Skip to main content
Log in

Hydromagnetic solid–liquid pulsatile flow through concentric cylinders in a porous medium

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

The current research is reported about the hydromagnetic solid–liquid flow in an annulus between two concentric circular cylinders embedded in a porous media. The impact of joule heating is also accounted for. Unlike the usually applied constant pressure gradient, the pulsatile pressure gradient is employed. The flow problem is first modeled and then tackled by Runge–Kutta–Fehlberg fourth–fifth-order (RKF45) numerical scheme along with shooting algorithm. The impacts of emerging parameters namely magnetic field parameter and porosity parameter on velocity and temperature distributions are displayed through graphs and briefly addressed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A:

A constant with a unit of pressure gradient (Pam−1)

θ f, θ s :

Dimensionless temperature of fluid and particle phase (−)

u *f , u *s :

Dimensionless velocity for fluid and solid phase (−)

Ec :

Eckert number (−)

u f, u s :

Fluid phase and solid phase velocity (ms−1)

B 0 :

Magnetic field strength (T)

M :

Magnetic parameter (−)

N 1 :

Particles number density (kgm−3)

k * :

Permeability of porous medium (m2)

K :

Porosity parameter (−)

Pr :

Prandtl number (−)

p :

Pressure (Pa)

r s :

Radius of spherical particles (m)

f 1 :

Ratio of densities of particle to fluid (−)

U :

Reference velocity (ms−1)

Re :

Reynolds number (−)

c f, c s :

Specific heat of fluid and solid particles (m2s−2K−1)

S :

Stokes drag coefficient (−)

T a, T b :

Temperature at surface of inner and outer cylinder (K)

T f, T s :

Temperature for fluid and solid particle (K)

k :

Thermal conductivity (Wm−1K−1)

r, z :

Variables representing r and z directions (m)

C :

Volume fraction of particles (kgm−3)

f:

Fluid (−)

s:

Solid particles (−)

λ :

Aspect ratio (−)

ρ :

Density (kgm−3)

ɛ :

Dimensionless small quantity (−)

α :

Dust parameter (−)

μ :

Dynamic viscosity (kgm−1s−1)

σ :

Electrical conductivity (kg−1m−3s3A2)

ω :

Frequency of oscillation (Hz or s−1)

β 1 :

Frequency parameter (−)

ν :

Kinematic viscosity [m2s−1]

γ :

Ratio of specific heat of particle to fluid (−)

ξ, η :

Similarity variables (−)

τ T :

Thermal equilibrium time (s)

τ v :

Velocity relaxation time (s)

References

  • Abbas Z, Hasnain J (2017) Two-phase magneto convection flow of magnetite Fe3O4 nanoparticles in a horizontal composite porous annulus. Results Phys 7:574–580

    Article  Google Scholar 

  • Agaliotis E, Bernal C (2017) Modelling and simulation of drag forces of non-spherical particles moving towards a surface in polymer melt flows. Colloid Interface Sci Commun 19:20–24

    Article  Google Scholar 

  • Attia HA (1999) Transient MHD flow and heat transfer between two parallel plates with temperature dependent viscosity. Mech Res Commun 26:115–121

    Article  MATH  Google Scholar 

  • Aziz A, Uddin M, Hamad MA (2012) MHD flow over an inclined radiating plate with the temperature-dependent thermal conductivity, variable reactive index, and heat generation. Heat Transf Asian Res 41:241–259

    Article  Google Scholar 

  • Beg OA, Rashidi MM, Beg TA, Asadi M (2012) Homotopy analysis of transient magneto-bio-fluid dynamics of micropolar squeeze film in a porous medium: a model for magneto-bio-rheological lubrication. J Mech Med Biol 12(03):1250051

    Article  Google Scholar 

  • Beg OA, Uddin M, Rashidi MM, Kavyani N (2014) Double-diffusive radiative magnetic mixed convective slip flow with Biot and Richardson number effects. J Eng Thermophys 23:79–97

    Article  Google Scholar 

  • Bhatti MM, Zeeshan A (2016) Study of variable magnetic field and endoscope on peristaltic blood flow of particle–fluid suspension through an annulus. Biomed Eng Lett 4:242–249

    Article  Google Scholar 

  • Chiang CY, Aroh K, Ehrman SH (2012) Copper oxide nanoparticle made by flame spray pyrolysis for photoelectrochemical water splitting—part I. CuO nanoparticle preparation. Int J Hydrog Energy 37:4871–4879

    Article  Google Scholar 

  • Dai L (2008) Non-linear dynamics of piecewise constant systems and implementation of piecewise constant arguments. World scientific, Singapore

    Book  MATH  Google Scholar 

  • Datta N, Dalal DC (1995) Pulsatile flow and heat transfer of a dusty fluid through an infinitely long annular pipe. Int J Multiph Flow 21:515–528

    Article  MATH  Google Scholar 

  • Dixit LA (1980) Unsteady flow of a dusty viscous fluid through rectangular ducts. Indian J Theor Phys 28:129

    Google Scholar 

  • Ellahi R, Aziz S, Zeeshan A (2013) Non-Newtonian nanofluid flow through a porous medium between two coaxial cylinders with heat transfer and variable viscosity. J Porous Media 16:205–216

    Article  Google Scholar 

  • Fu X, Yao Z, Zhang X (2017) Numerical simulation of polygonal particles moving in incompressible viscous fluids. Particuology 31:140–151

    Article  Google Scholar 

  • Gad NS (2011) Effect of Hall currents on interaction of pulsatile and peristaltic transport induced flows of a particle–fluid suspension. Appl Math Comput 217:4313–4320

    MathSciNet  MATH  Google Scholar 

  • Gireesha BJ, Mahanthesh B, Manjunatha PT, Gorla RS (2015) Numerical solution for hydromagnetic boundary layer flow and heat transfer past a stretching surface embedded in non-Darcy porous medium with fluid–particle suspension. J Niger Math Soc 34:267–285

    Article  MathSciNet  MATH  Google Scholar 

  • Gupta RK, Gupta SC (1976) Flow of a dusty gas through a channel with arbitrary time varying pressure gradient. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 27:119–125

    Article  MATH  Google Scholar 

  • Haq RU, Shahzad F, Al-Mdallal QM (2017) MHD pulsatile flow of engine oil based carbon nanotubes between two concentric cylinders. Results Phys 7:57–68

    Article  Google Scholar 

  • Ijaz N, Zeeshan A, Bhatti MM (2017) Peristaltic propulsion of particulate non-Newtonian Ree–Eyring fluid in a duct through constant magnetic field. Alex Eng J. https://doi.org/10.1016/j.aej.2017.02.009 (in press)

    Google Scholar 

  • Kakarantzas SC, Benos LT, Sarris IE, Knaepen B, Grecos AP, Vlachos NS (2017) MHD liquid metal flow and heat transfer between vertical coaxial cylinders under horizontal magnetic field. Int J Heat Fluid Flow 65:342–351

    Article  Google Scholar 

  • Khabazi NP, Sadeghy K (2016) Peristaltic transport of solid particles suspended in a viscoplastic fluid: a numerical study. J Nonnewton Fluid Mech 236:1–7

    Article  MathSciNet  Google Scholar 

  • Makinde OD, Chinyoka T (2010) MHD transient flows and heat transfer of dusty fluid in a channel with variable physical properties and Navier slip condition. Comput Math Appl 60:660–669

    Article  MathSciNet  MATH  Google Scholar 

  • Marble FE (1963) Dynamics of a gas containing small solid particles. Proceedings of the 5th AGARD combustion and propulsion colloquium Pergamon press Oxford. pp 175–215

  • Mathews JH, Fink KD (2004) Numerical methods using MATLAB. Pearson, London

    Google Scholar 

  • Mekheimer KS, El Shehawey EF, Elaw AM (1998) Peristaltic motion of a particle–fluid suspension in a planar channel. Int J Theor Phys 37:2895–2920

    Article  MATH  Google Scholar 

  • Michaelides EE (2013) Heat and mass transfer in particulate suspensions. Springer Science and Business Media, Berlin

    Book  Google Scholar 

  • Mosayebidorcheh S, Makinde OD, Ganji DD (2017) Chermahini MA DTM-FDM hybrid approach to unsteady MHD Couette flow and heat transfer of dusty fluid with variable properties. Therm Sci Eng Prog 2:57–63

    Article  Google Scholar 

  • Parsa AB, Rashidi MM, Beg OA, Sadri SM (2013) Semi-computational simulation of magneto-hemodynamic flow in a semi-porous channel using optimal homotopy and differential transform methods. Comput Biol Med 43(9):1142–1153

    Article  Google Scholar 

  • Prasad VR, Ramacharyulu NC (1979) Unsteady flow of a dusty incompressible fluid between two parallel plates under an impulsive pressure gradient. Defense Sci J 30:125–130

    Article  MATH  Google Scholar 

  • Rashidi MM, Keimanesh M, Rajvanshi SC (2012) Study of pulsatile flow in a porous annulus with the homotopy analysis method. Int J Numer Meth Heat Fluid Flow 22:971–989

    Article  MATH  Google Scholar 

  • Rashidi MM, Nasiri M, Khezerloo M, Laraqi N (2016) Numerical investigation of magnetic field effect on mixed convection heat transfer of nanofluid in a channel with sinusoidal walls. J Magn Magn Mater 93:674–682

    Google Scholar 

  • Saffman PG (1962) On the stability of laminar flow of a dusty gas. J Fluid Mech 13:120–128

    Article  MathSciNet  MATH  Google Scholar 

  • Selimli S, Recebli Z, Arcaklioglu E (2015) MHD numerical analysis of hydrodynamically developing laminar liquid lithium duct flow. Int J Hydrog Energy 40:15358–15364

    Article  Google Scholar 

  • Shahnazar S, Bagheri S, Hamid SB (2016) Enhancing lubricant properties by nanoparticle additives. Int J Hydrog Energy 41:3153–3170

    Article  Google Scholar 

  • Sharma T, Reddy AL, Chandra TS, Ramaprabhu S (2008) Development of carbon nanotubes and nanofluids based microbial fuel cell. Int J Hydrog Energy 33:6749–6754

    Article  Google Scholar 

  • Sheikholeslami M, Rashidi MM (2016) Non-uniform magnetic field effect on nanofluid hydrothermal treatment considering Brownian motion and thermophoresis effects. J Braz Soc Mech Sci Eng 38:1171–1184

    Article  Google Scholar 

  • Sheikholeslami M, Shamlooei M (2017) Fe3O4–H2O nanofluid natural convection in presence of thermal radiation. Int J Hydrog Energy 42:5708–5718

    Article  Google Scholar 

  • Sheikholeslami M, Jalili P, Ganji DD (2017) Magnetic field effect on nanofluid flow between two circular cylinders using AGM. Alex Eng J. https://doi.org/10.1016/j.aej.2017.02.010 (in press )

    Google Scholar 

  • Tam CK (1969) The drag on a cloud of spherical particles in low reynolds number flow. J Fluid Mech 38:537–546

    Article  MATH  Google Scholar 

  • Uddin MJ, Yusoff NM, Beg OA, Ismail AI (2013a) Lie group analysis and numerical solutions for non-Newtonian nanofluid flow in a porous medium with internal heat generation. Phys Scr 87:025401

    Article  MATH  Google Scholar 

  • Uddin MJ, Khan WA, Ismail AI (2013b) Effect of dissipation on free convective flow of a non-Newtonian nanofluid in a porous medium with gyrotactic microorganisms. Proc Inst Mech Eng Part N J Nanoeng Nanosyst 227:11–18

    Google Scholar 

  • Yamada Y (1962) Resistance of a flow through an annulus with an inner rotating cylinder. Bull JSME 5(18):302–310

    Article  Google Scholar 

  • Zeeshan A, Shehzad N, Ellahi R, Alamri SZ (2017) Convective poiseuille flow of Al2O3–EG nanofluid in a porous wavy channel with thermal radiation. Neural Comput Appl. https://doi.org/10.1007/s00521-017-2924-9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Obaid Ullah Mehmood.

Ethics declarations

Conflict of interest

The authors confirmed that there are no potential conflicts of interest regarding the authorship, research and publication of current manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maskeen, M.M., Mehmood, O.U. & Zeeshan, A. Hydromagnetic solid–liquid pulsatile flow through concentric cylinders in a porous medium. J Vis 21, 407–419 (2018). https://doi.org/10.1007/s12650-017-0468-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-017-0468-9

Keywords

Navigation