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Abstract The field of explainable artificial intelligence aims to help experts understand complex machine
learning models. One key approach is to show the impact of a feature on the model prediction. This helps
experts to verify and validate the predictions the model provides. However, many challenges remain open.
For example, due to the subjective nature of interpretability, a strict definition of concepts such as the
contribution of a feature remains elusive. Different techniques have varying underlying assumptions, which
can cause inconsistent and conflicting views. In this work, we introduce local and global contribution-value
plots as a novel approach to visualize feature impact on predictions and the relationship with feature value.
We discuss design decisions and show an exemplary visual analytics implementation that provides new
insights into the model. We conducted a user study and found the visualizations aid model interpretation by
increasing correctness and confidence and reducing the time taken to obtain an insight.

Keywords Visualization - Machine Learning - Explainable Al - Interpretability

1 Introduction

The past decade has witnessed a sharp increase in the popularity of artificial intelligence and machine
learning. This prevalence has resulted in a wide variety of new approaches and techniques (e.g., deep
learning) that have achieved astounding results previously not deemed possible (McKinney et al. 2020;
Karras et al. 2019). Clearly, these models have advanced over their predecessors in terms of predictive
performance (e.g., accuracy, precision, recall, Fl-score). However, there are more properties of these
models that have not received as much attention, such as complexity, interpretability, and fairness (Doshi-
Velez 2017). As a consequence, state-of-the-art techniques are ever increasing in complexity, yielding
black-box models that cannot easily be inspected or verified.

The field of explainable artificial intelligence (XAI) has recently gained a lot of traction as it aims to
alleviate these issues. It exposes more details about the behavior of complex machine learning models,
which helps experts to verify and validate model predictions. XAl has proposed a variety of new techniques
to show the impact of a feature on the model prediction (Friedman 2001; Goldstein et al. 2015; Ribeiro et al.
2016; Lundberg and Lee 2017). However, due to the novelty of the field many challenges remain open.

In particular, the complex and ill-defined nature of interpretability hinders a strict definition of concepts
such as contribution of a feature. Different techniques have varying underlying assumptions, which can
cause different and conflicting results. In this work, we present local and global contribution-value plots as a
novel technique to explain machine learning models. The plots visualize the feature contribution to a
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prediction, as well as the relationship with feature value. Such information about the model is typically
conveyed with multiple techniques, which could lead to contradictory results. We discuss relevant design
decisions and show an exemplary visual analytics instrumentation and show it enables insights into the
model that were previously not possible.

To validate our proposed technique, we conducted a comparative user study with a variety of machine
learning professionals and visualization experts. The results show that our visualizations aid model inter-
pretation by increasing correctness and confidence and reducing the time taken to obtain an insight.

This article is an extension of a paper that was originally published at the international symposium on
visual information communication and interaction (VINCI) (Collaris and van Wijk 2020b). In the original
version, we did not report on the comparative user study just mentioned.

2 Background and related work

Visualization can help data scientists to get a better understanding of black box models. For trivial pre-
diction problems, this can be done by inspecting the predictions of a model directly (Fig. 1a). Scatter plots
can be used to show the relationship between prediction probability y and feature value x. However, for any
non-trivial prediction problems, there are likely many interactions between features which make it
impossible to identify patterns and trends.

2.1 Local partial dependence plot

To help to gain insight into models, Friedman (2001) introduced the partial dependence plot (PDP). This is a
sensitivity analysis technique that shows how the prediction y changes as the features of interest z, (i.e.,
target features) are varied over their marginal distributions (Fig. 1b).

To define partial dependence for a data point x, let z, C {x,...,X,} be a set of target features, and z, the
complement of z, such that

.Uz, =X, z.Nz, =0 (1)

The prediction f(x) in principle depends on both subsets:

V=f(x) =f(z,2) (2)

However, if we fix the specific values of features in z., then f(x) can be considered as a function only
dependent on z,. This function represents the local partial dependence of the features in z;

fAz{.(Zt) :f(lz | z) (3)

If z; consists of a single feature, a line graph of this function shows how changing z, impacts the prediction
of a single data point. This conveys much more about the model than just showing the prediction for single
points and has been used in prior visualization work to explain machine learning (Krause et al. 2016a, b).
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Fig. 1 Design space of interpretability methods. Blue boxes indicate our contribution. The x-axis denotes feature values; the y-
axis denotes either prediction probability a, b, ¢ or feature contribution d, e, f
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2.2 Global PDP and ICE plot

Local PDPs provide a great insight into a single prediction. However, for many applications such a local
explanation is not sufficient. In an explorative setting, experts would like to inspect much more than just a
single prediction. For example, the explanation of a single prediction is not helpful for diagnosing problems
with a model, or for model refinement. Even if there is a single prediction of interest, instance-level
explanations do not show whether they are specific to that instance, or generalize to a larger set of instances.
For these cases, we need global explanations. To get a global insight into the entire model, Friedman (2001)
proposes averaging local partial dependence lines of all N training data points as follows:

fi(z) = B, [f(x)]
/f(zt,sz dz. ~ —Zf Z,2,

where M., is the marginal probability density of z.. This global PDP is used in visualization work to explain
and compare machine learning models (Zhao et al. 2018; Wexler et al. 2019). However, Friedman notes that
Eq. (4) does not hold when there is a strong interdependence amongst features, which is often the case for
complex black box models.

To deal with interdependence, Goldstein et al. (2015) proposed an alternative called individual condi-
tional expectation (ICE) plot by superimposing all individual local partial dependence lines. This reveals
patterns that would otherwise be hidden by averaging. For example, the plot in Fig. 1C shows two clusters
of partial dependence lines that would not be apparent in a global PDP.

(4)

2.3 Feature contribution

An alternative approach to gain insight into machine learning models is the feature contribution technique
(Fig. 1d). Such methods yield feature contribution vectors that indicate how much every feature contributed
to a prediction.

Initially, Baehrens et al. (2010) showed that machine learning models can be explained using the
derivative of the class probability function. The reasoning is that if a small change in feature value leads to a
large change in the prediction probability (or regression output), that feature is relevant for the prediction.
They note, however, that an exact derivative for the majority of models does not exist.

To this end, LIME was proposed by Ribeiro et al. (2016). It solves this issue by fitting a linear regression
surrogate model to the class probability gradient with a local sampling region around an instance. The
coefficients of the linear model effectively approximate the derivative of the probability function, regardless
of whether a formal derivative exists. Next, the approximation can be used to show which features have the
most impact on a prediction.

Another prominent approach for feature contribution is Shapley values (Kononenko et al. 2010;
Strumbelj et al. 2009; Lundberg and Lee 2017). This method estimates the contribution of a feature by
comparing the class probability of a prediction including and not including this feature (Merrick and Taly
2019). The absence of a feature is estimated by averaging the predictions for different values for that feature
sampled from the training data distribution.

Any of these techniques yield feature contribution vectors that give a quick overview of which feature
had an impact on a single prediction. However, it remains unclear for which values in general that feature is
relevant. For example, in a medical trial where feature attribution shows that ‘dosage’ is important predictor
for recovery, we would also like to know what values of ‘dosage’ were most relevant. In addition, these
methods only target single predictions, whereas some use cases require a global perspective on the model.

Finally, various other explainable Al visualization works exist (Guidotti et al. 2018), but those often use
the presented elementary techniques as a basis.
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Fig. 2 LCVs can be directly compared with feature contribution visualizations. Left: contribution for two features of instance
i represented as a bar chart. Right: LCV plots for the same features for full feature range. Value of instance i indicated with the
vertical black line

3 Local contribution-value plot

To alleviate the limitations of previous techniques, we propose the local contribution-value (LCV) plot. The
curves are generated in the same way as PDPs (Sect. 2.1), but instead of class probability values we use
feature contribution values (Fig. 1E). This yields a plot that reveals how the feature contribution varies for
changes in feature value. It has some key advantages over local PDPs.

First, contrary to a PDP (Friedman 2001), the LCV plot is also effective when features are heavily
correlated. For example, if feature k and [ are correlated, changing the value of either does not change the
prediction, while changing both would. As the sensitivity analysis used in PDPs only alters the value of a
single feature at a time, the PDP would not show variation in the prediction. In contrast, LCV plots use an
explanation technique that considers a wider region of feature space (compared to a single point), which
enables them to show variation in contribution even when features are correlated.

Next, for certain use cases the LCV plot may be easier to read and compare. To infer relevance of a
feature in a PDP plot, experts have to consider the slope of the line. Previous work has shown that human
slope estimation is not trivial and prone to be biased (i.e., angle contamination) as our visual system is
geared towards judging angle rather than slope (Cleveland and McGill 1985). Hence, our graphical per-
ception of slopes prohibits any exact judgment of contribution or importance in prediction-value plots. LCV
plots encode feature contribution with position, making it easier to read and compare exact values (see
Fig. 2).

This does mean that the prediction probability is not directly encoded in LCV plots. We argue PDP and
LCV plots serve a different (and complementary) purpose. When experts are interested in the predictions for
specific data points, PDPs are more suitable. However, when trying to understand how the model makes
predictions, LCV plots are more suitable.

Finally, the LCV remains a local approach focusing on a single instance. This makes it difficult to get a
global overview of the model and whether a feature that is locally relevant is always relevant, or only for a
small number of instances.

4 Global contribution-value plot

For a global overview, we propose using the same procedure as for an ICE plot: to superimpose LCV plots
to show the contribution for an entire dataset (Fig. 1f). This helps experts to get a global overview of the
model behavior for typical data. We refer to this approach as the global contribution-value (GCV) plot.

The GCV shows more clearly which values of a feature have a significant impact on the model pre-
diction, which helps to understand the model. As an example, we examine the Wine Quality dataset (Cortez
et al. 2009). Figure 3b shows two different thresholds (3.05 and 3.35) for pH that the random forest model
uses to determine wine quality.

Next, GCV plots enable the comparison of feature importance at different feature values. For instance,
for the selected instances in Fig. 3b, the first threshold contributes more than the second.

In addition, in a GCV plot it is much easier to find patterns and clusters compared to ICE plots. Such
expert-guided subgroup discovery can, for instance, be used to assess model fairness, and to discover
different ‘strategies’ a model has for predicting the same class. There are two reasons for this.



Comparative evaluation of contribution-value plots for machine 51

Prediction
o
@
l

0.1
0.0 T T T

28 29 30 31 32 33 34 35 36 37 38 -0.3-
(a) /CE plot: Due to the huge variance in class (b) GCV plot: Selected polyline (blue), revealing
probabilities it is difficult to find patterns. two clusters with diverging contribution values.

Fig. 3 Two visualizations of a random forest (100 trees) trained on the Wine Quality dataset (Cortez et al. 2009), showing
feature “pH”

First, in ICE plots the differences in prediction probability lead to vertical dispersion of polylines that
obscures global patterns. For example, both plots in Fig. 3 reflect the same model and data. The GCV plot in
Fig. 3b clearly highlights two different clusters (the selected and non-selected lines), whereas this bi-
modality is difficult to spot in Fig. 3a. The lower vertical dispersion in GCV plots also enables intuitive
interactive selection by means of lasso brushing (Raidou et al. 2015), as shown in Fig. 3b. In an ICE plot,
lasso selection does not yield any interesting clusters; this would require selecting lines based on angle.

To address the vertical dispersion, Goldstein et. al. discuss a variant called centered ICE plots that center
the curves at a certain feature value xg and display only the difference in prediction to this point. However,
some dispersion remains, finding a suitable value for xg is challenging, and the interpretation of the y-axis
becomes very unclear. In addition, the authors introduce a derivative ICE variant. This approach is similar to
a GCV plot using LIME, but considers only the derivative with respect to a single feature, whereas LIME
considers all features.
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Fig. 4 Overview of our visual analytics instrumentation of techniques in Fig. 1. More features are revealed by scrolling down.
Line fading is enabled with 7 = 0.2
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Fig. 5 The class probability b of a model trained on a synthetic dataset a and two LCV plots using different contribution
techniques ¢, d. All plots share the same x-axis domain

Second, feature contribution techniques have to simplify in order to approximate the reference model.
For instance, LIME fits a linear model to a sampling region around an instance. This simplification yields
smooth curves in LCV and GCV plots, making it easier to spot more subtle patterns (Graham and Kennedy
2003). This also gives an intuitive visual interpretation of the kernel size parameter in LIME: changing this
parameter affects the smoothness of the curves.

5 Design

We built a visual analytics instrumentation of all discussed techniques (Fig. 1), as they are valuable in
different situations. More detail and a usage scenario are shown in the supplemental material. It can be used
by data scientists to understand how a feature impacts model predictions on a global level. In addition, it
also shows what values of a feature are relevant. Through interaction, different patterns in feature contri-
bution can be analyzed.

5.1 Feature contribution technique

Even though feature contribution techniques can provide great insight into model predictions, the output of
different techniques may vary significantly, making it challenging to compare them.

The examples in Fig. 5 show that LCV plots with different explanation techniques can vary significantly.
The difference is that LIME contribution values are approximate (partial) derivatives, whereas Shapley
contributions are additive: the sum of all feature contributions (plus the constant base rate, i.e., the average
predicted value) equals the class probability y. To further explain the difference, we consider the relation
between contribution vectors and the class probability for the various methods:

LIME: j=a+ Y BX

(5)
Shapley: y=¢€+ Z o

Because the base rate € of Shapley values is constant, the sum of Shapley contribution values ¢ recovers the
original class probability y. For LIME, the contribution values need to be composed with the feature values
first. Next, the linear regression intercept (o) is not constant but varies per instance.

For this paper, we focus on LIME contribution as it has a more straightforward interpretation (i.e., which
small change in feature value results in a big change in prediction) than Shapley values, and a lower
computational cost (Garreau and von Luxburg 2020). A kernel size of 0.5 was used, but we encourage
tweaking this parameter on a per-dataset basis.

5.2 Visual encoding

In PDP and LCV plots, a single instance is traced over the entire marginal distribution of a feature. This may
yield data points that are out-of-distribution (e.g., a person with age 5 and height 200cm). Such data points
force the model to extrapolate to an unseen part of the feature space, which could be misleading.

To account for this, we gradually fade out polylines as they get further away from the original data point.
Any kernel can be applied, but in our implementation we use a triangular kernel:
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Jul
o) = max (0.1~ ) (6)
where 7 is a configurable parameter impacting the length of the fade and R, the range of the marginal
distribution of feature ¢.

The result is shown in Fig. 4a, which depicts the same data as in Fig. 3b. Note that toward the end of the
feature range, Fig. 3b shows a third bump in feature contribution. This bump is not visible in Fig. 4a with
line fading. This shows that the effect was extrapolated from out-of-distribution data. Additionally, the
original data points can be shown to further enable the identification of out-of-distribution effects (Fig. 6a).

Our implementation (shown in Fig. 4) contains two views. The model view shows small multiples of
GCV plots for all features (Fig. 4a). This enables data scientists to determine which features are used by the
model, and what values play an important role in predictions. The y-axis is shared across all plots for easy
comparison. Line fading can be customized by configuring the fading parameter t on-the-fly, and an option
is provided to average all local polylines (similar to global PDPs). Selection is enabled by lasso brushing
(Raidou et al. 2015): dragging a line in the plot will select all polylines which intersect that line, revealing
clusters in the feature contribution vectors. This selection is linked to all other GCV plots and the data view.

The data view (Fig. 4b) contains a list of histograms to show the original data distributions. The
distribution of the selected instances in the model view is highlighted in blue. In the example, the data view
shows that the selected cluster in the model view (for which ‘pH’= 3.05 is important to the predictions)
corresponds with data instances with high alcohol content. The x-axis of the histograms can also be brushed
to selected instances with specific feature values and to highlight lines in the GCVs.

6 User study

To validate our proposed technique, we conduct a comparative evaluation through a user study with a
variety of machine learning professionals and visualization experts. The goal of the experiment is to analyze
how experts use different visualizations to understand complex machine learning models. We aim to answer
the following research questions:

RQ1 Can experts determine which features are most relevant and most used by the model for predictions?

RQ2 Does the visualization enable the understanding of the relationship between feature value and
importance? Can experts find feature values at which the prediction changes drastically?

RQ3 Are experts enabled to detect divergent model behavior (i.e., groups of instances are treated

differently)? This corresponds to different ‘strategies’ the model employs to produce predictions.

6.1 Participants

We invited 66 experts with an interest in machine learning explanations. We received 22 replies, of which 6
were female, 15 male and 1 other. The ages of the participants range from 24 to 50 years. Ten participants
reported having high experience with machine learning (>3 on 5-point Likert scale), while 9 participants

volatile acidity volatile acidity

volatile acidity

124
1.0
0.8 -
0.6
0.4+
0.2+
0.0

T T T
04 05 06 07 08 09 02 E 07 08 09

0.4

0.6
08 Fade line 08 Fade line

404 @ Enabled @ Enabled

Show data points 1.2+ Fade threshold 1.2 Fade threshold
@ Enabled

1.4 %1 -1.4-

(a) Data points shown (b) Line fading with 7 = 0.05 (€) Line fading with 7 = 0.5

Fig. 6 Included methods to enable the identification of out-of-distribution effects
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reported having high experience with visualization (>3 on 5-point Likert scale). Seven participants reported
having used explainable Al techniques such as LIME and SHAP before, the rest was new to the concept.
Participants were not compensated for their contribution.

6.2 Study procedure

We set up an interactive online survey that took around 10 to 20 minutes to complete. To start, each
participant completed a short background survey we used to report on the population demographics. Par-
ticipants were then introduced to the different visualizations for model interpretability as listed in Fig. 1 and
to the Wine Quality dataset. Finally, the participants were asked three sets of 10 questions about a complex
model predicting wine quality. Each set corresponds to one of the main research questions and is preceded
with an introductory example. To compare the different techniques, the participants were provided with ICE
plots for the first five questions of each set and GCV plots for the latter half. To avoid a learning effect due
to the order of the plots, the features used were distinct.

RQ1 Participants were presented with visualizations of two randomly selected features of the Wine
Quality dataset and had to indicate which of the two was more relevant to the model predictions.

RQ1 Participants were shown a visualization of a single feature and had to indicate the most important
feature value (i.e., for which feature value the prediction changed most rapidly).

RQ1 Participants were enabled to use lasso selection and were tasked to detect whether certain wines
were treated differently by the model than others (i.e., whether model strategies exist).

6.3 Results

We recorded the answers, the self-reported confidence in the answer on a 5-point Likert scale, and the time
spent at each question in milliseconds. The participants successfully completed the questions in 12 minutes
on average, excluding the background survey and introductory example.

To test for statistical significance, we will use one-sided proportion Z-test for the proportion of correct
vs. incorrect answers, the Mann—Whitney test for self-reported confidence due to the ordinal nature of the
Likert scale, and the t-test for the time taken for each question. For the alternative hypotheses, we assert that
participants have a higher proportion of correct answers, higher confidence, and less time taken using GCV
plots. We evaluated different participation cohorts independently, but did not find a significant difference.
Furthermore, the number of participants in each cohort is insufficient to prove statistical significance.

6.3.1 RQI. Feature importance

In general, participants were able to determine which of the two presented features was most important
using both visualizations. We define the correct answer as the average LIME contribution for both features;
the one with the largest average contribution was deemed most important. On average, 69.1% of participants
selected the correct answer using ICE plots and 86.3% using GCV plots. This result is statistically sig-
nificant with p = 0.001.

In addition, participants were a lot more confident in their answers with GCV plots with a statistical
significance of p = 8.91e-6. The distributions of reported confidences for each technique are shown in
Fig. 7a.
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Fig. 7 Self-reported confidence per research question, separated by ICE plot (grey) and GCV plot (blue). Mann—Whitney
significance test p-values are annotated
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Finally, participants took less time finding an answer: 21.9 s with ICE plots and 10.6 s with GCV plots.
As participants took a bit longer on the first question for each visualization, we omitted it from the time
averages.

6.3.2 RQ2. Feature value and contribution relationship

Participants also understood the relationship between feature value and importance. We defined the correct
answer as the feature value with the highest average LIME contributions out of all line segments. We
deemed the answer correct if the participants were within 5% of the correct answer (relative to the marginal
range of the feature) to account for insignificant deviations and tick value bias. On average, 56.4% of
participants selected the correct feature value using ICE plots and 75.5% using GCV plots. This result is
statistically significant with p = 0.0014.

We found a slight positive difference between reported confidences. However, this difference does not
pass the statistical test (p = 0.084 > 0.05). We hypothesize this is, at least in part, due to participants being
less rigorous when reporting confidence: for RQ2 and RQ3 a few participants seemed to have just left the
slider on the default value. The distributions are shown in Fig. 7b.

In terms of taken time there is again a significant difference of 14.7 s for ICE plots and 11.4 s for GCV
plots (p = 0.0038). The first questions for each visualization technique were again omitted.

6.3.3 RQ3. Model strategies

Finally, we tested whether participants were able to discern different model strategies. Unfortunately, there
was no statistical difference (p = 0.3314) in correctness: 67.3% of participants selected the correct answer
using ICE plots and 70% using GCV plots. This may be caused by the relatively simple dataset used for the
experiment, making it easier to spot strategies in ICE plots regardless of the many occluding and intersecting
lines. Another contributing factor is the ambiguity of what constitutes a cluster. The provided example may
have been insufficient to explain the concept of model strategies we expected.

In terms of confidence (Fig. 7c) and time taken, there was again a statistically significant difference with
p-values of 0.0447 and 0.0013, respectively. Using ICE plots, participants took 27.2 s and with GCV plots
only 13.9 s.

6.3.4 Feedback

At the end of the experiment, participants were asked to provide optional comments about the survey. We
received three questions about how best to interpret importance in an ICE plot. As we have argued, the
translation of variation in the predicted value shown in ICE plots is subjective and challenging, whereas
GCV plots directly show feature importance by value, adopting the assumptions of the underlying expla-
nation technique. As a result, all these participants reported higher confidence using GCV plots over ICE
plots during RQ1.

Regarding RQ3, one participant remarked that using the interaction helped them find the clusters. Two
other participants mentioned they liked this part of the survey, but found it difficult to determine what
constitutes a cluster. This is valid feedback and reflected in the lack of significant correctness results for
RQ3.

7 Discussion and future work

Our proposed visualization supports answering various questions about the model to understand a complex
model. First, an expert can check the feature contribution and relationship with feature value at a single
glance. In prior work, this could only be done with separate visualizations of feature contribution and partial
dependence-based plots. We showed these are difficult to compare (it requires estimating the slope), and
may not show consistent results, as they encode different information. Next, patterns (or ‘strategies’) can be
spotted that would otherwise remain hidden (e.g., Fig. 3b highlights two distinct clusters of lines). In
addition, linking with the data view helps to ascertain what constitutes this strategy (e.g., alcohol contents).
Finally, our approach enables the validation of the (un)certainty of contribution through line fading.
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Our user study has shown that GCV plots can aid the understanding of complex models by increasing
correctness and confidence and reducing the time taken to obtain an insight into how complex machine
learning models work, compared to traditional techniques.

However, the current implementation has a few limitations. First, much computation is needed to obtain
these curves: our examples with all features of the Wine Quality dataset took 5 minutes (on AMD Ryzen 5
3600X); it will take longer for larger datasets and more complex models. Hence, computing these plots on-
the-fly is not possible. We address this by caching the results in our implementation. The optimization of
current implementations of feature contribution methods for large datasets is an interesting direction for
future research.

Next, even though we can visually represent many features there is a practical limitation on the number
of features that can be shown. Hence, the plots are best applicable to datasets with at most 10-20 features. In
addition, for the plots to be interpretable we rely on a dataset that has features with inherent meaning.

Finally, our work relies on the validity of the used underlying explanation technique. This is not rock
solid yet, as both LIME and Shapley values have been criticized (Garreau and von Luxburg 2020; Kumar
et al. 2020; Merrick and Taly 2019). We chose LIME as it has a more straightforward interpretation than
Shapley values (i.e., which small changes in feature value result in a big change in prediction) and is
computed faster. However, we think our plots are able to help experts understand the differences between
explanation techniques, ultimately encouraging this line of research.

As a follow-up, the user study can be expanded to cover a wider variety of datasets and participant
cohorts to further investigate the suitability of our approach.

8 Conclusion

We have presented local contribution-value (LCV) plots, a novel way of conveying feature contribution as a
function of feature values. This was previously only possible by combining multiple views, or by fallibly
estimating the slope of partial dependence curves, which is challenging and subject to errors. Furthermore,
we introduced global contribution-value (GCV) plots to show a comprehensive overview of the full model
behavior. These plots are information dense and enable novel insights into a model. We have addressed
uncertainty of the sensitivity analysis by interactively fading out lines, enabling the validation of patterns for
real data, and empower an analysis workflow with linked views.

In a user study with 22 machine learning professionals and visualization experts, we have shown that the
visualizations support model interpretation by increasing correctness and confidence and reducing the time
taken to obtain an insight compared to previous techniques.

The proposed visualizations provide data scientists with an in-depth view of the role of a feature in
predictions and enable model diagnosis, refinement, decision support and justification use cases commonly
driven by model interpretability (Collaris and van Wijk 2020a).
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