Skip to main content
Log in

Spatiotemporal multiscale molecular cavity visualization and visual analysis

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

The analysis of molecular cavities, which are transport pathways in protein structures, is critical to the understanding of molecular phenomena. However, this work is challenging due to the high complexity and diversity of the macromolecular shapes in dynamic processes. In this paper, we propose a novel multiscale visualization method for visualizing the interaction of protein cavities. We design a series of scales and visualizations of cavities based on both temporal and spatial perspectives to allow domain experts to process their work at any scale of semantic abstraction. These scales demonstrate the chemical and structural properties of cavities and span from a complete protein to a cavity at a specific moment in temporal and spatial dimensions. We also create a continuous interaction space for multiscale applications. Finally, the applicability of our approach is proven through experimental use cases, with cavities in proteins being visualized and analyzed in a focus-and-context manner. Our collaborating domain experts confirmed that our approach is an efficient and reliable method of analyzing cavities with great potential for large dynamic cavity data analysis.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Asbury TM, Mitman M, Tang J, Zheng WJ (2010) Genome3d: a viewer-model framework for integrating and visualizing multi-scale epigenomic information within a three-dimensional genome. BMC Bioinform 11(1):1–7

    Google Scholar 

  • Bostock M, Ogievetsky V, Heer J (2011) \({\text{ D }}^{3}\) data-driven documents. IEEE Trans Vis Comput Graph 17(12):2301–2309

    Google Scholar 

  • Brady GP Jr, Stouten PFW (2000) Fast prediction and visualization of protein binding pockets with pass. J Comput Aided Mol Des 14(4):383–401

    Google Scholar 

  • Byska J, Jurcik A, Groller ME, Viola I, Kozlikova B (2015a) Molecollar and tunnel heat map visualizations for conveying spatio-temporo-chemical properties across and along protein voids. In: Eurographics conference on visualization

  • Byska J, Muzic ML, Groller ME, Viola I, Kozlikova B (2015b) Animoaminominer: exploration of protein tunnels and their properties in molecular dynamics. IEEE Trans Vis Comput Graph 22(1):747–756

    Google Scholar 

  • Chovancova E, Pavelka A, Benes P, Strnad O, Brezovsky J, Kozlikova B, Gora A, Sustr V, Klvana M, Medek P (2012) Caver 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput Biol 8(10):e1002708

    Google Scholar 

  • Hensen U, Meyer T, Haas J, Rex R, Vriend G, Grubmller H (2012) Exploring protein dynamics space: the dynasome as the missing link between protein structure and function. PLoS ONE 7(5):e33931

    Google Scholar 

  • Jurcik A, Bednar D, Byska J, Marques SM, Furmanova K, Daniel L, Kokkonen P, Brezovsky J, Strnad O, Stourac J (2018) Caver analyst 2.0: analysis and visualization of channels and tunnels in protein structures and molecular dynamics trajectories. Bioinformatics 34(20):3586–3588

    Google Scholar 

  • Klvana M, Pavlova MT (2009) Pathways and mechanisms for product release in the engineered haloalkane dehalogenases explored using classical and random acceleration molecular dynamics simulations. J Mol Biol 392(5):1339–1356

    Google Scholar 

  • Kouřil D, Čmolík L, Kozlíková B, Wu HY, Johnson G, Goodsell DS, Olson A, Gröller ME, Viola I (2019) Labels on levels: labeling of multi-scale multi-instance and crowded 3D biological environments. IEEE Trans Visual Comput Graphics 25(1):977–986

    Google Scholar 

  • Krone M, Kauker D, Reina G, Ertl T (2014) Visual analysis of dynamic protein cavities and binding sites. In: IEEE pacific visualization symposium

  • Krone M, Kozlikova B, Lindow N, Baaden M, Baum D, Parulek J, Hege HC, Viola I (2016) Visual analysis of biomolecular cavities: state of the art. Comput Graph Forum 35(3):527–551

    Google Scholar 

  • Li D, Mei H, Yi S, Shuang S, Zhang W, Wang J, Ming Z, Wei C (2018) Echarts: a declarative framework for rapid construction of web-based visualization. Vis Inform 2:136–146

    Google Scholar 

  • Lindow N, Baum D, Bondar AN, Hege HC (2013) Exploring cavity dynamics in biomolecular systems. BMC Bioinform 14(S19):S5

    Google Scholar 

  • Liskova V, Bednar D, Prudnikova T, Rezacova P, Damborsky J (2015) Balancing the stability-activity trade-off by fine-tuning dehalogenase access tunnels. Chemcatchem 7(4):648–659

    Google Scholar 

  • Martin K, Andrew MJ (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9(9):646–52

    Google Scholar 

  • Masood TB, Sandhya S, Chandra N, Natarajan V (2015) Chexvis: a tool for molecular channel extraction and visualization. BMC Bioinform 16(1):1–19

    Google Scholar 

  • Medek P, Benes P, Sochor J (2007) Computation of tunnels in protein molecules using delaunay triangulation. J WSCG 15:107–114

    Google Scholar 

  • Miao H, De Llano E, Sorger J, Ahmadi Y, Kekic T, Isenberg T, Gröller ME, Barišić I, Viola I (2017) Multiscale visualization and scale-adaptive modification of DNA nanostructures. IEEE Trans Vis Comput Graph 24(1):1014–1024

    Google Scholar 

  • Miao H, Klein T, Kouril D, Mindek P, Schatz K, Groller ME, Kozlikova B, Isenberg T, Viola I (2018) Multiscale molecular visualization. J Mol Biol 431(6):1049–1070

    Google Scholar 

  • Parulek J, Turkay C, Reuter N, Viola I (2012) Implicit surfaces for interactive graph based cavity analysis of molecular simulations. In: IEEE symposium on biological data visualization

  • Parulek J, Turkay C, Reuter N, Viola I (2013) Visual cavity analysis in molecular simulations. BMC Bioinform 19(14 Suppl 19):S4

    Google Scholar 

  • Petrek M, Otyepka M, Banas P, Kosinova P, Koca J, Damborsky J (2006) Caver: a new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinform 7(1):316

    Google Scholar 

  • Petrek M, Kosinova P, Koca J, Otyepka M (2007) Mole: a voronoi diagram-based explorer of molecular channels, pores, and tunnels. Structure 15(11):1357–1363

    Google Scholar 

  • Sehnal D, Varekova RS, Berka K, Pravda L, Navratilova V, Banas P, Ionescu CM, Otyepka M, Koca J (2013) Mole 2.0: advanced approach for analysis of biomacromolecular channels. J Cheminform 5(1):39–39

    Google Scholar 

  • Sehnal D, Deshpande M, Varekova RS, Mir S, Berka K, Midlik A, Pravda L, Velankar S, Koca J (2017) Litemol suite: interactive web-based visualization of large-scale macromolecular structure data. Nat Methods 14(12):1121. https://doi.org/10.1038/nmeth.4499

    Article  Google Scholar 

  • Smart OS, Neduvelil JG, Wang X, Wallace BA, Sansom MS (1996) Hole: a program for the analysis of the pore dimensions of ion channel structural models. J Mol Graph 14(6):354–360

    Google Scholar 

  • Sykora J, Brezovsky J, Koudelakova T, Lahoda M, Fortova A, Chernovets T, Chaloupkova R, Stepankova V, Prokop Z, Smatanova IK (2014) Dynamics and hydration explain failed functional transformation in dehalogenase design. Nat Chem Biol 10(6):S90

    Google Scholar 

  • Waldin N, Muzic ML, Waldner M, Groller E, Goodsell D, Ludovic A, Viola I (2016) Chameleon—dynamic color mapping for multi-scale structural biology models. In: Bruckner S, Preim B, Vilanova A, Hauser H, Hennemuth A, Lundervold A (eds) Eurographics workshop on visual computing for biology and medicine. The Eurographics Association. https://doi.org/10.2312/vcbm.20161266

  • Zhou HX, Mccammon JA (2010) The gates of ion channels and enzymes. Trends Biochem Sci 35(3):179–185

    Google Scholar 

Download references

Acknowledgements

Our deepest gratitude goes to the developers of Caver Analyst 2.0 (Jurcik et al. 2018) for the experimental data provided. This work was supported in part by grants from the National Key R&D Program of China and the National Science Foundation of China (Grant No. 61463042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junlan Nie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 21687 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, D., Han, D., Xu, X. et al. Spatiotemporal multiscale molecular cavity visualization and visual analysis. J Vis 23, 661–676 (2020). https://doi.org/10.1007/s12650-020-00646-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-020-00646-x

Keywords

Navigation