Skip to main content
Log in

TieVis: visual analytics of evolution of interpersonal ties

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

Interpersonal ties, such as strong ties and weak ties, describe the information carried by an edge in social network. Tracking the dynamic changes of interpersonal ties can thus enhance our understanding of the evolution of a complex network. Nevertheless, existing studies in dynamic network visualization mostly focus on the temporal changes of nodes or structures of the network without an adequate support of analysis and exploration of the temporal changes of interpersonal ties. In this paper, we introduce a new visual analytics method that enables interactive analysis and exploration of the dynamic changes of interpersonal ties. The method integrates four well-linked visualizations, including a scatterplot, a pixelbar chart, a layered graph, and a node–link diagram, to allow for multi-perspective analysis of the evolution of interpersonal ties. The scatterplot created by multi-dimensional scaling can help reveal the clusters of ties and detect abnormal ties, while other visualizations allow users to explore the clusters of ties interactively from different perspectives. Two case studies have been conducted to demonstrate the effectiveness of our approach.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. http://cis.jhu.edu/~parky/Enron/employees.

  2. Obtained from a large online game company.

References

  • Alvarez GA, Franconeri SL (2007) How many objects can you track?: Evidence for a resource-limited attentive tracking mechanism. J Vis 7(13):14

    Article  Google Scholar 

  • Archambault D, Hurley N (2014) Visualization of trends in subscriber attributes of communities on mobile telecommunications networks. Soc Netw Anal Min 4(1):1–17

    Article  Google Scholar 

  • Bach B, Pietriga E, Fekete JD (2014a) Graphdiaries: animated transitions andtemporal navigation for dynamic networks. Vis Comput Gr IEEE Trans 20(5):740–754

    Article  Google Scholar 

  • Bach B, Pietriga E, Fekete JD (2014b) Visualizing dynamic networks with matrix cubes. In: Proceedings of the 32nd annual ACM conference on Human factors in computing systems, ACM, pp 877–886

  • Beck F, Burch M, Diehl S, Weiskopf D (2014) The state of the art in visualizing dynamic graphs. In: EuroVis STAR

  • Beyer D, Hassan AE (2006) Animated visualization of software history using evolution storyboards. In: Reverse Engineering, 2006. WCRE’06. 13th Working Conference on, IEEE, pp 199–210

  • Bezerianos A, Chevalier F, Dragicevic P, Elmqvist N, Fekete JD (2010) Graphdice: a system for exploring multivariate social networks. Comput Gr Forum Wiley Online Libr 29:863–872

    Article  Google Scholar 

  • Bian Y (1997) Bringing strong ties back in: indirect ties, network bridges, and job searches in china. Am Sociol Rev 22(3):366–385

    Article  MathSciNet  Google Scholar 

  • Brandes U, Nick B (2011) Asymmetric relations in longitudinal social networks. Vis Comput Gr IEEE Trans 17(12):2283–2290

    Article  Google Scholar 

  • Burch M, Weiskopf D (2014) A flip-book of edge-splatted small multiples for visualizing dynamic graphs. In: Proceedings of the 7th international symposium on visual information communication and interaction, ACM, p 29

  • Burch M, Vehlow C, Beck F, Diehl S, Weiskopf D (2011) Parallel edge splatting for scalable dynamic graph visualization. Vis Comput Gr IEEE Trans 17(12):2344–2353

    Article  Google Scholar 

  • Burch M, Beck F, Weiskopf D (2012) Radial edge splatting for visualizing dynamic directed graphs. In: GRAPP/IVAPP, pp 603–612

  • Burch M, Schmidt B, Weiskopf D (2013) A matrix-based visualization for exploring dynamic compound digraphs. In: Information visualisation (IV), 2013 17th international conference, IEEE, pp 66–73

  • Cui W, Wang X, Liu S, Riche NH, Madhyastha TM, Ma KL, Guo B (2014) Let it flow: a static method for exploring dynamic graphs. In: Pacific visualization symposium (PacificVis), 2014 IEEE, IEEE, pp 121–128

  • Dwyer T, Hong SH, Koschützki D, Schreiber F, Xu K (2006) Visual analysis of network centralities. In: Proceedings of the 2006 Asia-Pacific symposium on information visualisation-Volume 60, Australian Computer Society, Inc., pp 189–197

  • Easley D, Kleinberg J (2010) Networks, crowds, and markets: reasoning about a highly connected world. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Elzen SVD, Holten D, Blaas J, Wijk JJV (2015) Reducing snapshots to points: a visual analytics approach to dynamic network exploration. IEEE Trans Vis Comput Gr 22(1):1–1

    Article  Google Scholar 

  • Farrugia M, Hurley N, Quigley A (2011) Exploring temporal ego networks using small multiples and tree-ring layouts. In: ACHI 2011, The fourth international conference on advances in computer–human interactions, pp 79–88

  • Friedkin NE (1982) Information flow through strong and weak ties in intraorganizational social networks. Soc Netw 3(4):273–285

    Article  MathSciNet  Google Scholar 

  • Frishman Y, Tal A (2008) Online dynamic graph drawing. Vis Comput Gr IEEE Trans 14(4):727–740

    Article  Google Scholar 

  • Granovetter M (2005) The impact of social structure on economic outcomes. J Econ Perspect 19(1):33–50

    Article  Google Scholar 

  • Granovetter MS (1973) The strength of weak ties. Am J Sociol 78(6):1360–1380

    Article  Google Scholar 

  • Hlawatsch M, Burch M, Weiskopf D (2014) Visual adjacency lists for dynamic graphs. Vis Comput Gr IEEE Trans 20(11):1590–1603

    Article  Google Scholar 

  • Junker BH, Koschützki D, Schreiber F (2006) Exploration of biological network centralities with centibin. BMC Bioinform 7(1):219

    Article  Google Scholar 

  • Kairam S, MacLean D, Savva M, Heer J (2012) Graphprism: compact visualization of network structure. In: Proceedings of the international working conference on advanced visual interfaces, ACM, pp 498–505

  • Liu X, Shen HW (2015) The effects of representation and juxtaposition on graphical perception of matrix visualization. In: Proceedings of the 33rd annual ACM conference on human factors in computing systems, ACM, pp 269–278

  • Murtagh F (1983) A survey of recent advances in hierarchical clustering algorithms. Comput J 26(4):354–359

    Article  MATH  Google Scholar 

  • Nick B, Lee C, Cunningham P, Brandes U (2013) Simmelian backbones: Amplifying hidden homophily in facebook networks. In: IEEE/ACM international conference on advances in social networks analysis and mining, pp 525–532

  • Nocaj A, Ortmann M, Brandes U (2015) Untangling the hairballs of multi-centered, small-world online social media networks. J Gr Algorithms Appl 40(3):977–985

    MathSciNet  MATH  Google Scholar 

  • Oelke D, Kokkinakis D, Keim DA (2013) Fingerprint matrices: uncovering the dynamics of social networks in prose literature. Comput Gr Forum Wiley Online Libr 32:371–380

    Article  Google Scholar 

  • Panagiotidis A, Burch M, Deussen O, Weiskopf D, Ertl T (2014) Graph exploration by multiple linked metric views. In: Information visualisation (IV), 2014 18th international conference on, IEEE, pp 19–26

  • Perer A, Shneiderman B (2006) Balancing systematic and flexible exploration of social networks. Vis Comput Gr IEEE Trans 12(5):693–700

    Article  Google Scholar 

  • Pohl M, Reitz F, Birke P (2008) As time goes by: integrated visualization and analysis of dynamic networks. In: Proceedings of the working conference on advanced visual interfaces, ACM, pp 372–375

  • Rufiange S, McGuffin MJ (2013) Diffani: visualizing dynamic graphs with a hybrid of difference maps and animation. Vis Comput Gr IEEE Trans 19(12):2556–2565

    Article  Google Scholar 

  • Sallaberry A, Muelder C, Ma KL (2012) Clustering, visualizing, and navigating for large dynamic graphs. In: 20th international symposium on graph drawing. Springer, Berlin, vol 7704, pp 487–498

  • Vehlow C, Beck F, Auwärter P, Weiskopf D (2015) Visualizing the evolution of communities in dynamic graphs. In: Computer graphics Forum, vol 34. Wiley Online Library, pp 277–28

  • Ward MO, Grinstein G, Keim D (2010) Interactive data visualization: foundations, techniques, and applications. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Zimmer B, Jusufi I, Kerren A (2012) Analyzing multiple network centralities with vincent. In: Proceedings of the SIGRAD conference on interactive visual analysis of data, Linköping University Electronic Press, pp 87–90

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Additional information

Supported by Major Program of National Natural Science Foundation of China (61232012), National Natural Science Foundation of China (61422211), and National Natural Science Foundation of China (61303141), Shandong Provincial Natural Science Foundation (No. ZR2015FM022).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, F., Chen, W., Lin, T. et al. TieVis: visual analytics of evolution of interpersonal ties. J Vis 20, 905–918 (2017). https://doi.org/10.1007/s12650-017-0430-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-017-0430-x

Keywords

Navigation