Skip to main content
Log in

Visual analysis of traffic data via spatio-temporal graphs and interactive topic modeling

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

Analyzing of traffic data is an important task for urban planners and managers. Traffic data have the spatio-temporal characteristics, which can reflect the variation of the presence of vehicle in different places over time as well as traffic flow dynamics among different places. The analysis of large-scale GPS trajectory data is a very challenging research due to the complexity of data and the need to extract useful information under cover in data. In this study, we combine temporal and geospatial aggregation of traffic data for obtaining key areas and creating legible traffic flow maps; meanwhile, we make full use of the topic model to capture latent semantic information. Nevertheless, most of the topic models always encounter the plague of choosing the optimal number of topics and cannot easily incorporate numerous types of user feedback. To tackle these problems, we propose an interactive topic modeling equipped with various interactive capabilities which empowers users to explore data from different levels of detail. Finally, we design and implement an interactive visual analytics prototype system based on the spatio-temporal graphs and the interactive topic modeling. The feasibility and validity of our system is demonstrated by conducting two case studies with a real-world traffic data in Hangzhou.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adrienko N et al (2011) Spatial generalization and aggregation of massive movement data. IEEE Trans Vis Comput Gr 17(2):205–219

    Article  Google Scholar 

  • Al-Dohuki S, Wu Y, Kamw F, Yang J, Li X, Zhao Y, Ye X, Chen W, Ma C, Wang F (2017) Semantictraj: a new approach to interacting with massive taxi trajectories. IEEE Trans Vis Comput Gr 23(1):11–20

    Article  Google Scholar 

  • Arora S, Ge R, Moitra A (2012) Learning topic models—going beyond SVD. Foundations of computer science, pp 1–10

  • Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res 3:993–1022

    MATH  Google Scholar 

  • Cao L, Feifei L (2007) Spatially coherent latent topic model for concurrent segmentation and classification of objects and scenes. In: International conference on computer vision, pp 1–8

  • Chen W, Huang Z, Wu F et al (2018) VAUD: a visual analysis approach for exploring spatio-temporal urban data. IEEE Trans Vis Comput Graph 24(9):2636–2648

  • Chu D, Sheets DA, Zhao Y, Wu Y, Yang J, Zheng M, Chen G (2014) Visualizing hidden themes of taxi movement with semantic transformation. In: IEEE pacific visualization symposium, pp 137–144

  • Deerwester S, Dumais ST, Furnas GW, Landauer TK, Harshman RA (1990) Indexing by latent semantic analysis. J Am Soc Inf Sci 41(6):391–407

    Article  Google Scholar 

  • Eldin DM (2016) Enhancement bag-of-words model for solving the challenges of sentiment analysis. Int J Adv Comput Sci Appl 7(1):244–252. https://doi.org/10.14569/IJACSA.2016.070134

    Google Scholar 

  • Ester M, Kriegel H, Sander J, Xu X (1996) Density-based algorithm for discovering clusters in large spatial databases with noise. In: Knowledge discovery and data mining, pp 226–231

  • Ferreira N, Poco J, Vo HT, Freire J, Silva CT (2013) Visual exploration of big spatio-temporal urban data: a study of new york city taxi trips. IEEE Trans Vis Comput Gr 19(12):2149–2158

    Article  Google Scholar 

  • Guo D, Zhu X (2014) Origin-destination flow data smoothing and mapping. IEEE Trans Vis Comput Graph 20(12):2043–2052

    Article  Google Scholar 

  • Hofmann T (1999) Probabilistic latent semantic analysis. In: International acm sigir conference on research and development in information retrieval, pp 50–57

  • Huang X, Zhao Y, Ma C, Yang J, Ye X, Zhang C (2016) Trajgraph: a graph-based visual analytics approach to studying urban network centralities using taxi trajectory data. IEEE Trans Vis Comput Gr 22(1):160–169

    Article  Google Scholar 

  • Kraak M-J (2003) The space–time cube revisited from a geovisualization perspective. In: International cartographic conference, pp 1988–1996

  • Krueger R, Thom D, Ertl T (2014) Visual analysis of movement behavior using web data for context enrichment. In: IEEE pacific visualization symposium, pp 193–200

  • Kuhn HW (1955) The hungarian method for the assignment problem. Nav Res Logist Q 2(1):83–97

    Article  MathSciNet  MATH  Google Scholar 

  • Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Computer vision and pattern recognition, pp 2169–2178

  • Lee DD, Sebastian SH (2001) Algorithms for non-negative matrix factorization. In: Neural information processing systems, pp 556–562

  • Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401(6755):788–791

    Article  MATH  Google Scholar 

  • Liu H, Gao Y, Lu L, Liu S, Qu H, Ni LM (2011) Visual analysis of route diversity. In: Visual analytics science and technology, pp 171–180

  • Liu D, Weng D, Li Y, Bao YJ, Zheng Huaming Qu, Yingcai Wu (2017) Smartadp: visual analytics of large-scale taxi trajectories for selecting billboard locations. IEEE Trans Vis Comput Gr 23(1):1–10

    Article  Google Scholar 

  • Porteous I, Newman D, Ihler AT, Asuncion AU, Smyth P, Welling M (2008) Fast collapsed gibbs sampling for latent dirichlet allocation. In: Knowledge discovery and data mining, pp 569–577

  • Salton G, Yang C, Yu CT (1974) A theory of term importance in automatic text analysis. J Am Soc Inf Sci 26(1):33–44

    Article  Google Scholar 

  • Salton G, Wong A, Yang C (1975) A vector space model for automatic indexing. Commun ACM 18(11):613–620

    Article  MATH  Google Scholar 

  • Shneiderman B (1996) The eyes have it: a task by data type taxonomy for information visualizations. In: IEEE symposium on visual languages, pp 336–343

  • Sun G, Liang R, Qu H, Wu Y (2017) Embedding spatio-temporal information into maps by route-zooming. IEEE Trans Vis Comput Gr 23(5):1506–1519

    Article  Google Scholar 

  • Tang Y, Sheng F, Zhang H, Shi C, Qin X, Fan J (2018) Visual analysis of traffic data based on topic modeling. J Vis 21:1–20

    Article  Google Scholar 

  • Teh YW, Jordan MI, Beal MJ, Blei DM (2006) Hierarchical dirichlet processes. J Am Stat Assoc 101(476):1566–1581

    Article  MathSciNet  MATH  Google Scholar 

  • Van Erven T, Harremos P (2014) Rnyi divergence and Kullback–Leibler divergence. IEEE Trans Inf Theory 60(7):3797–3820

    Article  MATH  Google Scholar 

  • Von Landesberger T, Brodkorb F, Roskosch P, Andrienko NV, Andrienko GL, Kerren A (2016) Mobilitygraphs: visual analysis of mass mobility dynamics via spatio-temporal graphs and clustering. IEEE Trans Vis Comput Gr 22(1):11–20

    Article  Google Scholar 

  • Wakamiya S, Ryong L, Kawai Y, Sumiya K (2015) Twitter-based urban area characterization by non-negative matrix factorization. In: International conference on big data, pp 128–135

  • Wang Z, Min L, Yuan X, Zhang J, Van De Wetering H (2013) Visual traffic jam analysis based on trajectory data. IEEE Trans Vis Comput Gr 19(12):2159–2168

    Article  Google Scholar 

  • Wu W, Zheng Y, Cao N, Zeng H, Ni B, Qu H, Ni LM (2017) Mobiseg: interactive region segmentation using heterogeneous mobility data. In: IEEE pacific visualization symposium, pp 91–100

  • Yuan NJ, Zheng Y, Xie X, Wang Y, Zheng K, Xiong H (2015) Discovering urban functional zones using latent activity trajectories. IEEE Trans Knowl Data Eng 27(3):712–725

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank anonymous reviewers for their valuable comments, which is of great importance to improve the quality this work. The research was supported by National Key R&D Program of China (2018YFB1004904) and Alibaba-Zhejiang University Joint Institute of Frontier Technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxin Zhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Zhan, H., Liu, J. et al. Visual analysis of traffic data via spatio-temporal graphs and interactive topic modeling. J Vis 22, 141–160 (2019). https://doi.org/10.1007/s12650-018-0517-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-018-0517-z

Keywords

Navigation