh simplification. In: International workshop on vision, modeling and visualization, pp 1–8

  • Löffler F, Schumann H (2012) Generating smooth high-quality isosurfaces for interactive modeling and visualization of complex terrains. In: Proceedings of the vision, modeling, and visualization workshop

  • Löffler F, Schwanke S, Schumann H (2010) A hybrid approach for high quality real-time terrain rendering and optimized a-priori error estimation. In: Proceedings of the international conference on computer graphics theory and applications, pp 233–238

  • Losasso F, Gibou F, Fedkiw R (2004) Simulating water and smoke with an octree data structure. ACM Trans Graph 23(3):457–462

    Article  Google Scholar 

  • Macklin M, Müller M (2013) Position based fluids. ACM Trans Graph 32(4):104:1–104‘:12

    Article  MATH  Google Scholar 

  • Müller M, Charypar D, Gross M (2003) Particle-based fluid simulation for interactive applications. ACM SIGGRAPH Eurographics Symp Comput Anim 6:154–159

    Google Scholar 

  • Müller M, Keiser R, Nealen A, Pauly M, Gross M, Alexa M (2004) Point based animation of elastic, plastic and melting objects. In: ACM SIGGRAPH/Eurographics symposium on computer animation, pp 141–151

  • Müller M, Schirm S, Teschner M, Heidelberger B, Gross M (2004) Interaction of fluids with deformable solids. Comput Anim Virtual Worlds 15(3–4):159–171

    Article  Google Scholar 

  • Müller M, Solenthaler B, Keiser R, Gross M (2005) Particle-based fluid-fluid interaction. In: ACM SIGGRAPH/Eurographics symposium on computer animation, pp 237–244

  • Nielson GM (2004) Dual marching cubes. In: Proceedings of the conference on visualization’04, pp 489–496

  • Ohtake Y, Belyaev A, Alexa M, Turk G, Seidel HP (2003) Multi-level partition of unity implicits. ACM Trans Graph 22(3):463–470

    Article  Google Scholar 

  • Park T, Lee H, Kim Ch (2007) Progressive compression of geometry information with smooth intermediate meshes. Pattern recognition and image analysis. Springer, Berlin, pp 89–96

    Chapter  Google Scholar 

  • Schaefer S, Warren J (2005) Dual marching cubes: primal contouring of dual grids. Comput Graph Forum 24(2):195–201

    Article  Google Scholar 

  • Sim JY, Lee SU, Kim CS (2005) Construction of regular 3D point clouds using octree partitioning and resampling. IEEE Int Symp Circuits Syst 2005(2):956–959

    Google Scholar 

  • Solenthaler B, Gross M (2011) Two-scale particle simulation. ACM Trans Graph 30(4):81:1–81:8

    Article  Google Scholar 

  • Solenthaler B, Pajarola R (2008) Density contrast SPH interfaces. In: ACM SIGGRAPH/Eurographics symposium on computer animation, pp 211–218

  • Solenthaler B, Pajarola R (2009) Predictive–corrective incompressible SPH. ACM Trans Graph 28(3):40–46

    Article  Google Scholar 

  • Solenthaler B, Schlafli J, Pajarola R (2007) A unified particle model for fluid solid interactions. Comput Anim Virtual Worlds 18(1):69–82

    Article  Google Scholar 

  • Thürey N, Keiser R, Pauly M, Rüde U (2006) Detail-preserving fluid control. In: ACM SIGGRAPH/Eurographics symposium on computer animation, pp 7–12

  • Um K, Baek S, Han J (2014) Advanced hybrid particle-grid method with sub-grid particle correction. Comput Graph Forum 33(7):209–218

    Article  Google Scholar 

  • Wang CB, Zhang Q, Kong FL, Qin H (2013) Hybrid particle-grid fluid animation with enhanced details. Vis Comput 29(9):937–947

    Article  Google Scholar 

  • Yang L, Li S, Hao A, Qin H (2012) Realtime two-way coupling of meshless fluids and nonlinear fem. Comput Graph Forum 31(7):2037–2046

    Article  Google Scholar 

  • Zhu Y, Bridson R (2005) Animating sand as a fluid. ACM Trans Graph 24(3):965–972

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by a Korea University Grant and Hallym University Research Fund (HRF-201609-008), Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2013R1A1A2011602). This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, ICT and future Planning(NRF-2014R1A2A2A01007143, NRF-2015R1C1A2A01053543, NRF- 2015R1A2A1A16074940, NRF-2015R1A1A1A05001196).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JH., Kim, CH. & Lee, J. Reconstructing flicker-free surfaces in hybrid particle-grid water simulation. J Vis 20, 379–391 (2017). https://doi.org/10.1007/s12650-016-0400-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-016-0400-8

Keywords

Navigation