Skip to main content
Log in

An MLS-Prony implementation for a cm-Precise Super 10 m range 802.15.3c-PHY 60 GHz positioning application

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

A high-resolution time-of-arrival (ToA) estimation algorithm is applied to an IEEE 802.15.3c compatible signal package. The high speed multi-carrier mode of this 60 GHz super-Gbit/s wireless standard is promising for ToA due to its high bandwidth spec. The suitability of this multi-carrier mode for ToA purposes is first verified in a theoretical derivation. The ToA estimation algorithm itself consists of two estimation steps. The first, a coarse step, is based on an auto correlation operation. After this coarse step, a ToA refinement is performed on 10 OFDM payload packages. The method is based on the modified-least-squares-Prony method, a high resolution estimation technique, enabling a higher precision for the ToA estimate than is determined by the sampling period of the receiver. Thanks to the broadband spec of the 802.15.3c standard and the compactness of the algorithm, update rates of more than 200 kHz can be achieved. The algorithm enables tuning out frequency offset and channel multipath effects. cm-accuracy and precision is enabled at SNRs for distance values close to 10 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abdzadeh-Ziabari H, Shayesteh MG (2011) Robust timing and frequency synchronization for OFDM systems. IEEE Trans Veh Technol 99:1. doi:10.1109/TVT.2011.2163194

  • Ayhan T, Redant T, Verhelst M, Dehaene W (2012) Towards a fast and hardware efficient sub-mm precision ranging system. In: Proceedings of IEEE Workshop on Signal Processing System 2012, SiPS 2012

  • Baykas T, Sum CS, Lan Z, Wang J, Rahman M, Harada H, Kato S (2011) IEEe 802.15.3c: the first IEEE wireless standard for data rates over 1 gb/s. IEEE Commun Mag 49(7):114–121. doi:10.1109/MCOM.2011.5936164

    Article  Google Scholar 

  • Harada H, Funada R, Sawada H, Kato S (2007) CM golden set for phy simulation of TG3c (CM1.3), (IEEE 802.15-07/0580r1). IEEE P80215 Working Group for Wireless Personal Area Networks (WPANs)

  • Huang YS, Liu WC, Jou SJ (2011) Design and implementation of synchronization detection for IEEE 802.15.3c. In: 2011 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), pp 1–4. doi:10.1109/VDAT.2011.5783583

  • IEEE (2009) IEEE standard for information technology—telecommunications and information exchange between systems—local and metropolitan area networks—specific requirements. Part 15.3: Wireless medium access control (MAC) and physical layer (PHY) specifications for high rate wireless personal area networks (WPANs) amendment 2: Millimeter-wave-based alternative physical layer extension. IEEE Std 802153c-2009 (Amendment to IEEE Std 802153-2003), pp c1–c187. doi:10.1109/IEEESTD.2009.5284444

  • Knapp C, Carter G (1976) The generalized correlation method for estimation of time delay. IEEE Trans Acoust Speech Signal Process 24(4):320–327. doi:10.1109/TASSP.1976.1162830

    Article  Google Scholar 

  • Liu C, Li F (2004) Spectrum modelling of OFDM signals for WLAN. Electron Lett 40(22):1431–1432. doi:10.1049/el:20046524

    Article  Google Scholar 

  • Minn H, Bhargava V, Letaief K (2003) A robust timing and frequency synchronization for OFDM systems. IEEE Trans Wirel Commun 2(4):822–839. doi:10.1109/TWC.2003.814346

    Article  Google Scholar 

  • Moore S (2006) Cheap chips for next wireless frontier. IEEE Spectr 43(6):12–13. doi:10.1109/MSPEC.2006.1638035

    Article  Google Scholar 

  • Moose P (1994) A technique for orthogonal frequency division multiplexing frequency offset correction. IEEE Trans Commun 42(10):2908–2914. doi:10.1109/26.328961

    Article  Google Scholar 

  • Neri A, Di Nepi A, Vegni A (2010) DOA and TOA based localization services protocol in IEEE 802.11 networks. Wirel Pers Commun 54:155–168. doi:10.1007/s11277-009-9719-y

    Google Scholar 

  • Prony R (1795) Essai experimental-,-. J de l’Ecole Polytechnique (Paris) 1(2):24–76

    Google Scholar 

  • Quazi A (1981) An overview on the time delay estimate in active and passive systems for target localization. IEEE Trans Acoust Speech Signal Process 29(3):527–533. doi:10.1109/TASSP.1981.1163618

    Article  Google Scholar 

  • Redant T, Dehaene W (2012) High resolution time-of-arrival for a cm-precise super 10 meter 802.15.3c-based 60 GHz OFDM positioning application 2(5):217–277

    Google Scholar 

  • Sawada H, Sato K, Harada H, Funada R, Sum CS, Baykas T, Wang J, Rahman MA, Kato S (2009) Introduction of TG3c channel model and beyond, (IEEE 802.15-09-0195-01-003c). IEEE P80215 Working Group for Wireless Personal Area Networks (WPANs)

  • Tufts D, Kumaresan R (1982) Estimation of frequencies of multiple sinusoids: making linear prediction perform like maximum likelihood. Proc IEEE 70(9):975–989

    Article  Google Scholar 

  • Wang FMSJ K, Tolochko I (2003) Timing synchronization for 802.11a WLANs under multipath channels. In: Australasian Telecommunication Networks And Applications Conference 2003, ATNAC 2003

  • Winter J, Wengerter C (2000) High resolution estimation of the time of arrival for GSM location. In: Vehicular Technology Conference Proceedings, 2000. VTC 2000-Spring Tokyo. 2000 , vol 2, pp 1343–1347. doi:10.1109/VETECS.2000.851343

  • Xu H, Chong CC, Guvenc I, Watanabe F, Yang L (2008) High-resolution TOA estimation with multi-band OFDM UWB signals. In: IEEE International Conference on Communications, 2008. ICC ’08, pp 4191–4196. doi:10.1109/ICC.2008.787

  • Yong S, Xia P, Valdes-Garcia A (2011) 60GHz Technology for Gbps WLAN and WPAN: from Theory to Practice. Wiley, New York

Download references

Acknowledgments

The authors would like to thank the Flemish agency for Innovation by Science and Technology (IWT) (OmniTrack project) and the company ESSENSIUM NV for the funding. Moreover, they thank E. Van Lil, P. A. J. Nuyts, T. Ayhan and N. De Clercq for the interesting discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Redant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redant, T., Dehaene, W. An MLS-Prony implementation for a cm-Precise Super 10 m range 802.15.3c-PHY 60 GHz positioning application. J Ambient Intell Human Comput 5, 623–634 (2014). https://doi.org/10.1007/s12652-013-0189-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-013-0189-4

Keywords

Navigation