Skip to main content
Log in

Flow characteristics in a model of a left ventricle in the presence of a dysfunctional mitral mechanical heart valve

  • Short Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

BMHV:

Bileaflet mechanical heart valve

N:

Normally functioning leaflets

SLP:

Single leaflet partially blocked

BLP:

Both leaflets partially blocked

SLT:

Single leaflet totally blocked

References

  • Akutsu T, Masuda T (2003) Three-dimensional flow analysis of a mechanical bileaflet mitral prosthesis. J Artif Organs 6(2):112–123

    Article  Google Scholar 

  • Akutsu T, Saito J (2006) Dynamic particle image velocimetry flow analysis of the flow field immediately downstream of bileaflet mechanical mitral prostheses. J Artif Organs 9(3):165–178

    Article  Google Scholar 

  • Akutsu T, Imai R, Deguchi Y (2005) Effect of the flow field of mechanical bileaflet mitral prostheses on valve closing. J Artif Organs 8(3):161–170

    Article  Google Scholar 

  • Aoyagi S, Fukunaga S, Suzuki S, Nishi Y, Oryoji A, Kosuga K (1996) Obstruction of mechanical valve prostheses: clinical diagnosis and surgical or nonsurgical treatment. Surg Today 26(6):400–406

    Article  Google Scholar 

  • Barac YD, Zwischenberger B, Schroder JN, Daneshmand MA, Haney JC, Gaca JG, Wang A, Milano CA, Glower DD (2018) Using a regent aortic valve in a small annulus mitral position is a viable option. Ann Thoracic Surg 105(4):1200–1204

    Article  Google Scholar 

  • Bluestein D, Li YM, Krukenkamp IB (2002) Free emboli formation in the wake of bi-leaflet mechanical heart valves and the effects of implantation techniques. J Biomech 35(12):1533–1540

    Article  Google Scholar 

  • Darwish A, Di Labbio G, Saleh W, Smadi O, Kadem L (2019) Experimental investigation of the flow downstream of a dysfunctional bileaflet mechanical aortic valve. Artif Organs 43(10):E249–E263. https://doi.org/10.1111/aor.13483

    Article  Google Scholar 

  • Dasi LP, Simon HA, Sucosky P, Yoganathan AP (2009) Fluid mechanics of artificial heart valves. Clin Exp Pharmacol Physiol 36(2):225–237

    Article  Google Scholar 

  • Di Labbio G, Kadem L (2018) Jet collisions and vortex reversal in the human left ventricle. J Biomech 78:155–160

    Article  Google Scholar 

  • Di Labbio G, Vétel J, Kadem L (2018) Material transport in the left ventricle with aortic valve regurgitation. Phys Rev Fluids 3(11):113101

    Article  Google Scholar 

  • Espa S, Fortini S, Querzoli G, Cenedese A (2013) Flow field evolution in a laboratory model of the left ventricle. J Vis 16(4):323–330

    Article  Google Scholar 

  • Etebari A, Vlachos PP (2005) Improvements on the accuracy of derivative estimation from DPIV velocity measurements. Exp Fluids 39(6):1040–1050

    Article  Google Scholar 

  • Evin M, Guivier-Curien C, Pibarot P, Kadem L, Rieu R (2016) Are the current Doppler echocardiography criteria able to discriminate mitral bileaflet mechanical heart valve malfunction? An in vitro study. Artif Organs 40(5):E52–E60

    Article  Google Scholar 

  • Ge L, Dasi LP, Sotiropoulos F, Yoganathan AP (2008) Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses. Ann Biomed Eng 36(2):276–297

    Article  Google Scholar 

  • Han QJ, Witschey WR, Fang-Yen CM, Arkles JS, Barker AJ, Forfia PR, Han Y (2015) Altered right ventricular kinetic energy work density and viscous energy dissipation in patients with pulmonary arterial hypertension: a pilot study using 4D flow MRI. PloS One 10(9):e0138365

    Article  Google Scholar 

  • Hedayat M, Asgharzadeh H, Borazjani I (2017) Platelet activation of mechanical versus bioprosthetic heart valves during systole. J Biomech 56:111–116

    Article  Google Scholar 

  • Hellums JD, Peterson DM, Stathopoulos NA, Moake JL, Giorgio TD (1987) Studies on the mechanisms of shear-induced platelet activation. In: Hartmann A, Kuschinsky W (eds) Cerebral ischemia and hemorheology. Springer, Berlin, pp 80–89

    Chapter  Google Scholar 

  • Huang G, Schaff HV, Sundt TM, Rahimtoola SH (2013) Treatment of obstructive thrombosed prosthetic heart valve. J Am Coll Cardiol 62(19):1731–1736

    Article  Google Scholar 

  • Itatani K, Miyaji K, Tomoyasu T, Nakahata Y, Ohara K, Takamoto S, Ishii M (2009) Optimal conduit size of the extracardiac Fontan operation based on energy loss and flow stagnation. Ann Thoracic Surg 88(2):565–573

    Article  Google Scholar 

  • Khalili F, Gamage P, Sandler R, Mansy H (2018) Adverse hemodynamic conditions associated with mechanical heart valve leaflet immobility. Bioengineering 5(3):74

    Article  Google Scholar 

  • Knapp Y, Bertrand E (2005) Particle imaging velocimetry measurements in a heart simulator. J Vis 8(3):217–224

    Article  Google Scholar 

  • Ma WG, Hou B, Abdurusul A, Gong DX, Tang Y, Chang Q, Sun HS (2015) Dysfunction of mechanical heart valve prosthesis: experience with surgical management in 48 patients. J Thorac Dis 7(12):2321

    Google Scholar 

  • Querzoli G, Fortini S, Cenedese A (2010) Effect of the prosthetic mitral valve on vortex dynamics and turbulence of the left ventricular flow. Phys Fluids 22(4):041901

    Article  Google Scholar 

  • Raffel M, Willert C, Wereley S, Kompenhans J (2007) Particle image velocimetry. Springer, Berlin. https://doi.org/10.1007/978-3-540-72308-0

    Book  Google Scholar 

  • Shahriari S, Maleki H, Hassan I, Kadem L (2012) Evaluation of shear stress accumulation on blood components in normal and dysfunctional bileaflet mechanical heart valves using smoothed particle hydrodynamics. J Biomech 45(15):2637–2644

    Article  Google Scholar 

  • Smadi O, Hassan I, Pibarot P, Kadem L (2010) Numerical and experimental investigations of pulsatile blood flow pattern through a dysfunctional mechanical heart valve. J Biomech 43(8):1565–1572

    Article  Google Scholar 

  • Smadi OA (2011) Numerical and experimental investigations of pulsatile blood flow through a dysfunctional mechanical heart valve. PhD thesis, Concordia University

  • Smadi O, Garcia J, Pibarot P, Gaillard E, Hassan I, Kadem L (2013) Accuracy of Doppler-echocardiographic parameters for the detection of aortic bileaflet mechanical prosthetic valve dysfunction. Eur Heart J Cardiovasc Imaging 15(2):142–151

    Article  Google Scholar 

  • Sotiropoulos F, Le TB, Gilmanov A (2016) Fluid mechanics of heart valves and their replacements. Annu Rev Fluid Mech 48:259–283

    Article  MathSciNet  Google Scholar 

  • Stugaard M, Koriyama H, Katsuki K, Masuda K, Asanuma T, Takeda Y, Sakata Y, Itatani K, Nakatani S (2015) Energy loss in the left ventricle obtained by vector flow mapping as a new quantitative measure of severity of aortic regurgitation: a combined experimental and clinical study. Eur Heart J Cardiovascular Imag 16(7):723–730

    Article  Google Scholar 

  • Yun BM, Wu J, Simon HA, Arjunon S, Sotiropoulos F, Aidun CK, Yoganathan AP (2012) A numerical investigation of blood damage in the hinge area of aortic bileaflet mechanical heart valves during the leakage phase. Ann Biomed Eng 40(7):1468–1485

    Article  Google Scholar 

Download references

Funding

Funding was provided by Natural Sciences and Engineering Research Council of Canada (Grant No. 343164-07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyes Kadem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirvakili, N., Di Labbio, G., Saleh, W. et al. Flow characteristics in a model of a left ventricle in the presence of a dysfunctional mitral mechanical heart valve. J Vis 23, 1–8 (2020). https://doi.org/10.1007/s12650-019-00611-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-019-00611-3

Navigation