Skip to main content
Log in

Intermittent round jet controlled by lateral pulse-modulated synthetic jets

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

A round air jet was actively controlled by a pair of lateral control jets. The control jets were generated by a pair of opposing synthetic jet actuators, which were driven by the pulse-modulated sinusoidal signal. Two carrier frequencies were tested, namely 160 Hz and 840 Hz. Moreover, control jets driven by un-modulated sinusoidal signals were also tested. An unforced continuous jet was used as the reference case, and for all cases, the Reynolds number of the main round jet was 1570 (related to the nozzle exit diameter of 10 mm). Experiments (flow visualization and hot-wire anemometry) revealed that the flow control caused a suppression of the jet core and a more rapid jet flow decay. In addition, the pulse modulation caused jet intermittency that was distinguished by the periodicity of the time-averaged and fluctuating velocity components. For the case of the lower carrier frequency of 160 Hz, a flapping motion of the controlled jet occurred and the jet formed a zigzag pattern.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Azevedo LFA, Webb BW, Queiroz M (1994) Pulsed air jet impingement heat transfer. Exp Therm Fluid Sci 8:206–213

    Article  Google Scholar 

  • Bejan A (1995) Convection heat transfer, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Ben Chiekh M, Bera JC, Sunyach M (2003) Synthetic jet control for flows in a diffuser: vectoring, spreading and mixing enhancement. J Turbul 4:1–12

    Google Scholar 

  • Blevins RD (2003) Applied fluid dynamics handbook. Krieger Publishing Company, Malabar

    Google Scholar 

  • Broučková Z, Trávníček Z (2015) Visualization study of hybrid synthetic jets. J Vis 18:581–593

    Article  Google Scholar 

  • Camci C, Herr F (2002) Forced convection heat transfer enhancement using a self-oscillating impinging planar jet. J Heat Transf Trans ASME 124:770–782

    Article  Google Scholar 

  • Cater JE, Soria J (2002) The evolution of round zero-net-mass-flux jets. J Fluid Mech 472:167–200

    Article  MATH  Google Scholar 

  • Crow SC, Champagne FH (1971) Orderly structure in jet turbulence. J Fluid Mech 48:547–591

    Article  Google Scholar 

  • De Luca L, Girfoglio M, Coppola G (2014) Modeling and experimental validation of the frequency response of synthetic jet actuators. AIAA J 52:1733–1748

    Article  Google Scholar 

  • Durst Heim U, Ünsal B, Kullik G (2003) Mass flow rate control system for time-dependent laminar and turbulent flow investigations. Meas Sci Technol 14:893–902

    Article  Google Scholar 

  • Favre-Marinet M, Binder G, Hac TV (1981) Generation of oscillating jets. J Fluids Eng Trans ASME 103:609–614

    Article  Google Scholar 

  • Feero MA, Lavoie P, Sullivan PE (2015) Influence of cavity shape on synthetic jet performance. Sens Actuator A Phys 223:1–10

    Article  Google Scholar 

  • Glezer A, Amitay M (2002) Synthetic jets. Annu Rev Fluid Mech 34:503–529

    Article  MathSciNet  MATH  Google Scholar 

  • Haneda Y, Tsuchiya Y, Nakabe K, Suzuki K (1998) Enhancement of impinging jet heat transfer by making use of mechano-fluid interactive flow oscillation. Int J Heat Fluid Fl 19:115–124

    Article  Google Scholar 

  • Herwig H, Mocikat H, Gürtler T, Göppert S (2004) Heat transfer due to unsteadily impinging jets. Int J Therm Sci 43:733–741

    Article  Google Scholar 

  • Hill WG Jr, Greene PR (1977) Increased turbulent jet mixing rates obtained by self-excited acoustic oscillations. J Fluids Eng Trans ASME 99:520–525

    Article  Google Scholar 

  • Hsiao FB, Chou YW, Huang JM (1999) The study of self-sustained oscillating plane jet flow impinging upon a small cylinder. Exp Fluids 27:392–399

    Article  Google Scholar 

  • Hussain AKMF, Hasan MAZ (1983) The ‘whistler nozzle’ phenomenon. J Fluid Mech 134:431–458

    Article  Google Scholar 

  • Kordík J, Trávníček Z (2017) Optimal diameter of nozzles of synthetic jet actuators based on electrodynamic transducers. Exp Therm Fluid Sci 86:281–294

    Article  Google Scholar 

  • Kordík J, Trávníček Z (2018) Non-harmonic excitation of synthetic jet actuators based on electrodynamic transducers. Int J Heat Fluid Fl 73:154–162

    Article  Google Scholar 

  • Kordík J, Broučková Z, Vít T, Pavelka M, Trávníček Z (2014) Novel methods for evaluation of the Reynolds number of synthetic jets. Exp Fluids 55:1757-1–1757-16

    Article  Google Scholar 

  • Mi J, Nathan GJ, Luxton RE (2001) Mixing characteristics of a flapping jet from a self-exciting nozzle. Flow Turbul Combust 67:1–23

    Article  MATH  Google Scholar 

  • Mladin EC, Zumbrunnen DA (1997) Local convective heat transfer to submerged pulsating jets. Int J Heat Mass Tran 40:3305–3321

    Article  Google Scholar 

  • Mohseni K, Mittal R (2015) Synthetic Jets: Fundamentals and Applications. CRC Press, Boca Raton

    Google Scholar 

  • Nathan GJ, Hill SJ, Luxton RE (1998) An axisymmetric ‘fluidic’ nozzle to generate jet precession. J Fluid Mech 370:347–380

    Article  MATH  Google Scholar 

  • Pack LG, Seifert A (2001) Periodic excitation for jet vectoring and enhanced spreading. J Aircr 38:486–495

    Article  Google Scholar 

  • Page RH, Chinnock PS, Seyed-Yagoobi J (1996) Self-oscillation enhancement of impingement jet heat transfer. J Thermophys Heat Transf 10:380–382

    Article  Google Scholar 

  • Qayoum A, Gupta V, Panigrahi PK, Muralidhar K (2010) Influence of amplitude and frequency modulation on flow created by a synthetic jet actuator. Sens Actuator A Phys 162:36–50

    Article  Google Scholar 

  • Raman G, Rice EJ, Cornelius DM (1994) Evaluation of flip-flop jet nozzles for use as practical excitation devices. J Fluids Eng-Trans ASME 116:508–515

    Article  Google Scholar 

  • Reynolds WC, Parekh DE, Juvet PJD, Lee MJD (2003) Bifurcating and blooming jets. Annu Rev Fluid Mech 35:295–315

    Article  MathSciNet  MATH  Google Scholar 

  • Smith BL, Glezer A (1998) The formation and evolution of synthetic jets. Phys Fluids 10:2281–2297

    Article  MathSciNet  MATH  Google Scholar 

  • Smith BL, Glezer A (2002) Jet vectoring using synthetic jets. J Fluid Mech 458:1–34

    Article  MATH  Google Scholar 

  • Tamburello DA, Amitay M (2007a) Interaction of a free jet with a perpendicular control jet. J Turbul 8(21):1–27

    Google Scholar 

  • Tamburello DA, Amitay M (2007b) Dynamic response of a free jet following the activation of a single synthetic jet. J Turbul 8(48):1–18

    Google Scholar 

  • Thomas FO (1991) Structure of mixing layers and jets. Appl Mech Rev 44:119–153

    Article  Google Scholar 

  • Trávníček Z, Peszyński K, Hošek J, Wawrzyniak S (2003) Aerodynamic and mass transfer characteristics of an annular bistable impinging jet with a fluidic flip–flop control. Int J Heat Mass Transf 46:1265–1278

    Article  Google Scholar 

  • Trávníček Z, Němcová L, Kordík J, Tesař V, Kopecký V (2012) Axisymmetric impinging jet excited by a synthetic jet system. Int J Heat Mass Transf 55:1279–1290

    Article  Google Scholar 

  • Trávníček Z, Tesař V, Broučková Z, Peszyński K (2014) Annular impinging jet controlled by radial synthetic jets. Heat Transf Eng 35:1450–1461

    Article  Google Scholar 

  • Viets H (1975) Flip-flop jet nozzle. AIAA J 13:1375–1379

    Article  Google Scholar 

  • Zhang PF, Wang JJ (2007) Novel signal wave pattern for efficient synthetic jet generation. AIAA J 45:1058–1065

    Article  Google Scholar 

  • Zumbrunnen DA, Aziz M (1993) Convective heat-transfer enhancement due to intermittency in an impinging jet. J Heat Transf Trans ASME 115:91–98

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of the Grant Agency of the Czech Republic—Czech Science Foundation (project no. 16-16596S) and the institutional support RVO: 61388998.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Broučková.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Broučková, Z., Trávníček, Z. Intermittent round jet controlled by lateral pulse-modulated synthetic jets. J Vis 22, 459–476 (2019). https://doi.org/10.1007/s12650-019-00550-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-019-00550-z

Keywords

Navigation