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Abstract A common enhancement of scatterplots represents points as small multiples, glyphs, or thumbnail
images. As this encoding often results in overlaps, a general strategy is to alter the position of the data
points, for instance, to a grid-like structure. Previous approaches rely on solving expensive optimization
problems or on dividing the space that alter the global structure of the scatterplot. To find a good balance
between efficiency and neighborhood and layout preservation, we propose HAGRID, a technique that uses
space-filling curves (SFCs) to ‘‘gridify’’ a scatterplot without employing expensive collision detection and
handling mechanisms. Using SFCs ensures that the points are plotted close to their original position,
retaining approximately the same global structure. The resulting scatterplot is mapped onto a rectangular or
hexagonal grid, using Hilbert and Gosper curves. We discuss and evaluate the theoretic runtime of our
approach and quantitatively compare our approach to three state-of-the-art gridifying approaches, DGRID,
Small multiples with gaps SMWG, and CorrelatedMultiples CMDS, in an evaluation comprising 339
scatterplots. Here, we compute several quality measures for neighborhood preservation together with an
analysis of the actual runtimes. The main results show that, compared to the best other technique, HAGRID is
faster by a factor of four, while achieving similar or even better quality of the gridified layout. Due to its
computational efficiency, our approach also allows novel applications of gridifying approaches in inter-
active settings, such as removing local overlap upon hovering over a scatterplot.
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1 Introduction

Scatterplots are widely used representations for 2D data. The position of the dot is the main visual encoding
and allows the user to perceive proximity or similarity between individual data points. Additional channels,
such as color, shape, and size, can be used to show other properties of the respective data point.

A possible enhancement for scatterplots is replacing dots with meaningful glyphs or images that provide
additional semantic information (Ward 2002). For instance, the individual points can represent the hand-
written digits from the MNIST dataset (Deng 2012). In that case, their positions are the 2D projections
resulting from applying dimensionality reduction to the high-dimensional dataset. Rather than using dots,
color, or shape to represent the points, we can plot the small image of the hand-written digit, allowing the
user gain more insight from the data.

For datasets that are not sourced from images, we may use glyphs, which may have various shapes and
sizes, such as circular or hexagonal ones. In these cases, occlusions stemming from overlapping points might
impede the readability of the scatterplot (Hilasaca and Paulovich 2019). A common approach to dealing
with this issue is to detect collisions between image or glyph points and slightly jitter or move them around
to reduce the overlap. Handling collisions is also necessary in graph drawing, wordles, and in gridifying
maps.

Techniques formulated as optimization problems (Meulemans et al. 2016; Liu et al. 2018) produce
overlap-free layouts with high quality, but come with high runtimes, impeding interactive applications.
Techniques generating space-filling results have better runtimes (Hilasaca and Paulovich 2019; Duarte et al.
2014), but can only preserve the shape and patterns of the scatterplot if adding dummy points, which also
increases the runtime complexity for large grids. Our work is primarily motivated by dimensionality
reduction processes in which users have to frequently change the parameterization of the algorithms to find
good results. For such applications, a good tradeoff between fast runtimes and maintaining the original
global structure is important.

To address these issues, we propose HAGRID
1, a technique that uses space-filling curves (SFCs) to

‘‘gridify’’ a scatterplot. SFCs are created by a starting pattern repeatedly replacing the vertices of the pattern
with the same pattern, but rotated and flipped, so that the ends of the pattern connect to each other. This
process creates a self-similar and self-avoiding curve, where the limit of the recursion leads to a space-filling
curve (see Fig. 2).

Most importantly, this recursion is bijective, i.e., a point in the area of the SFC can be mapped to a 1D
index on the curve, and then decoded back to the 2D domain. The vertices of the SFCs correspond to the
centers of the squared (HC) or hexagonal (GC) cells on the resulting grid, where the glyph or image point
will be ultimately plotted (see Fig. 1 as example for the use of GC). We use these properties to align the
points of a scatterplot on a grid and to handle collisions, i.e., points mapped to the same SFC vertex or the
same cell on the grid. We resolve collisions on the curve by moving the respective point left or right on the
SFC (see Algorithm 2).

To evaluate HAGRID, we quantitatively compare it with the three related approaches. To this end, we use
339 scatterplots and compute different quality metrics on neighborhood preservation and layout similarity,
as well as runtimes. Our results indicate that HAGRID is substantially faster while keeping similar or even
better visual quality. In summary, we make the following main contributions:

• HAGRID, a technique for aligning 2D points on a grid, defined using space-filling curves.
• The results of a quantitative evaluation comparing HAGRID to DGRID, CorrelatedMultiples ( CMDS), and

Small Multiples with Gaps ( SMWG).

Equipped with this faster approach, we provide two case studies illustrating how it can be used in interactive
applications and to visualize large datasets. Our implementations of HAGRID and all evaluation metrics used
are available, both in Python (https://github.com/kix2mix2/Hagrid) and JavaScript (https://github.com/
saehm/hagrid). This article is an extension of a previous conference paper on the same topic (Cutura et al.
2021).

Par8 HAGRID is short for Hilbert And Gosper Curve-based GRIDs
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2 Related work

Space-filling curves can be used in many different ways (Bader 2012), for instance, to lay out data in the
cache, which improves the runtime of certain algorithms. Here, we provide related work on how space-
filling curves are currently used in visualization use cases. Then, we review existing techniques for collision
removal or reduction in scatterplots and similar visual encoding techniques.

2.1 Applications of space-filling curves

This section discusses existing techniques that use SFCs for visualization-related use cases.
Jigsaw (Wattenberg 2005) uses SFCs, such as Hilbert-curves, to generate a space-filling map, competing

with treemap generation algorithms. Their SFC approach creates non-rectangular maps, which have several
superior properties, such as better preservation of ordering of their tree visualization.

Buchmüller et al. (2018) use SFCs to create 2D visualizations of simulation processes, so-called
MotionRugs. Space-filling curves allow them to transfer the position of agents in the simulation to a vertex
on the curve. The curve then gets visualized as a one-pixel wide column. The artifacts from this process
allow tracing of behaviors of the agents in the simulation.

Muelder and Ma (2008) use SFCs for node-link graph layouts. They compute a matrix ordering of the
graph, and project this ordering on a space-filling curve, in this case a HC or a GC. Taking advantage of the
neighborhood preservation property of SFCs, this leads to a graph layout where clustered nodes are close in
the final visualization.

Gospermap (Auber et al. 2013) creates treemaps with non-rectangular shapes of hierarchical data, by
laying it out on the Gosper Curve. Other works use space-filling curves for neighborhood search in point
clouds (Ježowicz et al. 2014).

These techniques take advantage of the fast mapping either from 2D to 1D or vice versa. They use this
mapping and the neighborhood-preservation property to visualize different aspects of the specific data. Our
technique does not focus on mapping data for a specific use case. Our primary goal is more general, that is,
creating a gridified layout without any overlap by re-mapping points. While we illustrate our approach with
scatterplots, it can be used for any data that can be processed as a set of (x, y) coordinates, for instance node-
link diagrams, or point clouds.

2.2 Point positioning

We review existing techniques for collision removal or reduction in scatterplots and similar visual encoding
techniques. Closest to our work are approaches that seek to remove overlap of point representations by
altering their position. The problem of point positioning occurs across different visualization types. We use
the visualization type to categorize them into the following groups:

2.2.1 Graphs—Node overlap removal

The idea of removing node overlap in graph drawing is similar to our approach. For example, MIOLA
(Gomez-Nieto et al. 2013a) arranges rectangular boxes in a way such that no overlap occurs anymore and
the neighborhood of a box is preserved as much as possible. It uses a mixed integer quadratic optimization
formulation, which can be solved by interfacing to optimization engines. To align all points on a grid,
MIOLA requires additional constraints, further increasing the runtime. The algorithm gets measured and
compared with VPSC (Dwyer et al. 2006), Prism (Gansner and Hu 2008), Voronoi (Du et al. 1999), and
RWordle-C Strobelt et al. (2012), which have the same goal and use case. For comparison, they use various
quality metrics: Euclidean distance, layout similarity, orthogonal ordering, size increase, and neighborhood

Fig. 1 A detail view on a section of the t-SNE projection of the Art UK Paintings dataset. Gridified with HagridGC

Hagrid: using Hilbert and Gosper curves 1293



preservation. The selected datasets are video snippet collections. The runtime success is based on solving
their proposed formulation with Gurobi, the fastest optimization engine commercially available. Nach-
manson et al. (2016) builds a minimum spanning tree and grows edges between colliding nodes. They
compare their technique GTree with Prism (Gansner and Hu 2008) by measuring the area of the result, edge
length dissimilarity, and procrustean similarity (Borg and Groenen 2003). Marcı́lio-Jr et al. (2019) also
evaluate techniques (Pinho et al. 2009; Dwyer et al. 2006; Gomez-Nieto et al. 2013b; Strobelt et al. 2012;
Gansner and Hu 2008) of node overlap removal. All of those techniques were compared to at least one of the
baselines implemented for this paper, and hence were not selected for our evaluation.

2.2.2 Space-filling Treemaps

NMAP (Duarte et al. 2014) seeks to generate a space-filling treemap of a given visual area. Starting with a
scatterplot, it recursively replaces the individual dots with unevenly sized rectangular boxes, which even-
tually form a treemap. They compare their method with OOT (One-dimensional Ordered Treemap) and SOT
(Spatially-ordered Treemap) by comparing the aspect-ratio of individual boxes for each point, displacement,
and neighborhood preservation. They evaluate the relationship between runtime and number of points on
nine generated datasets. NMAP, OOT, and SOT have in common that areas should be transformed in such a
way that the proximity between objects remains intact, thereby filling the whole visualization plane. NMAP

has an extension that adds points in such a way that the algorithm results in a layout where all generated
bounding-boxes have the same size. By comparison, our technique preserves as much as possible the
distances (i.e., empty spaces) between points and generates equally sized squares or hexagons by default.

2.2.3 Maps

Several techniques exist for arranging geographical entities to uniform tiles, for instance, small multiples
with gaps ( SMWG (Meulemans et al. 2016)), generating tile maps (McNeill and Hale 2017), or coherent
grid maps (Meulemans et al. 2020). These methods work on the centroids of geographical areas, trying to
maintain the global shape while keeping potential adjacency of respective areas. Evaluating the use case of
these techniques needs additional metrics, for instance, orthogonal ordering is important. Simplifying maps
has a high demand on visual quality to keep the map recognizable, but runtimes are relatively unimportant
as they are mostly used in a static setting. In contrast, we focus on use cases like gridifying dimensionality
reduction and interactive settings, in which runtime plays a central role.

2.2.4 Scatterplots

DUST &MAGNET (D &M) (Vollmer and Döllner 2020) is a technique for creating overlap-free scatterplots.
Virtual magnets attract or reject points depending on a given feature. It avoids overlaps with a continuous
optimization process, by first checking from the target position of a point in a defined grid in different
directions for an empty spot. After finding an empty spot, in a second step, each placed point looks ‘‘back’’
for all adjecent grid cells closer to the target point where the point should have been placed, and taking the
nearer available space. This approach can be used if the input is high-dimensional, our technique gridifies
already projected data.

GRIDFIT (Keim and Herrmann 1998) uses quad trees to gridify scatterplots and proposes two baselines for
their evaluation: a naive approach using nearest neighbors to find the best available cell to place colliding
point, and one employing SFCs to handle overlap. Their SFC baseline shares some commonalities to our
method, but only uses the SFC for the grid coordinate computation, whereas HAGRID uses the SFCs for
collision handling, which constitute the biggest runtime efficiency. GRIDFIT, as presented in the paper, is not
entirely reproducible and none of the related work, that we are aware of, evaluated against it.

CorrelatedMultiples ( CMDS) (Liu et al. 2018) use a variation of MDS to ‘‘gridify’’ data plots. Their use
case is to show uniformly-sized small multiples instead of dots in a scatterplot to enrich the visualization
with more information. They follow an approach similar to a force-directed layout method, usually
employed for graphs. Their evaluation focuses on the runtime analysis. They compare their technique
against SpatialGrid (Wood and Dykes 2008), and GridMap (Eppstein et al. 2015). They also conduct a user
study for analyzing the usefulness of small multiples in a scatterplot with favorable results.

DGRID (Hilasaca and Paulovich 2019) takes a similar space dividing approach to GRIDFIT, and bisects the
visual space repeatedly, so that each point has its own rectangular or squared grid cell while preserving
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neighborhoods. They compare their technique with Kernelized Sorting (Quadrianto et al. 2010), Self-
Sorting Map (Strong and Gong 2014), and IsoMatch (Fried et al. 2015). This evaluation is the most
extensive one, by evaluating neighborhood preservation, layout similarity, and cross-correlation on a range
of datasets from the UCI Machine Learning Repository.

SMWG, CMDS and DGRID address the same use case as we do and are, thus, primary candidates for
comparison. We have selected some of the quality metrics that they used in their individual evalua-
tions (see Sect. 4). The metrics employed and the results of this comparison are presented in Sect. 4.

3 Technique

This section starts by providing some background on space-filling curves (SFCs), and specifically Hilbert
and Gosper curves. We also derive a list of properties that are beneficial for our goal.

3.1 Background and properties of space-filling curves

SFCs start with a pattern that is recursively repeated. For the Hilbert curve (HC) (Hilbert 1935), it is the
pattern

, creating a grid of squares indexed continuously from 0 to ml, where m is the number of vertices in the
pattern and l the number of recursions, referred in this paper as the (depth) level of the curve. The Gosper
curve (GC) (Gardner 1976) creates a hexagonal grid with the start-pattern

. Examples of HC and GC at various levels are available in Fig. 2.
Such techniques take advantage of the fast mapping either from 2D to 1D or vice versa. They use this

mapping and the neighborhood-preservation property to visualize different aspects of specific data. Our
technique does not focus on mapping data for a specific use case. Our primary goal is more general, i.e.,
creating a gridified layout without any overlap by re-mapping points. While we illustrate our approach with
scatterplots, it can be used for any data that can be processed as a set of (x, y) coordinates, for instance,
node-link diagrams or point clouds.

In our approach, we specifically use Hilbert and Gosper curves, as they have some desirable properties
for visualization use cases that we seek to leverage with our approach:

• Space-filling As the level of the curve increases toward infinity, every high-dimensional point can be
represented by a vertex of the 1D curve. This ensures there is no constraint on either the dimensionality
or the number of items to be visualized (Uher et al. 2019).

• Bijectivity 2D points can be mapped to the 1D curve and back in the 2D plane, allowing us to switch
between the two representations (Wattenberg 2005).

• Neighborhood-preservation A point always retains approximately the same position on the curve
regardless of whether the level of the curve is increased or decreased (Wattenberg 2005).

(a) (b)

Fig. 2 In a and b on the left, we show a set of randomly generated 2D points mapped to the Hilbert and Gosper curves at the
first level of depth. In the other images of (a) and (b), we show the index number of each vertex for the two curves. In the
transformation from 2D to 1D, each point is assigned its own index on the Hilbert/Gosper curve. In the level 1 depictions (left),
points collide because there are not enough cells to fit all the points. As levels increase, collisions decrease but can still occur.
Algorithm 2 adapts the initially assigned position to the closest available one on the curve. Each step produces m times the
number of cells in the previous level. So, depending on the number of cells in the starting pattern, the SFC has ml cells at the lth
level (see Table 1)
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• Stability Small changes in the position on a curve yield the smallest possible change in the 2D outputs
(Uher et al. 2019).

3.2 Proposed technique

With HAGRID, our goal is to create overlap-free, gridified scatterplots where the dots are replaced with
images or glyphs. Our technique differs from the space-filling approaches ( DGRID, NMAP) above in that we
do not only seek to preserve the local neighborhoods, but also the global structure of a scatterplot. By global
structure, we mean the preservation of the characteristics of a set of points projected into 2D Euclidean
space. These properties can include, but are not limited to, measures such as density, skewness, shape, and
outliers (Sedlmair et al. 2012; Wilkinson et al. 2005). Loss of global structure implies that information like
outliers or point density is lost in the resulting layout. CMDS and SMWG try to retain the global structure of
the visualization, but have high runtimes.

HAGRID consists of following steps:

(1) Begin by setting the level l of the used SFC, where l� lmin ¼ dlogm ne (see Eq. 1).
(2) Assign the datapoints to a grid defined by level l and the used SFC, gl : R

2 ! Gl ¼ fði; jÞg, where the
pairs (i, j) represent the possible coordinates of the grid Gl (see Fig. 2).

(3) Use fl : Gl ! Il � N, where Il is the set of indices or vertices of the SFC of level l.
(4) If a point is assigned to an already occupied vertex of the SFC, Algorithm 2 resolves the collision.
(5) Finally, f�1

l : Il ! Gl maps the points back onto the grid Gl, resulting in an overlap-free scatterplot.

The function gl maps the original 2D coordinates to the Grid Gl. First, the data is transformed to fit into the
boundaries of grid Gl. Then, the transformed coordinates get rounded to the grid cell (i, j) that the datapoint
should be assigned to.

The main added value of using the SFC is, therefore, the collision handling.
Figure 3 conceptually illustrates the process introduced above, using images from the public Art UK

Paintings dataset (Crowley and Zisserman 2014) instead of dots. The mapping ðfl � glÞ : R2 ! Il (steps 2 &
3 in the list) returns an index, transforming the position of the 2D point to a 1D vertex on the
SFC (see Fig. 3 middle). The SFC needs to be deep enough to hold all the points of the used data-
set (see Eq. 1). We loop through each point in the list and assign it a 1D index on the SFC. Collision
handling happens in the 1D space, on the fly. If a new point is assigned to an occupied vertex, we move the
point to the left or to the right, based on which direction offers the closest empty spot (yellow areas
in Fig. 3). After the final point positioning, all collisions are resolved (Fig. 3 right). Finally, the 1D vertices
are transformed back to the 2D grid Gl, using function f�1

l : Il ! Gl. The entire process is detailed in
Alogrithm 1.

The final set of coordinates represents the centers of square or hexagonal cells of uniform sizes. The size
of the cells is determined by the level of depth of the curve (l), introduced in Sect. 3.1. The depth level is,
therefore, a parameter of our technique. Since our goals cover both being able to plot images or glyphs, and
completely avoiding overlaps, we can reformulate them as follows: we want to plot a set of images as large
as possible without overlap.

Given the space-filling property of the curves, if we were to generate deep enough curves, no overlap
would happen, as the curve would cross through all 2D space as l ! 1. In other words, the gridified
structure would approach the original layout of the scatterplots. However, a higher curve level l also leads to
a more fine-grained grid, and hence smaller cells where the glyphs and images can be plotted. For this
reason, we want to calculate the minimal level of depth according to the number of points to be plotted. This
lmin is the default value and calculated by:

lmin ¼ logm nd e; ð1Þ

where n is the number of points to be scattered, and m is the number of vertices in the initial recursion
pattern (i.e., the SFCs at level 1). For HC (

), m ¼ 4 and for GC (
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), m ¼ 7 (see Fig. 2). The users may always alter the level to achieve different results depending on

their individual goals. For example, if analyzing the global structure of a scatterplot is more important, we
recommend setting the level to lmin þ 1 or higher, or using the level of depth that guarantees a user-defined
minimum percentage of whitespace, by using n � ð1þ wÞ in Eq. 1 instead of n, where w is the percentage of
whitespace. For example, the level with guaranteed 50% whitespace is calculated with
l50% ¼ dlogmðn � 1:5Þe. Table 1 lists the maximum number of cells available for different levels.

Fig. 3 Illustration of Algorithm1 and Algorithm 2 of HAGRID using the Hilbert curve. An initial scatterplot (left) consisting of
10 images of the Art UK Paintings dataset is gridified with Algorithm 1. One image after another gets assigned to a vertex of
the Hilbert curve (middle). If a collision occurs (yellow background), Algorithm 2 resolves it by moving the image to another
vertex. The first collision occurs at step 3 and gets resolved by moving it to the next empty spot to the left. The next collision
happens in the same area at step 8. Algorithm 2 finds the next empty valid spot on the right, to the left are no spots available.
The last collision appears at the end (step 10). Algorithm 2 finds two empty spot to the left and right. The collision gets
resolved by putting the respective point to the right, because the 2D distance to the right spot is smaller

Table 1 The maximum number of points that can be encoded in an SFC of a particular level

lmin 1 2 3 4 5 6 7

4 16 64 256 1024 4096 16,384

7 49 343 2401 16,807 117,649 823,543
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The process of placing a point onto the SFC is similar to inserting a value into a hash table. The recursion
depth l of the SFC depends on the number of points in the scatterplot (see Eq. 1), and defines the required
number of steps of the index computation of a single point. The computation of an index assignment of one
point using ðfl � glÞ : R2 ! Il needs OðlÞ time, or—as l depends on n (Eq. 1)—Oðlog nÞ time. For all points,
the overall runtime is thus Oðn � lÞ ¼ Oðn log nÞ.

The above considerations are valid as long as there is no collision on the SFC. This best case occurs if the
points are evenly distributed in the sense that there is at the most one point per index on the SFC from the
mapping by f. However, collisions will happen in most cases. Additional computational costs can be
introduced by collision handling. The worst case happens if all points are initially mapped by f to the same
SFC index. In this case, collision handling will take as many steps as there are points already placed on the
SFC. When placing n points subsequently, this will lead to an average of n/2 collision-handling steps per
point, or Oðn2Þ steps to handle all n points. In total, the runtime will therefore be Oðn log n þ n2Þ ¼ Oðn2Þ.
The first term Oðn log nÞ comes from the initial placement of the points and the second term Oðn2Þ deals
with collision handling. Therefore, the worst case runtime is governed by collision handling.

However, both extreme cases are not typical for our applications. For in-between cases, it is critical to
model the number of collision-handling steps, depending on n. Let us assume that the function c(n) provides
the average number of collision-handling steps. Then, we arrive at a total runtime of Oðn log n þ cðnÞ � nÞ,
composed of the initial placement of points and the subsequent handling of collisions for all n points. Of
course, c(n) depends heavily on the distribution of points in 2D and, therefore, cannot be discussed here in
full detail. We refer to generative data models (Schulz et al. 2016) for some approaches to model data with
certain characteristics that could be related to the properties relevant for collision handling. Even without
such a data model, we know that the number of collision handling steps are bounded: 0� cðnÞ� n, com-
prising the best and worst case scenarios from above. While c(n) is a theoretical model, Fig. 4 shows the

Fig. 4 Charts showing runtime evaluation of generated data (uniformly distributed points, with values from [0, 1] for each
dimension) with specific dataset sizes (x-axis) for HagridHC, HagridGC, and DGRID. We computed the grid layouts with the
three techniques for dataset sizes from 1.000 to 10.000 with a step size of 100, 20 times for each dataset size and each method.
The lines show the connected means per dataset size. We measured the runtime (upper chart in ms) and the number of
collisions occurred (bottom chart, log-scale). The charts show that—as expected—more collisions increase the runtimes
slightly (for HagridHC at n = 4.000 and for HagridGC at n = 2.400)
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number of actual collisions for randomly generated uniformly distributed datasets, as well as their impact on
runtime. Therefore, our runtime will then be between Oðn log nÞ and Oðn2Þ.

There is a relationship between our collision handling and linear probing in closed hashing (also called
open addressing) (Cormen et al. 2009) that allows us to model an in-between case. If we assume that our
data is distributed in a way that it leads to the same collision probabilities as in uniform hashing, then we
arrive at an average number of probing steps 1=ð1� aÞ for adding a point (or for unsuccessful search in
hashing); here, a is the load factor, i.e., the percentage to which the table is filled by points. This means that
the number of collision-handling steps depends on the load factor, but not on n. To fill the SFC, we keep on
adding points subsequently, thus increasing the load factor from 0 to the maximum load factor amax at
equidistant discretization steps.

In the limit case for asymptotic behavior, we then have infinitesimal steps for a,
and

R amax
0

1=ð1� aÞ da ¼ � lnð1� amaxÞ for the average number of collision-handling steps. Therefore,
with the assumption of uniform hashing and fixed maximum load factor, we have cðnÞ 2 Oð1Þ to handle one
point and, thus, Oðn log n þ nÞ ¼ Oðn log nÞ for the overall runtime, which is identical to the best case
behavior. With increasing load factor, there is an increasing number of collisions, which impacts the
runtime.

It should be noted that the input data at hand does not necessarily come with the properties of uniform
hashing; therefore, the runtime will then be between Oðn log nÞ and Oðn2Þ.

4 Quantitative analysis

In this section, we present a quantitative evaluation of HAGRID in comparison to selected techniques.
We introduce the quality metrics used, the setup of the evaluation, and the results and runtime analysis.

4.1 Competing techniques

We compare our technique with its two versions, Hilbert curve (HagridHC) and Gosper curve (HagridGC), to
three state-of-the-art approaches: CMDS, DGRID, and SMWG. We selected these candidates based on two
criteria: (i) how well they address our use cases, and (ii) whether the techniques had not been previously
compared against each other. To this end, we have selected CMDS and DGRID as they specifically cater to
scatterplot layout simplification. In previous evaluations against related methods (Eppstein et al. 2015; Fried

Fig. 5 Results of our evaluation of the 339 scatterplots, aggregated by dataset size, and with all data in the last row. The
boxplots show the median, the 25% and 75% quantiles, while the ends show the 5- and the 95 percentile. The color of the
triangles indicates the best method, measured by the median of the particular metric. The results demonstrate that in each
metric HAGRID performs better than the other techniques, except for NP for dataset sizes smaller than 250 points. The runtime
(log10-scale) of HAGRID is better than any other technique. The fastest alternative is DGRID, which is four times slower though.
The outliers of HagridHC and HagridGC for NP in the last group stem from some projections of the paris buildings dataset, see
the supplemental materials for more detail
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et al. 2015; Strong and Gong 2014; Wood and Dykes 2008), these approaches showed very convincing
results in terms of runtime and quality metrics.

All in all, the selected methods represent some of the best available techniques that address the problem
of point positioning, and more specifically, our scatterplot layout use case. A side contribution of this paper
are the Python and JavaScript implementations of the used techniques (except SMWG), as well as of the
evaluation metrics that will be presented in the next section.

4.2 Evaluation metrics

For the comparison, we have selected the following evaluation metrics: neighborhood preservation (NP, also
called AUClogRNX (Lee et al. 2015)), cross-correlation (CC), Euclidean distance (ED), size increase (SI),
and runtime (RT). The metrics in this list were selected based on the ones mentioned in the related work.

Our motivation behind selecting these particular metrics is two-fold. Neighborhood preservation and
cross-correlation describe whether the local neighborhoods are preserved. The other metrics, Euclidean-
distance and size increase, are more sensitive to how the global aspect of the scatterplot changes. We have
selected those metrics, because our main goal is to remove overlap, while roughly holding the position of the
points in the original scatterplots. The local metrics neighborhood preservation and cross-correlation will
help us compare against DGRID where the overarching goal was space-filling while maintaining neigh-
borhoods. To make the metrics comparable, we scaled the extents of all original and gridified scatterplots to
[0, 1].

Neighborhood preservation (NP, or AUClogRNX (Lee et al. 2015)) is a metric that enhances the metric
k-Neighborhood Preservation (NPk) (Paulovich and Minghim 2008) by aggregating the measurements for
all neighborhood sizes k. The metric NPk is used by nearly all methods mentioned in the related work
section (Duarte et al. 2014; Gomez-Nieto et al. 2013a; Hilasaca and Paulovich 2019; Marcı́lio-Jr et al.
2019). It calculates the average percentage of the k-nearest neighbors of each box that are preserved in the
final layout. It takes a value between 0 and 1.

We calculate NPk as follows:

NPk ¼
1

n � k

Xn

i¼1

V
ðkÞ
i ðXÞ \ V

ðkÞ
i ðYÞ

�
�
�

�
�
�;

where X is the original set of points, Y is the gridified set of points. V
ðkÞ
i returns the set of the k-nearest

neighbors of the i-th point of the respective set of datapoints, and n is the total number of points in the data.
These values are scaled and aggregated as follows:

fNPk ¼
ðn � 1ÞNPk � k

n � 1� k
;

NP ¼

Pn�2
k¼1

fNPk

k

� �

Pn�2
k¼1

1
k

� � :

ð2Þ

Values between 0 and 1 are possible, where 1 means perfect neighborhood preservation, and 0 means no
neighborhood preservation.

Cross-correlation (CC) measures the distance correlation between pairwise distances in the original
layout compared to ones in the new layout. The distance can be interpreted as a measure of dissimilarity
between the points; ideally, dissimilar points in the original layout remain as such in the new one. Hilasaca
and Paulovich (Hilasaca and Paulovich 2019) also use this measure in their evaluation of DGRID. The CC
measure is defined as:

CC ¼
Xn

i¼1

Xn

j¼1

dðyi; yjÞ � dY

� �
� dðxi; xjÞ � dX

� �

rX � rY
; ð3Þ

where xi and xj are points belonging to X (the original set of points), yi and yj are points belonging to Y (the
gridified set of points), rX and rY are the respective standard deviations, and dX and dY are the respective
mean distances between any pair of points.
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This measure should be interpreted the same way as any correlation coefficient would be. If the value is
close to �1, the pairwise distances are negatively correlated, i.e., points that used to be close together are
now far away from each other. If the value is around 0, it means that there is no relationship between the
pairwise distances of the original and new layouts. Ideally, this measure takes the value of 1: then, points
that were close together stay together, and points further away from each other remain far away.

Euclidean distance (ED) is the average distance between the original points and their gridified
counterparts:

ED ¼ 1

n

Xn

i¼1

d xi; yið Þ; ð4Þ

where xi and yi correspond again to the original and the final position of our data points. We use Euclidean
distance as a measure for the global structure of the visualization. The main objective of methods such as
NMAP and DGRID is a space-filling visualization, rather than the preservation of global structure. Therefore,
we expect them to perform poorly with respect to Euclidean distance. In our case, intuitively, in order for the
global structure to change as little as possible, the points should be moved to a position as close as possible.
The higher the average Euclidean distance is, the worse the global structure of the graph is preserved.

Size increase (SI) is the ratio of the area of the convex hull of the initial scatterplot (CX) and the area of
the convex hull of the gridified version (CY ):

SI ¼ area CYð Þ
area CXð Þ : ð5Þ

This measure is used for global structure preservation. Ideally, the resulting grid has a similar convex hull to
the initial one. While the range for values of size increase is �0;1½, 1 is the optimal value. Size Increase has
also been used in previous evaluations (Duarte et al. 2014; Gomez-Nieto et al. 2013b). Due to the space-
filling aspect of DGRID, this metric will be expected to have worse results.

Run time (RT) is the total time needed for one technique to compute the gridified version from the
original scatterplot. All the techniques we evaluated against also examine the running performance of their
methods in terms of time.

4.3 Evaluation data

For the evaluation, we gathered 60 real and synthetic datasets. 54 of these datasets stem from Aupetit and
Sedlmair (Aupetit and Sedlmair 2016). We have further included six additional image datasets publicly
available online. From these datasets, we created a total of 339 scatterplots by projecting them with different
dimensionality reduction (DR) methods. These methods lead to vastly diverse layouts with different dis-
tributions of points across them. Therefore, they allow us to assess how well HagridHC, HagridGC, and the

Fig. 6 The UMAP projection of the COIL-100 dataset, together with examples of the images used. Drawing the images instead
of dots results in overlaps
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other techniques perform depending on the number of points in the dataset, and on the number of total
collisions.

In the supplemental material, we provide a list of the datasets involved in the evaluation. We include
their names, sizes, and number of projections computed on each. In terms of DR algorithms, we used PCA
(Pearson 1901), robust PCA (Candès et al. 2011), t-SNE (van der Maaten and Hinton 2008), Isomap
(Tenenbaum et al. 2000), LLE (Roweis and Saul 2000), UMAP (McInnes et al. 2018), Spectral Embedding
(Belkin and Niyogi 2003), Gaussian Random Project (Bingham and Mannila 2001), and MDS (Kruskal
1964). For parameterizable DR methods, we performed a grid search through a range of values for each
parameter involved. The final 339 scatterplots were selected by uniformly sampling across different scat-
terplot sizes from a total of 1695 projections. For all tests, we have normalized the scatterplots so that the
dimensions have values between 0 and 1.

4.4 Evaluation setup

We implemented HagridHC and HagridGC, as well as CMDS and DGRID in Python and JavaScript. For
SMWG, we used the available online tool (http://www.gicentre.org/smwg/) as we could not replicate the
code based on publicly available information. For the evaluation we used the Python implementations,

Fig. 7 Each row represents one of the evaluated techniques on the scatterplot shown in Fig. 6. The first column represents the
resulting gridified scatterplot with dots color coded by labels. The next two columns plot each point in the grid layout color
coded by the neighborhood preservation and cross-correlation metric. The last two columns show how the points moved from
the original to the gridified layout in each case. The value underneath each visualization represents the overall metric calculated
for the entire layout
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because Python supports parallel processing for speeding up the computations of the evaluation metrics. All
evaluations were run on an Intel(R) Core(TM) i7-8705G CPU @ 3.10 GHz, with 16 GB of RAM.

We categorized the 339 scatterplots into six groups according to the number of points (see Fig. 5).
HagridHC, HagridGC, and DGRID were computed for all 339 scatterplots. CMDS were only computed for
scatterplots up to 250 points (group 1 and 2), and SMWG only for scatterplots up to 100 points (group 1).
The reason behind this choice is that the computation times of these two techniques became intractable for
larger datasets. These computation times were far beyond the requirements of our use case for rapid or even
interactive application of such approaches. Last, we computed the quality metrics for all results.

For the HAGRID results, we used the level that guarantees at least 50% whitespace
(l50% ¼ dlogm n � 1:5ð Þe), to have space for maintaining global structures. If the vertices of the underlying
SFC are completely occupied, the result would be space-filling as with DGRID. We used the recommended
parameters for CMDS (a ¼ 0:1 and iter ¼ 20 per round), for the size of one tile we used the size defined by
HagridHC, and set the boundaries to the extent of the scatterplot plus the size of one tile as margin.
Furthermore, we fixed CMDS ’s number of maximum rounds to 50, so we could measure comparable
runtime. DGRID allows one to set an aspect ratio, we computed square results as we normalized the
scatterplot beforehand to a range of [0, 1] for all dimensions. For SMWG, we used the online tool, where we
first loaded the dataset, then we defined the grid to have 0.5 whitespace and ‘‘minimum aspect ratio’’. For the
optimization, we employed the simulated annealing option with default options but with weightings set to 1
for ‘‘VEC’’, ‘‘DIST’’, ‘‘TOPO’’, and ‘‘SHAPE’’, and the ones specifically important for maps (‘‘DIR’’ and
‘‘DAT’’) to 0.

The supplemental material includes further details and the code to reproduce the evaluation results.

4.5 Results

Figure 5 summarizes the results of our comparative evaluation according to the four quality metrics
introduced and the runtime. We investigate the scalability of HAGRID, by aggregating the results according to
dataset size, and an extra evaluation only measuring the runtime in Fig. 4. The supplemental material
contains a more detailed version of Fig. 5, which shows the results for each dataset separately. As we fixed
CMDS ’ number of maximum rounds to 50, not all overlap was removed from the final layout, and the
quality metrics should be slightly more optimistic as the 50th round layout will always be closer to the
original.

Generally, HAGRID ’s runtime outperforms every other method we evaluated against and is about four
times as fast compared to the next best technique, DGRID, across different dataset sizes. HAGRID outperforms
the other methods in almost all metrics, except for NP. SMWG and CMDS produce generally good quality
results, but at the cost of much higher runtimes. In group 1 (0–100 points), HAGRID needs roughly a
millisecond to gridify the result, whereas SMWG needed on average 30 seconds. Please note that, in Fig. 5,
we use a log10-scale for runtime and a log2-scale for the SI metric to improve readability.

To expand on the analysis provided by the boxplots in Fig. 5, we show in Fig. 7 the resulting grids for the
COIL-100 dataset (Nene et al. 1996, only for HAGRID and DGRID because the runtime for CMDS was too

(a) (b) (c)

Fig. 8 Gridified versions of the t-SNE projection of the Art UK Paintings dataset (Crowley and Zisserman 2014) for different
settings of the HagridHC level parameters and the DGRID layout
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high, and the online-tool for SMWG even crashed for this dataset. This data consists of 792 images of 10
random objects, for example a car, a rubber duck, and a toy photographed from many different angles (-
see Fig. 6 left). We applied UMAP on this dataset, resulting in the scatterplot layout in Fig. 6. Our aim with
selecting this dataset was both to highlight how different techniques transform such an intricate layout, and
to provide an example of when preserving the global structure of a dataset might be beneficial.

In Fig. 7, points are colored according to labels or different quality metrics calculated for each of the
individual points respectively. The space-filling approach DGRID preserves the local cluster structure.
However, when there are more cells instantiated than points, DGRID places the empty cells on the borders of
the grid rather than inside the clusters. This characteristic reduces the preservation of more global patterns.

From a qualitative angle, we see that DGRID is optimized for space-filling-ness, resulting in larger
thumbnail image representations. If this is the sole objective, it is clearly a good choice. However, our goal
was to additionally preserve spatial structures of the scatterplot. While DGRID also preserves the cluster
contents, it looses information about the projection (e.g. potential manifolds), the particularity of the
clusters, and the separation between them (Brehmer et al. 2014). The empty cells of DGRID are not optimally
placed in this case.

5 Use cases

Our primary goal with HAGRID was to find a good balance between removing overlap and preserving
scatterplot structure, while having a fast runtime. To illustrate the value of this combination, we now provide
two use cases: adjusting the curve level to create different types of layouts, and realizing an interactive lens
view.

5.1 Interactively adjusting level and point size

By altering the level parameter of our technique, HAGRID gives a natural handle to deal with the trade-off
between space-filling-ness (cell size and space efficiency) and point position accuracy (global structure
preservation). With a low level setting, HAGRID can achieve a more squared layout, similar to DGRID. An
example is given in Fig. 8, where we can see the difference between a layout with the minimum HagridHC
level (5), one level higher (6) that outputs the grid, and the DGRID layout for reference. In our situation, the
white space is still scattered around the convex hull of the initial layout. Interactively transitioning between
different levels allows to step-wise translate a scatterplot into a space-filling map with HAGRID.

5.2 Lens view

Due to its computational efficiency, our approach can also be used to support interactive lenses such as
the one proposed in Glyphboard (Kammer et al. 2020). In Glyphboard, DR projections are plotted as normal

(a) (b) (c) (d)

Fig. 9 Usage of HAGRID as lens. The circles indicate the mouse position for the screenshots (b), (c), and (d)
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scatterplots and as the user zooms in, the dots are replaced with circular glyphs. The lens view in their
implementation is using a force-directed layout algorithm to handle overlap, but that does not guarantee
neighborhood preservation. Based on our comparison to CMDS, which closely resembles a force-directed
layout algorithm, we believe our technique could fit this type of use case better. In Fig. 9, we show a
possible way of using HAGRID as part of a lens view. Here, we used a t-SNE projection of photographs of
flowers as the source dataset (Nilsback and Zisserman 2008). For the overall scatterplot, we maintain the
original scatterplot, with overlaps. However, in the lens view we use a low-level HC, to dynamically align
the photos. As our approach is computationally efficient, it lends itself toward supporting such interactive
features.

6 Conclusions and future work

A limitation of HAGRID and other gridifying techniques occurs in scatterplots with very dense or differently
dense regions. To maintain the global structure of differently dense or very dense areas of scatterplots with
HAGRID, high levels of the respective SFC are required, which can lead to very small grid cells. We found
this behavior also in our analysis, where some of the scatterplots led to bad results, especially for the NP
metric (see Fig. 5). HAGRID is sensitive to extreme outliers, which entail non-outlying points being squished
into very small areas in the scatterplot. Such situations are sub-optimal for filling a static SFC grid as many
collisions occur (see supplemental material for examples). A possible enhancement—reducing the sensi-
tivity of HAGRID to extreme outliers—could be the used of adaptive SFC’s (Zhou et al. 2020).

Like other comparative studies, our investigation is naturally limited to a certain selection of existing
techniques. For future work, it might for instance also be interesting to compare to further other approaches.
A recent update of DGRID (Hilasaca and Paulovich 2019) (version 4 on arXiv) adds dummy points to
preserve also the global structure of a scatterplot. But similar to the extension of NMAP (Duarte et al. 2014)
for producing a treemap with uniform rectangles, adding dummy points increases the runtime for gridifying
a scatterplot. With some effort it is possible to disentangle the overlap removal method of the DUST

&MAGNET (Vollmer and Döllner 2020) technique to use it as another overlap removal technique.
An additional limitation is inherited from the SFCs used, Hilbert and Gosper curves, which are not

circular. When collisions happen close to the ends of the curves, Algorithm 2 has an imbalanced number of
vertices to the left and to the right, which might worsen the quality of the result. In the future, we want to
replace the SFCs used with their circular versions. The Moore curve (Ghatak et al. 2013) is, for instance, the
circular alternative of the Hilbert curve. We used the Hilbert curve and the Gosper curve because these
implementations have better computational efficiency.

In this paper, we proposed HAGRID, a novel approach for generating gridified layouts that preserves the
local and global neighborhoods and cluster structure of a scatterplot, while removing the overlap of point
representations. We demonstrated the approach by employing two space-filling curves, Hilbert and Gosper,
to create squared and hexagonal grids. The set of comparisons we provide shows that our technique
outperforms the existing state-of-the-art techniques in terms of different quality metrics, and is roughly four
times faster than them.
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