
REGULAR PAPER

Michael Burch • Huub van de Wetering • Günter Wallner • Freek Rooks • Olof Morra

Exploring the dynamics of graph algorithms

Received: 7 February 2022 / Revised: 23 July 2022 /Accepted: 31 August 2022 / Published online: 14 October 2022
� The Author(s) 2022

Abstract In this paper, we describe an interactive visualization tool for representing the dynamics of graph
algorithms. To reach this goal, we designed a web-based framework which illustrates the dynamics as time-
to-space mappings of dynamic graphs. Such static diagrams of dynamic data have the benefit of being able
to display longer time spans in one view, hence supporting the observer with comparison tasks which is
challenging or even impossible for graph algorithm animations. Our tool can show details about how an
algorithm traverses a graph step-by-step in a static and animated fashion, for graph algorithm exploration as
well as educational purposes. The animation together with the time-to-space mapping hence forms an
overview-and-detail approach. We also allow changing of speed, replaying, stopping, storing intermediate
stages with parameter configurations, as well as measuring and monitoring performance and memory
consumption to eventually identify bottlenecks in a graph algorithm. By using flight carrier data from the
United States Department of Transportation and a network of autonomous systems we demonstrate how we
used the tool to explore two standard graph-theoretic algorithms. Finally, we discuss scalability issues and
limitations.
Keywords Algorithm animation � Algorithm dynamics � Graph visualization

1 Introduction

Algorithms are useful mechanisms in nearly any discipline of computer science to transform data. Graph
algorithms (Euler 1741) are a special type thereof that process relational data, for example, to find an
efficient or suitable solution to a graph-theoretic problem that is typically linked to a real-world application

M. Burch (&)
Center for Data Analytics, Visualization, and Simulation, University of Applied Sciences, Ringstrasse 40, 7000 Chur,
Graubünden, Switzerland
E-mail: michael.burch@fhgr.ch

H. van de Wetering � F. Rooks � O. Morra
Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, PO Box 513, 5600MB
Eindhoven, The Netherlands
E-mail: h.v.d.wetering@tue.nl

F. Rooks
E-mail: f.rooks@tue.nl

O. Morra
E-mail: o.morra@tue.nl

G. Wallner
Institute of Computer Graphics, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria
E-mail: guenter.wallner@jku.at

J Vis (2023) 26:477–492
https://doi.org/10.1007/s12650-022-00885-0

http://orcid.org/0000-0003-4756-5335
http://crossmark.crossref.org/dialog/?doi=10.1007/s12650-022-00885-0&domain=pdf
https://doi.org/10.1007/s12650-022-00885-0

(von Landesberger et al. 2011). Finding shortest paths in a road network (Greilich et al. 2009), detecting
connected components in a social network (Bedi and Sharma 2016), or identifying call hierarchies in a
software system (Burch et al. 2017) are different applications.

Typically, a graph algorithm is running for a certain amount of time until it provides a solution to a given
graph-theoretic problem. For many purposes a visual outcome is sufficient. However, it might be insufficient
if the result is not understandable, wrong, or even misleading, and someone wants to understand the
intermediate steps to identify the problem. Moreover, exploring the graph algorithm under different cir-
cumstances such as adding or deleting vertices, edges, or even changing weights might lead to different
outcomes that are worth investigating and comparing. Existing algorithm visualizations have been mostly
used for educational purposes (Baecker 1998) and typically only small examples are involved. In this paper,
we focus on larger graphs and provide a way for exploring the graph algorithm dynamics in a visual way.

For this reason, we have developed a visual analysis tool that accepts graph data (Eades and Klein 2018)
as input and provides solutions to an (extendable) repertoire of graph algorithms. The tool does not only
provide a solution in a visual form but also offers the possibility to show the intermediate steps, either as a
static time-to-space mapping of a dynamic graph (Beck et al. 2017; Burch et al. 2017) or in an animated
fashion (Diehl and Görg 2002; Frishman and Tal 2004) as a time-to-time mapping. Together, these two
views form an overview-and-detail approach (Cockburn et al. 2008) where the time-to-space mapping
serves as an overview and the animation offers a detailed view on the operations performed in each step.
During execution, the tool permits changes to the graph to allow the user to observe the impact of them.

The user can choose one or both mappings, apply interactions (Yi et al. 2007) to both of them, and can
view performance metrics such as memory consumption and running times of the applied algorithm for
intermediate steps and time spans. With this combination, we not only provide an overview about graph
algorithms but also additional information about the intermediate steps. At the same time, the user can
navigate to relevant steps in the algorithm, for example, by playing an animation covering a (short) period of
time for illustrative purposes.

At the same time, our tool can still be used for educational purposes (Burch and Melby 2019) due to the
combination of algorithm animation and static visualizations for the dynamic aspects. In the following, after
reviewing related work, we first describe our interactive web-based visualization tool and then apply it to
graph datasets of varying sizes and several runs of Dijkstra’s shortest path algorithm (Dijkstra 1959) as well
as Prim’s algorithm for computing minimum spanning trees (Prim 1957). Hereby, we identify formerly
summarized tasks and how they can be answered by using our tool. Finally, we discuss limitations and
scalability aspects and provide a perspective on future challenges and open gaps.

This article is an extension of a paper published at VINCI 2021 (Burch et al. 2021). Compared to Burch
et al. (2021) this extended version has the following additions while at the same time increasing the number
of figures:

• We extended the related work section by reviewing more papers on algorithm animation as well as
dynamic graph visualization (Sect. 2).

• To better understand the mathematical concepts behind this line of research we included a data model
(Sect. 3.)

• We also extended the tasks and design decisions section to better illustrate the usefulness of the proposed
technique (Sect. 4.2).

• To make a clearer comparison between the two major visual concepts we added a more thorough
perspective on and description of time-to-space and time-to-time mappings (Sects. 4.3 and 4.4).

• Insights on performance measures are now included to provide an additional perspective on the graph
algorithms (Sect. 4.5).

• An additional application example (Prim’s algorithm) showcases the value of the approach further
(Sect. 5.2).

2 Related work

Showing the dynamics of a graph algorithm can be viewed as the problem of visualizing a sequence of
graphs, either as an animation or as a static representation of the graphs side-by-side (Beck et al. 2017). A
graph algorithm takes as input a graph with vertices and edges and processes it step-by-step following the

478 M. Burch et al.

rules given by the algorithm. Each processing step involves a certain subset of the input graph. Taking all
those processing steps into account generates a sequence of graphs, i.e., a dynamic graph.

A major goal of this line of research is to provide an overview about the evolution of the dynamic graph
in a way that it becomes easy and intuitive to explore, be it for trends, countertrends, or anomalies. This field
has received considerable attention in the past (see Beck et al. 2017) and can be split into time-to-time
mappings (animations where the time in the data is mapped to physical time) and time-to-space mappings
(static representations of the evolution, where the time in the data is mapped to the available display space),
apart from some other less frequently used concepts. The visualization of the dynamics of graph algorithms
can fall into both major categories, typically depending on the users and the tasks to be solved. Despite the
advances in the area of dynamic graph visualization, many challenges remain such as the visual depiction of
graph algorithm dynamics.

2.1 Algorithm animation

The animation of algorithms goes back to 1984 to a system developed for teaching and research in computer
science and mathematics (Brown and Sedgewick 1984) which also focused on the interaction with
dynamically changing graphical representations (Brown and Sedgewick 1985).

The execution of algorithms always leads to a time-dependent dataset since the applied algorithm
transforms or processes the underlying data in a certain—typically user-defined—way and the intermediate
steps describe the changes over time, step-by-step. The visual outcome of the individual steps has been the
focus of research in algorithm animation (Brown 1988; Stasko 1990a, b; Brown 1991), a field that was
developed as a means to educate people about algorithmic concepts (Baecker 1998).

The general idea has been applied mainly to sorting algorithms. For example, the sorting out sorting
videos (Baecker 1998) were used to demonstrate the animations of several sorting algorithms. Recently,
Végh and Stoffová (2017) described methods using algorithm animations for teaching sorting algorithms.
However, also route finding problems, or strategic game playing when illustrating possible movements and
choices of players, are interesting applications to be illustrated by an algorithm animation, either to explore
the internal workings of an algorithm or to teach and educate people. On the downside, algorithm animation
was typically restricted to non-interactive videos in which it was not possible to change intermediate states
of the input data. Moreover, an overview about what happens in the animation video is difficult to obtain,
and hence, a more static representation of the dynamics is desirable (Tversky et al. 2002), in particular for
graph animations (Archambault and Purchase 2016). A static representation takes on a crucial role if the
user cannot track all the changes simultaneously, either because there are too many, the areas of interest are
not highlighted, or several runs of an animation have to be compared over time.

The major contribution of our work does not lie in teaching and education in particular, but rather in
providing a temporal overview about the internal workings of graph algorithms. To reach this goal, we
provide a combination of time-to-time and time-to-space mappings for dynamic graphs to create a visu-
alization system for graph algorithm animation. This combination provides an overview-and-detail design
for the time dimension in graph data (Cockburn et al. 2008). By providing extra views in form of perfor-
mance charts, the user can quickly browse to relevant time points in a running algorithm and can start the
exploration processes from critical points that might be difficult to find with only a graph animation.

2.2 Time-to-time and time-to-space mappings

Time-to-time mappings for dynamic graphs have been a major line of research for several years (Diehl and
Görg 2002; Frishman and Tal 2004). One of the biggest issues is to maintain the preservation of the mental
map (Purchase et al. 2007; Misue et al. 1995) which can, for instance, be achieved by keeping a high degree
of dynamic stability (Görg et al. 2004). However, the generated graph layouts for showing the animations do
not scale well and do not easily support comparison tasks for longer graph sequences. This is neither
possible for comparison within a single long graph sequence nor for comparison of graph sequences that
result from several runs of a graph algorithm under different parameter settings but on the same input graph.

User studies have explored whether graph animations are useful approaches or not. For exam-
ple, Archambault et al. (2011) compared them to non-animated techniques such as small multiples that
show the same information but in one static view. They found that the non-animated small multiple variants
showed a faster performance than the animated counterparts, while animated ones might lead to lower error

Exploring the dynamics of graph algorithms 479

rates. Since both approaches have their own benefits and drawbacks, there is a tendency to support both
major concepts.

One downside of time-to-time mappings is that graph animations have limitations when it comes to
comparing individual time steps. In a graph animation, only one graph is visible at a time, and then, it is
(typically) smoothly transformed into the next one in the sequence (Diehl and Görg 2002). Without a
smooth animation, the human observer would lose track of, for instance, vertices and no time-varying
patterns and insights in the dynamic graph data can be gained. However, if the graph layout is stable and
only a small change is shown in each animation step, the animation might be a good choice for educational
purposes (Tversky et al. 2002). Nevertheless, for temporal data exploration over longer time spans or even
for comparison tasks, time-to-time mappings might be suboptimal.

In order to improve this and to support comparison tasks with a visualization of a graph sequence, time-
to-space mappings have been introduced (Burch et al. 2011). They represent as many graphs as possible
next to each other (in a single view), depending on the available display space. Recently, the graphs forming
the graph sequence of a dynamic graph have been represented as bipartite graphs to provide a vertex-aligned
scalable variant for dynamic graph visualization (Burch et al. 2011), see Fig. 1.

Another scalable variant was developed by Burch et al. (2017), presenting an interleaved edge splatted
version of such a dynamic graph visualization that scales to thousands of graphs. This scalar field is
smoothed and color coded (Burch et al. 2011), an idea originally presented for a static approach, inspired by
edge splatting for graphs (van Liere and de Leeuw 2003). Abdelaal et al. (2018) later improved the
approach by Burch et al. (2017) by integrating a vertical 1D clustering to reduce the number of link
crossings and to convey more details on vertex group patterns and their changes over time. In our work, we
make use of the bipartite dynamic graph visualization, but we only splat and interleave the graphs if the
temporal sequence becomes too long in time, i.e., the graph algorithm produces too many time steps.

Since graph algorithms typically produce a large number of graphs in different states (subsets of the
original input graph), we require a scalable approach that supports an overview about the graph dynamics.
Hence, interleaving the graphs or aggregating them over time is a good strategy (Abdelaal et al. 2018) to
provide this overview and to support comparison tasks. The static overview is consequently important as a
starting point for further explorations (Shneiderman 1996), as a contextual overview, as well as a temporal
navigation and annotation tool, also in context of the performance measures aligned with the time-to-space
visualization.

Besides node-link diagrams, adjacency matrices were utilized as well (Elmqvist et al. 2008; Henry and
Fekete 2006). We, however, have opted for node-link diagrams as we can depict long graph sequences using
a bipartite layout.

3 Data model

We model a graph G ¼ ðV ;EÞ as a pair consisting of vertices V :¼ fv1; . . .; vng and edges
E :¼ fe1; . . .; emg � V � V Gross and Yellen (2005). If weights are attached to the edges we denote that by
a weight function f : E �! R. The interpretation of a graph as a directed or undirected graph is left to the
algorithm that processes it.

Fig. 1 An illustration showing how a sequence of graphs can be represented as a sequence of bipartite layouts (from left-to-
right, adapted from Burch et al. (2011)). Left: A small graph G with five vertices and six edges represented using a traditional
node-link layout. Center: The same graph G as bipartite layout in top-to-bottom reading direction. Right: Three graphs in a
sequence using a left-to-right reading direction of which the leftmost graph is again graph G

480 M. Burch et al.

3.1 Graph algorithms

A graph algorithm A is a finite computation process that not only takes a graph G as input but also some
input parameters S, where S is an associative container that maps parameters to values. Applying an
algorithm to a graph can then be denoted as A(G, S).

If we consider Dijkstra’s shortest path algorithm, denoted as ADijkstraðG; SÞ, it takes a (directed) graph G
as input together with input parameters S ¼ fð source ; vsÞ; ð target ; vtÞ; ð weights ; f Þg; where vs ¼
S½ source� is the source vertex, vt ¼ S½ target� is the target vertex, and f ¼ S½ weights� is a weight function
for the edges.

3.2 Dynamic graphs

Running graph algorithm A(G, S) generates a sequence of state graphs Gi ¼ ðVi;EiÞ from the input graph
G ¼ ðV ;EÞ. A state graph Gi is a sub-graph of G (Vi � V and Ei � E) that typically contains all edges that
have been processed in all time steps up to step r � i, where the number of steps r 2 N is a factor to control
the sample frequency. The state graphs combined form a dynamic graph, which can be seen as a sequence of
static graphs (Michail 2015):

C :¼ ðG1; . . .;GNÞ:

The algorithm also generates a sequence of associative containers with parameter and variable settings

R ¼ ðS1; S2; . . .; SNÞ

that represent the non-graphical state of the algorithm in each step. For instance, in our application
examples, we collect time series with the total memory Si½ memory� in use at the end of step i as well as time
series with the running time Si½ dt� of step i.

The pair ðC;RÞ constitutes the input of our dynamic graph visualization tool. The dynamic visualization
in the time-to-time mapping visualizes the state graphs directly, whereas the static visualization in the time-
to-space mapping visualizes state graph updates, i.e., the changes between consecutive state graphs.

4 Approach

Our approach supports a time-to-time mapping (also for educational purposes) and a time-to-space mapping,
mainly for getting an overview and as a means for navigating in the dynamic graph. Both approaches are
interactively linked, and additional visual components conveying running times per step and memory
consumption are also available. The combination of both concepts can be regarded as an overview-and-
detail approach for the time dimension in dynamic graphs or, as in our case, for graph algorithm dynamics.

4.1 Graphical user interface

Figure 2 shows an illustration of the graphical user interface. It is divided into three major parts: the
parameter and data input panel on the left ˚, the visual analysis panel ¸ in the center where the time-to-
space mapping of the dynamic graph (for the animation steps) is shown, and the animation panel �,
showing the input graph in a hierarchical layout. The time-to-space mapping for the dynamic graph is
aligned with the running times and/or memory consumption charts ˝ to give an indication about when the
graph algorithm might produce severe performance or memory issues. An animation step slider ˛ can be
used to start an animation at a given point in time and to restrict the time interval for the time-to-space
mapping.

Both approaches are linked as coordinated views, and there are various ways to interact with those views
and visualizations (see Fig. 3). For example, selecting nodes or links in one view highlights those in the
other as well. In the case of the time-to-space mappings, the time granularity, the vertical and horizontal
display region (zoom in and out), and the color coding can be changed. For the time-to-time mappings, for
example, the animation speed can be altered, node positions can be manually modified, or even the whole
layout can be changed.

Exploring the dynamics of graph algorithms 481

4.2 Tasks and design decisions

When starting this line of research we identified a certain repertoire of typical tasks for graph algorithm
analysis (Lee et al. 2006). We discussed those tasks and grouped them together into five major categories:

• Involved elements (T1): Which vertices and edges are involved in an algorithm over time? Which
vertices and edges are frequently or seldom visited?

• Performance issues (T2): Is there a running time or memory consumption peak which might indicate
bottlenecks at a certain time point/period?

• Comparisons (T3): What are the differences in several runs of the same algorithm (for different
parameter settings or different input graphs)? What are the differences for several algorithms on the
same input graph?

• Correlations (T4): Are there correlations between the performances and different algorithmic processing
strategies?

• Temporal events (T5): Are there time periods in which we find a higher activity than in others? Are there
different stages in a graph algorithm? Are there temporal patterns or anomalies in the performance
indicators?

Based on these tasks, we made the following design decisions.

• Web-based: The visual analysis tool should run in a web browser and should be accessible online. This is
of great benefit if graph data, algorithms, and results have to be shared.

• Graph algorithms: We currently support two algorithms (Prim’s and Dijkstra’s), but additional
algorithms can be added in future.

• Parameter selection: Each algorithm can be executed with a certain parameter configuration. Vertices,
edges, and weights can be modified for each run.

• Storing of steps: Intermediate steps can be stored to explore them later or for showcasing the most
important aspects about an algorithm run to an audience (e.g., for educational purposes).

• Extra data generation: Performance measures are important for analyzing the internal aspects of a graph
algorithm, for instance, memory consumption, running times, or power consumption.

Fig. 2 The graphical user interface of the visualization tool with the parameter and data input panel ˚, the visual analysis
panel ¸, and animation panel � showing a dynamic graph visualization for Dijkstra’s algorithm applied to a small artificially
generated graph. Performance charts ˝ are temporally aligned with the time-to-space mapping, and an animation step slider ˛
can be used to start the animation at a certain point in time. The underlying graph consists of 29 vertices and 41 edges, and the
graph algorithm produces 40 time steps

482 M. Burch et al.

• Brushing and linking: The provided time-to-space and time-to-time visualizations should be displayed
next to each other to support interactive linking and to be able to observe the impact of an effect in one
visualization directly in the other.

• Animation features: The animated diagram should support starting, stopping, and replaying. Moreover,
selecting a specific time step and highlighting it in the overview-based time-to-space mapping are
supported for contextual reasons.

• Scalability: Since a graph algorithm can quickly produce various iterations, i.e., long graph sequences,
consisting of many vertices and edges, we require a visually and algorithmically scalable dynamic graph
visualization for the time-to-space mapping.

Fig. 3 The time-to-space mapping (left) and the time-to-time mapping (right) are linked. The animation step slider can be used
to jump from one animation step to another and to restrict the time interval to be displayed in the time-to-space mapping. The
first row shows the complete time interval on the left and the status after the first step on the right. In the bottom two rows, the
left two images show the (same) time sub-interval, while the images on the right show a step at the beginning and one at the end
of the sub-interval in which new shortest paths to the orange nodes are discovered via the purple node

Exploring the dynamics of graph algorithms 483

4.3 Time-to-space mapping

For the visualization of a dynamic graph C ¼ ðG1; . . .;GNÞ that has been generated by a graph algorithm, we
use a bipartite representation to give an overview of the state graph updates DGi. The vertices are vertically
aligned equidistantly, edges are pointing from left to right, and the time axis is leading from left to right.
This is to conform with the approach introduced by Burch et al. (2011).

Figure 1 illustrates a small artificial example of a dynamic graph as a bipartite left-to-right time-to-space
mapping, while Fig. 4 shows a time-to-space mapping for an application of Dijkstra’s algorithm in which
edges (u, v) that are used in a shortest path at some point of time are shown from left to right. In the color
coding used for the time-to-space mapping if edge (u, v) has a red marker at node u, v is a newly discovered
node; if there is a green marker at u, (u, v) replaces edge (w, v) in the shortest path toward v; node w then
gets a blue marker. Hence, at each time step, a shorter path is detected, and a blue marker for the old node
and a green marker for the new one are shown. The color of the edge is given by the numeric node ID.

Figure 5a shows an example of a time-to-space mapping generated with our visualization tool (in an
interleaved fashion to make it more visually scalable along the time dimension). In Fig. 5b, we see a
zoomed-in section, which is aimed at supporting the inspection and detection of details, for example, on a
finer temporal granularity. Such a dynamic graph visualization has the benefit that we can show arbitrarily
large graphs, since it can be interleaved and splatted in case the graph sequence gets very long (as has been
illustrated by Burch et al. (2017)). Although such an interleaved dynamic graph visualization does not show
details, it is still useful for rapidly detecting dynamic visual patterns in time-dependent graph data. In
particular, for the dynamics of a graph algorithm, it provides a temporally scalable overview and can guide a
viewer to the time points or time periods of interest, for instance, to play an animation starting from this
point in time. Hence, the combination of time-to-space and time-to-time mappings serves as an overview-
and-detail approach for algorithm dynamics.

Moreover, a time-to-space mapping has several advantages compared to a time-to-time mapping, for
example, providing an overview, supporting navigation tasks (knowing where to start a replay), giving
contextual information (with an animated time slider if the animation is running). Annotations over time can
also be made to jump to intermediate, possibly important, steps in the algorithm animation. Finally, general
interactions can be applied in an easier way in a static time-to-space mapping. An animation, in contrast, has
to be stopped first to conveniently be interacted with.

4.4 Time-to-time mapping

If an algorithm and a graph are selected, we present the (static) input graph in a default node-link layout
based on force-directed placement of the vertices. However, the user can select a certain graph layout which
we support as a built-in JavaScript code. The selection of the layout can also be changed during the
animation. Moreover, nodes can be selected and moved around to, for instance, achieve a better view on a
certain part of the graph that the algorithm is currently processing.

Figure 6 illustrates the processing steps of Dijkstra’s algorithm on top of a node-link diagram using color
coding to indicate the states of the nodes and edges. In the algorithm, for the current purple node, each of its
neighbors (orange) is visited, in no particular order, and added to the queue of nodes that need to be handled.
Then, the most promising node from that queue is chosen as the next purple node. In the example, the start

Fig. 4 Time-to-space mapping of Dijkstra’s algorithm to find the shortest paths to start node 1 for a small network consisting
of six vertices and eight weighted edges

484 M. Burch et al.

node 1 is the first purple node, followed by the nodes, 2, 3, 4, again 3, and then 5. Node 3 is chosen twice
because it has been added to the queue twice, which a more efficient implementation could have avoided.

4.5 Time-aligned performance visualizations

In order to show additional measures in the form of run times and memory consumption, we use line
graphs. These are temporally aligned with the time-to-space mapping of the dynamic graph to detect
correspondences between performance flaws and graph patterns. The algorithm animation can then give
additional insights in the issues that happened there. Figure 7 shows examples for running times and a
zoomed-in excerpt of a certain time period. For example, someone might be interested in the peak in the
running times per step, hence zooming into that time period can provide more details.

From a general interaction perspective, the temporal granularity can be changed by using the time period
sliders in the right line graph in Fig. 7. This interaction feature supports a viewer if the number of animation
steps is very high and only the peaks of a performance chart can be observed. Temporally zooming into the
peak region might uncover a certain issue in the dynamic graph that could not be seen by just looking at the
time-to-space mapping. However, the performance charts cannot help if the algorithm runs smoothly
without peaks but still produces unexpected results. In such a case, the time-to-space mapping can give
visual support, and for further details, the linking to the animation might give the final insight into the
detected or hypothesized issue.

5 Application examples

Our graph algorithm visualization tool can handle graph algorithms that are augmented with statements to
log additional graphical and non-graphical data such as memory consumption; currently, Dijkstra’s and
Prim’s algorithm is supported. To demonstrate the tool we use two data sets. On each, we apply one of the
supported algorithms to illustrate how the tool facilitates the tasks T1 to T5.

5.1 Dijkstra’s algorithm

For Dijkstra’s shortest path algorithm (Dijkstra 1959), we use flight data obtained from the Bureau of
Transportation Statistics [39] from which we generated two datasets with flights on May 17, 2018:

1. flight data of California and Nevada with jV j ¼ 113 and jEj ¼ 893;
2. dataset 1 plus flight data of New York, Pennsylvania, North Dakota, and Texas with in total jV j ¼ 228

and jEj ¼ 2; 273.

Vertices represent the airports and edges the routes between them. The edge weights are the distances in
miles between airports.

Figure 8 shows the overview after multiple runs of Dijkstra’s algorithm applied to the two datasets.
Based on Fig. 8, we can answer task T1 [involved elements] since the time-to-space mapping indicates
which vertices and edges have been processed over time. Peaks in running time can be observed in the line
chart—T2 [performance issues]. The visual comparison feature focuses on answering task T3 [compar-
isons]. Here, we compare two runs of Dijkstra’s algorithm. Correlations between the performances and the
algorithmic behavior can be observed as a solution to task T4 [correlations]. For example, approximately in

Fig. 5 a Time-to-space mapping of the dynamic graph generated by applying Dijkstra’s algorithm to an input graph.
b Zooming into a certain time interval helps to explore the algorithm dynamics on a temporally finer scale

Exploring the dynamics of graph algorithms 485

the horizontal center of the timeline, we can see that the dynamic graph pattern changed after the last peak in
time. The activity patterns for answering task T5 [temporal events] can also be explored by rapidly
inspecting the dynamic graph patterns.

As the colors of the edges in the dynamic graphs are based on their starting node, similar edge groupings
between the first and second dataset can easily be identified, as shown in Fig. 9. This helps to answer a
variant of task T3 [comparisons] for inspecting different datasets for a run of the same algorithm. Moreover,
groupings that are different such as the pink edges in the center in Fig. 8 become apparent. It may be noted

Fig. 6 Animation of Dijkstra’s algorithm to find the shortest paths to start node 1 for the same network as in Fig. 4. The
animation step slider at the bottom shows the progress of the algorithm animation. The start node is indicated by a green square,
yet unvisited nodes are gray, and visited nodes are shown in blue. The node with the lowest distance from the start node is
purple, while its neighbors that are considered for the next step are orange. Gray edges are not part of any shortest path or have
not been looked at. Blue and thicker edges (v, w) are part of the minimum spanning tree and are on the shortest path from the
start to node w

Fig. 7 Running time per time step (a). Zooming into a time period can show a temporally finer-grained view of the
performance data (b)

486 M. Burch et al.

that this is only possible as the first dataset is a subset of the second one. Besides that, the markers not only
give a good overview of nodes with outgoing edges but also indicate when a shorter path is found and from
where.

From Fig. 8 (center), one can deduce that the starting node with the pink outgoing edges might be a hub,
i.e., a strongly connected node. If we look more carefully into the data, it is evident that the hub node is
McCarran International Airport, which is the main airport in the region of Las Vegas, Nevada. However, in
the second dataset, shown in the upper graph of Fig. 8, this hub is not that important any more, as there are
fewer pink edges.

Another phenomenon that can be observed is the replacement of a smaller hub with a better-connected
node. In Fig. 10, a horizontal row of green and red markers represents a single airport a0 that provides
shorter routes to existing nodes and connections to new nodes, respectively. For the shorter routes, it tends to
replace one particular airport a1 shown as a horizontal row of blue markers. Apparently, a0 has a more
central location than a1.

Fig. 8 Examples of two dynamic graphs. Dijkstra’s algorithm applied to the second flight dataset resulting in 3968 time steps
(top) and to the first flight dataset (subset) with 918 time steps (center), both using distance as weight. Bottom: Running times
of the steps for the second dataset

Exploring the dynamics of graph algorithms 487

In both dynamic graphs, but especially the top one, there are sequences of time steps where no changes
appear, hence, there is only white space. This is because the algorithm iterates over each neighbor when a
node is added to the Dijkstra tree and updates a path only if a shorter path is found. For that reason, such
empty spaces appear and more detailed animations of the graphs could provide insights in the dynamics
during such iterations.

On the other hand, the running times are easier to interpret using the bottom plot in Fig. 8. From this plot
and Fig. 7, it can be noticed that the running time has a 45deg slope for some time and then drops to zero ˚.
This phenomenon is caused by obtaining the current time at the moment a new node is popped from the
queue and saving the difference in time for each iteration that is caused by the popped node. Hence, there is
a peak when a new node is added to the Dijkstra graph. This insight can be used to answer aspects of task T2
[performance issues].

The peak at iteration 360 ¸, although only lasting seven milliseconds, might be interesting as well since
only one node extended the running time approximately twenty times. As the dynamic graph does not give
any insight into why this peak emerged, more detailed inspection of the algorithm dynamics might be useful.
Playing the algorithm animation linked to the annotated insights from the time-to-space mapping helps to
inspect the phenomenon in more depth. Hence, a correlation task T4 is answered using the combination of
performance charts and the corresponding graph animation.

Memory usage needed to store data, graphs, and intermediate data is measured as well. A plot of memory
usage over time of Dijkstra’s algorithm applied to the first dataset under investigation is shown in Fig. 11.
While the amount and variation are quite low in our example, larger graphs will need more memory to store
data and larger fluctuations might surface. Again, this constitutes a correlation task T4 that leads to the
hypothesis that the performance chart and the size of a graph in the graph sequence are dependent.

5.2 Prim’s algorithm

In this section, we apply Prim’s minimum spanning tree algorithm (Prim 1957) on a network of autonomous
systems. Autonomous systems are sub-graphs of Internet routers. The network that we use consists of 522
nodes and 1,244 edges and reflects the autonomous systems on December 30, 1998 (Leskovec et al. 2005).
Prim’s algorithm is a greedy algorithm for computing the minimum spanning tree of a weighted and
undirected graph. The final output of the algorithm is a subset of edges including all vertices which form a
tree with the minimal possible total edge weights. In each iteration, the algorithm processes one vertex by
including the cheapest connection from the already existing tree to another vertex in the input graph.

Figure 12 shows two runs of Prim’s algorithm using two different start nodes together with the tem-
porally aligned performance and memory consumption charts. Because Prim’s algorithm is greedy, there are
no green nodes in these figures. Despite the different start nodes, we can hardly see a difference between the
runs. However, in (a), we can observe that there is a higher running time peak approximately in the center of

Fig. 9 Similar edge groupings: Zoomed-in excerpt of the graph displayed in Figure 8 top (a) and center (b)

488 M. Burch et al.

the timeline. In (b), there is a deciding difference which comes in form of the maximum peak appearing a bit
later, but also not persisting as long as in scenario (a). However, the memory consumption looks very similar
for both scenarios. Although when looking carefully, differences — especially at the beginning — can be
observed. However, for the dynamic graph patterns, it seems as if the start vertex does not have a big impact
on the overall pattern over time. It might be hypothesized that Prim’s algorithm runs more stable than
Dijkstra’s algorithm, at least for these two runs on the same input graph.

Displaying two runs of the same algorithm on the same input graph and using different start vertices
indicates differences over time. This is only possible in the time-to-space mapping due to the fact that
comparison tasks T3 can be solved by exploiting the perceptual abilities of the human’s visual system to
recognize visual patterns (Ware 2008). Again, the other tasks can also be answered by applying the
supported interaction techniques in the coordinated views for finding correlations (task T4).

6 Discussion

In our application examples, we have shown that our tool can visualize the runs of two different graph
algorithms: Dijkstra’s shortest path algorithm and Prim’s spanning tree algorithm. Furthermore, more
algorithms such as Ford–Fulkerson for flow networks or HeapSort for trees can relatively easily be added
but have to be implemented in a way to log suitable graphical and non-graphical data to be used by the
visualizations. The static visualization of the runs can currently manage over 1,000 time steps. The dynamic
visualization is easily scalable with the number of time steps but less with the number of nodes and edges
which bears the risk of cluttered visualizations.

We have not created a web-based algorithm visualization tool that can fully manage all graphs con-
taining up to a thousand nodes and a million edges. Implementations for such graphs may require different
methods such as level-of-detail or level-of-abstraction approaches. Nevertheless, the foundation for such a
tool is laid and dynamics of algorithms over such graphs might eventually be possible. This would then
allow for comparisons of large-scale algorithm dynamics which are incomprehensible at the moment
without further analysis and visualization tools. Leveraging the scalability of the dynamic graph visual-
ization proposed by Burch et al. (2017) in the developed version of our dynamic graph visualization we see,
however, potential for solving bigger graph algorithm challenges in future. Additionally, the vertex ordering
added by Abdelaal et al. (2018) can also contribute to readability. These two additions might help avoiding

Fig. 10 A more central airport from a list of airports can be observed

Fig. 11 A line chart for the memory usage in each time step

Exploring the dynamics of graph algorithms 489

that processed edges are depicted as in Fig. 13b where, except for some edges at the beginning and some
changes halfway through the run of the algorithm, not much can be discerned.

It should also be noted that the running times are tainted by the overhead introduced by the logging and
visualization. Logging overhead cannot be avoided, and however, the visualization overhead might be
overcome by generating the visualization input (C;RÞ beforehand. On the other hand, alternative measures
may be used to circumvent the inaccuracy in performance measurement. For instance, counting the number
of expensive operations in a time step such as queuing or dequeuing of nodes is not influenced by any
overhead in running the algorithm, while it still may give a sufficient performance indication. By setting the
sampling factor r larger than one, the visualization overhead might also be partially overcome, but this
comes at the cost of a reduced temporal resolution.

Fig. 12 Two runs of Prim’s algorithm on the same input graph but using different start vertices. Although the graph algorithm
used different input parameters, we hardly see any difference in the time-to-space mapping, however, the performance charts
vary slightly. The variation is more apparent in the running time chart than in the memory consumption chart

Fig. 13 The same dynamic graph visualization without (a) and with (b) displaying all edges visited per time step

490 M. Burch et al.

7 Conclusion and future work

In this paper, we proposed a visual analysis tool for exploring a graph sequence generated from algorithm
dynamics. For that purpose the tool makes use of time-to-space and time-to-time mappings, supporting an
overview-and-detail strategy. The two views are linked with each other and are flexible in a way that one
can interact with them to find temporal patterns and potential flaws in a graph algorithm. We also support a
temporal overview of measures such as memory consumption and running times per time step. Moreover,
the tool can serve as an educational asset to illustrate how algorithms work and how they unfold over time.

As part of future work, more extensive visualizations that further aid in the inspection and comparison of
dynamics in large graphs could be integrated. Techniques such as edge splatting and contour lines may
emphasize unrecognizable patterns and can contribute positively to the performance of the tool as well.
Currently, the tool cannot fully manage graphs containing up to a thousand nodes also because of limitations
arising from the web-based approach. Besides node-link diagrams, matrix representations can be an
interesting avenue for future work, or even combinations of visual metaphors for dynamic graph visual-
izations. Also, further interaction concepts might be worth investigating. Finally, a user evaluation should be
conducted to investigate the usefulness of our tool, either for data exploration tasks or as a means to teach
and educate people interested in graph algorithms.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abdelaal M, Hlawatsch M, Burch M, Weiskopf D (2018) Clustering for stacked edge splatting. In: Proceedings of symposium
on vision, modeling & visualization, VMV, pp 127–134. https://doi.org/10.2312/vmv.20181262

Archambault DW, Purchase HC (2016) Can animation support the visualisation of dynamic graphs? Inf Sci 330:495–509.
https://doi.org/10.1016/j.ins.2015.04.017

Archambault DW, Purchase HC, Pinaud B (2011) Animation, small multiples, and the effect of mental map preservation in
dynamic graphs. IEEE Trans Vis Comput Graph 17(4):539–552. https://doi.org/10.1109/TVCG.2010.78

Baecker, R.: Sorting out sorting: A case study of software visualization for teaching computer science. In: Software
Visualization: Programming as a Multimedia Experience, pp. 369–381 (1998)

Beck F, Burch M, Diehl S, Weiskopf D (2017) A taxonomy and survey of dynamic graph visualization. Comput Graph Forum
36(1):133–159. https://doi.org/10.1111/cgf.12791

Bedi P, Sharma C (2016) Community detection in social networks. WIREs Data Min Knowl Discov 6(3):115–135. https://doi.
org/10.1002/widm.1178

Brown MH (1991) Zeus: a system for algorithm animation and multi-view editing. In: Proceedings of the 1991 IEEE workshop
on visual languages, pp 4–9

Brown MH, Sedgewick R (1984) A system for algorithm animation. In: Christiansen H (ed) Proceedings of the 11th annual
conference on computer graphics and interactive techniques, SIGGRAPH. ACM, New York, pp 177–186. https://doi.org/
10.1145/800031.808596

Brown MH (1988) Exploring algorithms using Balsa-II. IEEE Comput 21(5):14–36. https://doi.org/10.1109/2.56
Brown MH, Sedgewick R (1985) Techniques for algorithm animation. IEEE Softw 2(1):28–39. https://doi.org/10.1109/MS.

1985.229778
Burch M, Vehlow C, Beck F, Diehl S, Weiskopf D (2011) Parallel edge splatting for scalable dynamic graph visualization.

IEEE Trans Vis Comput Graph 17(12):2344–2353. https://doi.org/10.1109/TVCG.2011.226
Burch M, Hlawatsch M, Weiskopf D (2017) Visualizing a sequence of a thousand graphs (or even more). Comput Graph

Forum 36(3):261–271. https://doi.org/10.1111/cgf.13185
Burch M, Melby E (2019) Teaching and evaluating collaborative group work in large visualization courses. In: Proceedings of

the 12th international symposium on visual information communication and interaction, VINCI, pp 17–1178. https://doi.
org/10.1145/3356422.3356447

Burch M, Wallner G, van de Wetering H, Rooks F, Morra O (2021) Visual analysis of graph algorithm dynamics. In: Klein K,
Burch M, Limberger D, Trapp M (eds) Proceedings of the 14th international symposium on visual information
communication and interaction, VINCI. ACM, New York, pp 16–1165

Bureau of transportation statistics: reporting carrier on-time performance (1987-present) (2019). https://www.transtats.bts.gov/
DL_SelectFields.asp?Table_ID=236. Accessed April 2020

Cockburn A, Karlson AK, Bederson BB (2008) A review of overview?detail, zooming, and focus?context interfaces. ACM
Comput Surv 41(1):2–1231. https://doi.org/10.1145/1456650.1456652

Exploring the dynamics of graph algorithms 491

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.2312/vmv.20181262
https://doi.org/10.1016/j.ins.2015.04.017
https://doi.org/10.1109/TVCG.2010.78
https://doi.org/10.1111/cgf.12791
https://doi.org/10.1002/widm.1178
https://doi.org/10.1002/widm.1178
https://doi.org/10.1145/800031.808596
https://doi.org/10.1145/800031.808596
https://doi.org/10.1109/2.56
https://doi.org/10.1109/MS.1985.229778
https://doi.org/10.1109/MS.1985.229778
https://doi.org/10.1109/TVCG.2011.226
https://doi.org/10.1111/cgf.13185
https://doi.org/10.1145/3356422.3356447
https://doi.org/10.1145/3356422.3356447
https://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236
https://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236
https://doi.org/10.1145/1456650.1456652

Diehl S, Görg C (2002) Graphs, they are changing. In: Proceedings of the international symposium on graph drawing,
pp 23–31. https://doi.org/10.1007/3-540-36151-0_3

Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269–271
Eades P, Klein K (2018) Graph visualization. Graph data management. Fundamental issues and recent developments. Springer,

Cham, pp 33–70
Elmqvist N, Do T, Goodell H, Henry N, Fekete J (2008) ZAME: interactive large-scale graph visualization. In: Proceedings of

IEEE VGTC pacific visualization symposium, pp 215–222. https://doi.org/10.1109/PACIFICVIS.2008.4475479
Euler L (1741) Solutio problematis ad geometriam situs pertinentis. Commentarii Academiae Scientiarum Petropolitanae

8:128–140
Frishman Y, Tal A (2004) Dynamic drawing of clustered graphs. In: Proceedings of the IEEE symposium on information

visualization (InfoVis), pp 191–198. https://doi.org/10.1109/INFVIS.2004.18
Görg C, Birke P, Pohl M, Diehl S (2004) Dynamic graph drawing of sequences of orthogonal and hierarchical graphs. In:

Proceedings of 12th international symposium on graph drawing, GD, pp 228–238. https://doi.org/10.1007/978-3-540-
31843-9_24

Greilich M, Burch M, Diehl S (2009) Visualizing the evolution of compound digraphs with TimeArcTrees. Comput Graph
Forum 28(3):975–982. https://doi.org/10.1111/j.1467-8659.2009.01451.x

Gross JL, Yellen J (2005) Graph theory and its applications. Textbooks in mathematics. CRC Press, Boca Raton
Henry N, Fekete J (2006) MatrixExplorer: a dual-representation system to explore social networks. IEEE Trans Vis Comput

Graph 12(5):677–684. https://doi.org/10.1109/TVCG.2006.160
Lee B, Plaisant C, Parr CS, Fekete J, Henry N (2006) Task taxonomy for graph visualization. In: Bertini E, Plaisant C, Santucci

G (eds) Proceedings of the 2006 AVI workshop on BEyond time and errors: novel evaluation methods for information
visualization, BELIV 2006, Venice, Italy. ACM Press, New York, pp 1–5 (2006)

Leskovec J, Kleinberg J, Faloutsos C (2005) Graphs over time: densification laws, shrinking diameters and possible
explanations. In: Proceedings of the eleventh ACM SIGKDD international conference on knowledge discovery in data
mining. KDD’05. Association for Computing Machinery, New York, pp 177–187. https://doi.org/10.1145/1081870.
1081893

Michail O (2015) In: Zaroliagis C, Pantziou G, Kontogiannis S (eds) An introduction to temporal graphs: an algorithmic
perspective. Springer, Cham, pp 308–343. https://doi.org/10.1007/978-3-319-24024-4_18

Misue K, Eades P, Lai W, Sugiyama K (1995) Layout adjustment and the mental map. J Vis Lang Comput 6(2):183–210.
https://doi.org/10.1006/jvlc.1995.1010

Prim RC (1957) Shortest connection networks and some generalizations. Bell Syst Tech J 36(6):1389–1401
Purchase HC, Hoggan E, Görg C (2007) How important is the ‘‘mental map’’?—An empirical investigation of a dynamic graph

layout algorithm. In: Proceedings of the international symposium on graph drawing, pp 184–195 . https://doi.org/10.1007/
978-3-540-70904-6_19

Shneiderman B (1996) The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings of visual
languages, pp 336–343. https://doi.org/10.1109/VL.1996.545307

Stasko JT (1990) Simplifying algorithm animation with TANGO. In: Proceedings of the 1990 IEEE workshop on visual
languages, pp 1–6. https://doi.org/10.1109/WVL.1990.128374

Stasko JT (1990) Tango: a framework and system for algorithm animation. IEEE Comput 23(9):27–39. https://doi.org/10.1109/
2.58216

Tversky B, Morrison JB, Bétrancourt M (2002) Animation: can it facilitate? Int J Hum Comput Stud 57(4):247–262. https://
doi.org/10.1006/ijhc.2002.1017

van Liere R, de Leeuw WC (2003) Graphsplatting: visualizing graphs as continuous fields. IEEE Trans Visu Comput Graph
9(2):206–212. https://doi.org/10.1109/TVCG.2003.1196007

Végh L, Stoffová V (2017) Algorithm animations for teaching and learning the main ideas of basic sortings. Inform Educ
16(1):121–140

von Landesberger T, Kuijper A, Schreck T, Kohlhammer J, van Wijk JJ, Fekete J, Fellner DW (2011) Visual analysis of large
graphs: state-of-the-art and future research challenges. Comput Graph Forum 30(6):1719–1749. https://doi.org/10.1111/j.
1467-8659.2011.01898.x

Ware C (2008) Visual thinking: for design. Morgan Kaufmann Series in Interactive Technologies, Paperback
Yi JS, Ah Kang Y, Stasko JT, Jacko JA (2007) Toward a deeper understanding of the role of interaction in information

visualization. IEEE Trans Vis Comput Graph 13(6):1224–1231. https://doi.org/10.1109/TVCG.2007.70515

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional

affiliations.

492 M. Burch et al.

https://doi.org/10.1007/3-540-36151-0_3
https://doi.org/10.1109/PACIFICVIS.2008.4475479
https://doi.org/10.1109/INFVIS.2004.18
https://doi.org/10.1007/978-3-540-31843-9_24
https://doi.org/10.1007/978-3-540-31843-9_24
https://doi.org/10.1111/j.1467-8659.2009.01451.x
https://doi.org/10.1109/TVCG.2006.160
https://doi.org/10.1145/1081870.1081893
https://doi.org/10.1145/1081870.1081893
https://doi.org/10.1007/978-3-319-24024-4_18
https://doi.org/10.1006/jvlc.1995.1010
https://doi.org/10.1007/978-3-540-70904-6_19
https://doi.org/10.1007/978-3-540-70904-6_19
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1109/WVL.1990.128374
https://doi.org/10.1109/2.58216
https://doi.org/10.1109/2.58216
https://doi.org/10.1006/ijhc.2002.1017
https://doi.org/10.1006/ijhc.2002.1017
https://doi.org/10.1109/TVCG.2003.1196007
https://doi.org/10.1111/j.1467-8659.2011.01898.x
https://doi.org/10.1111/j.1467-8659.2011.01898.x
https://doi.org/10.1109/TVCG.2007.70515

	Exploring the dynamics of graph algorithms
	Abstract
	Introduction
	Related work
	Algorithm animation
	Time-to-time and time-to-space mappings

	Data model
	Graph algorithms
	Dynamic graphs

	Approach
	Graphical user interface
	Tasks and design decisions
	Time-to-space mapping
	Time-to-time mapping
	Time-aligned performance visualizations

	Application examples
	Dijkstra’s algorithm
	Prim’s algorithm

	Discussion
	Conclusion and future work
	Open Access
	References

