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Abstract The technology of Smart Homes (SH), as

an instance of ambient assisted living technologies, is

designed to assist the homes’ residents accomplishing

their daily-living activities and thus having a better

quality of life while preserving their privacy. A SH sys-

tem is usually equipped with a collection of inter-related

software and hardware components to monitor the liv-

ing space by capturing the behaviour of the resident

and understanding his activities. By doing so the sys-

tem can inform about risky situations and take ac-

tions on behalf of the resident to his satisfaction. The

present survey will address technologies and analysis

methods and bring examples of the state of the art re-

search studies in order to provide background for the re-

search community. In particular, the survey will expose

infrastructure technologies such as sensors and com-
munication platforms along with artificial intelligence

techniques used for modeling and recognizing activit-

ies. A brief overview of approaches used to develop

Human-Computer (HC) interfaces for SH systems is

given. The survey also highlights the challenges and re-

search trends in this area.
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1 Introduction

Rapid growth of the aged population has caused an

immense increase in demand for personal care, partic-

ularly for people with chronic conditions such as de-

mentia [35]. Thus care costs continue to rise putting

healthcare systems under financial pressure [120]. A re-

latively efficient solution to decrease these costs is to

shift the emphasis from formal care in hospitals and

care homes to informal care in private homes. Stud-

ies [117] revealed that most people needing care prefer

less intrusive informal care. The general perception is

that informal care at home is inexpensive. However,

according to statistical reports [120], conventional in-

formal care for many chronic conditions (e.g., demen-

tia) is not necessarily cheaper than other types of care

provided in hospitals or care homes.

Smart Home (SH) technology aims to support people

to have a better quality of life and to ensure elderly to

live comfortably and independently [30]. The SH tech-

nology is considered as a way to reduce living and care

costs and to improve the quality of life for people with

care needs. It has been applied for many purposes [76]

like energy saving, security and safety, fall detection,

light management, smoke and fire detection etc. us-

ing various solutions such as video monitoring, alarms,

smart planners and calendars, reminders, etc. Equipped

with sensors, actuators and eventually cameras to col-

lect different types of data about the home and the res-

idents, SHs can enable automatic systems or caregivers

to control the environment on behalf of the residents,

predict their actions and track their health condition.

A SH system incorporates different components struc-

tured in layered architecture as illustrated in Figure 1.

Each layer of the system has it own function and comes

with its own challenges to be dealt with. Data is collec-
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Figure 1 The layered architecture of an SH

ted as the physical layer by sensors, transmitted through

the communication layer to the processing unit in the

processing layer where it is analysed for activity recog-

nition and behaviour patterns discovery. The outcome

of the analysis in the form of specific information, alerts

or warnings may be communicated through the inter-

face layer to various stakeholders (resident, caregivers,

resident’s relatives).

There exist some research surveys devoted to SHs

and ambient intelligence [2, 21, 99]. The present survey

goes beyond these by (1) presenting the state of art

studies at all levels: hardware, networking, knowledge

engineering and reasoning, human-computer interface;

(2) focusing as much as possible on studies related to

healthcare; and (3) ensuring an up-to-date and full cov-

erage of techniques, technologies and methods. We be-

lieve that the present paper provides an insightful over-

view of the existing work, refreshes the knowledge in

this area and provides a different organisation of the

material and coverage.

This paper surveys the state of the art of SHs con-

sidering the infrastructure and communication (Sec-

tion 2), data processing (Section 3) and HC interfaces

(Section 4) and discusses the challenges facing this tech-

nology before becoming mature for successful deploy-

ment (Section 5).

2 Sensing and Networking Technologies

An SH system consists of two types of components:

hardware components and software components. The

former integrates sensors and associated equipments

like controllers and Gateway equipments into a single

network. Sensors are often seamlessly integrated in the

living space and attached to the network using either

wired or wireless connection. Ultimately sensors can

be remotely monitored and controlled via the Inter-

net. Many communication technologies and protocols

such as Bluetooth, ZigBee and PLC have been used in

SHs. In this section we review the sensor technologies as

Sensors

Discrete Continuous 

Passive Infrareds Contact Switchs RFID Tags

Environmental 
sensors 

Physiological 
sensors

Multimedia
sensors

Figure 2 Taxonomic classification of sensors discussed in
this paper

well as the communication networks deployed for SHs

in general.

2.1 Sensors

Sensors are devices for detecting changes in the environ-

ment including the residents. There is a large variety of

sensors used to monitor SHs and the residents. Sensors

are used to collect various types of data related to [83]:

– activities of the residents

– states of the objects

– states of the environment

In particular sensors capture the following data [34,

125]:

– strain and pressure

– position, direction, distance and motion

– light, radiation, temperature and humidity

– type of material (e.g., solid, liquid and gas)

– sound

– image and video

– state of the object (e.g., present, not present)

– physiological measurements (e.g., blood sugar, blood

pressure)

Sensors can be classified according to different charac-

teristics. In the following we will categorize them based

on the type of data they produce (see Fig. 2): dis-

crete state sensors (called also “binary”), and continu-

ous state sensors. Sensors usually form the building

blocks of sensor networks. They can be either wireless

or wired.

2.1.1 Discrete State Sensors

The output of state discrete state sensors is binary {0,

1}, hence the name “binary” sensors. Many studies have

used binary sensors for detecting the state of objects

or residents (i.e. open door/closed door, light on/off,
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Figure 3 The use of binary sensors to capture the activity
of ”making food”.

person movement/stillness). Due to the simple nature

of the data captured and the unobtrusiveness of bin-

ary sensors, many researchers have used them to collect

data about residents’ activities of daily living.

The most commonly used state sensors in SHs are

the Passive Infrared Sensors (PIRs) [37, 70]. Accord-

ing to [91], all of the ”effective” or promising research

studies on SH have involved PIR sensors for data collec-

tion. The AILISA platform [65] utilized PIR sensors to

monitor the activities of elderly people. SH systems col-

lect PIR’s readings and store them in a database using

the following format: Detection [Date] [Hour] [Sensor

Number]. Such data is then analysed in order to re-

cognize abnormalities. In a study related to dementia

patients, the authors in [33] used PIRs to collect data

about the residents movements in the home to make

sure that they are safe.

Another group of commonly used state sensors is
Contact Switch Sensors (CSSs). They are used to de-

tect the state of objects, e.g. cupboard doors and fridge

doors. A typical application of CSSs to track activities

can be found in [13]. Pressure sensors as part of CSS

family are used to detect the presence or occupancy

of spaces like a bed, chair, floor, etc. Radio-Frequency

Identification (RFID) can be considered as a state tech-

nology as it serves to identify objects and people [58]

using tags standing for identifiers and which are in gen-

eral binary or hexadecimal sequences.

Figure 3 shows how binary sensors can be used to

collect data about activities. While processing the bin-

ary data is moderately straightforward, the interpreta-

tion and presentation of binary data often require extra

knowledge of the environment in order to capture the

full activity. For instance, it is difficult to understand

if a resident truly took his medication only by checking

the captured data from the CSS attached to a drug cab-

inet door. Usually many sensors are required to capture

the context and hence efficiently track the person.

Departing from this idea, Wilson and Atkeson [118]

tried to capture the activity context by associating the

resident’s location and activities. Binary sensors were

used including motion detectors, break-beam sensors,

pressure mats, contact switches and RFID. The goal of

the study was to identify the residents and track their

activities in order to detect abnormal behavior.

2.1.2 Continuous State Sensors

In contrast to binary sensors, the output of continu-

ous state sensors can take simple or complex forms like

real numbers, images and sound. Popular sensors in this

class are environmental sensors that are used to cap-

ture environmental data such as temperature, humidity,

light, pressure, noise, etc. Such sensors are used to mon-

itor all sorts of environments for different applications.

Physiological sensors are used to monitor the resident’s

health condition. They capture different physiological

data, such as blood glucose, blood pressure, ECG, EEG,

EMG, pulse and body temperature. Usually physiolo-

gical sensors are worn by patients forming the so-called

body area network (BAN).

Continuous state sensors have been used to mon-

itor SHs. For instance, Wood et al. developed a sys-

tem called AlarmNet [122] for assisted living and mon-

itoring. It is based on body area networks to collect

physiological data from residents. AlarmNet supports

different types of wireless sensors (e.g., heart rate, ECG

pulse oximeter, weight, motion, dust, light, optical trip-

wires, CSSs) and interfaces to perform activity recogni-

tion. mPHASiS [64] is a healthcare information system
that uses BAN to collect physiological data. mPHASiS

monitors ECG, blood pressure, acceleration and tem-

perature. It was designed as an end to end health care

monitoring solution. In particular it triggers alert mes-

sages to inform the caregivers about specific health situ-

ations. The caregivers have access to the data of resid-

ents through a smart phone. Tia et al. [107] used light-

weight BANs for patient triage in hospitals. Each pa-

tient wears a BAN that consists of a pulse oximeter, an

electrocardiogram, blood pressure meter and a cough

monitoring device to collect data. This study targets

accident and disaster situations, but could be extended

to care emergency in general.

The last type of continuous sensors is multimedia

sensors that correspond to video cameras and micro-

phones. Video cameras have been used to monitor cer-

tain situations, for instance, when the patient needs

close monitoring by the caregivers. However their use

in SHs has been often criticised and rejected due to pri-

vacy constraints [14]. People do not admit being watched;
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yet many researchers believe that video and audio sensors

can considerably increase the accuracy of SH systems [123].

Reidel et al. [94] proposed an activity recognition

system based on audiovisual data. They investigated

activities such as having snacks while watching TV and

reading the newspaper. The data was collected from

six single healthy adults using multiple cameras in the

home. The study achieved in average more than 90%

activity recognition accuracy. Silva et al. [29] developed

another system using multimedia sensors to recognise

activities like falling, walking, standing and shouting.

The activity data was collected by simulation in a lab.

For processing, two activity recognition models were

applied, a model for processing obtained audio data

and another for processing captured video data. The

overall accuracies for activity recognition models were

94.44% for video data and 83.35% for audio data. An-

other system, called COACH, was proposed in [75] for

assisting elderly with dementia through the process of

washing hands. COACH uses video frames to discover

the hand position relying on the partially observable

Markov decision processing model (POMDP). The sys-

tem provides also multimedia guide and alerts the care-

givers when the person is facing a risky situation (e.g.,

when the person is not moving, the sink is full).

Table 1 shows some of the research studies where

various types of sensors for different tasks were de-

ployed.

2.2 Communication

The communication layer (see Fig. 1) in SHs plays the

crucial role of connecting all of the components such as
sensors, actuators, gateway and storage hardware. We

can distinguish the following communication technolo-

gies:

1. Low Powered Wireless (LPW) networks (e.g., zig-

bee, bluetooth, RFID)

2. Power Line Communication (PLC) and heterogen-

eous PLC standard (e.g., X10)

3. Personal computer networking protocols (e.g., WIFI)

4. Universal Mobile Telecommunications System (UMTS)

In the following a short presentation of these tech-

nologies is given.

2.2.1 Low-Powered Wireless Networks

Low-Powered Wireless (LPW) or low energy wireless

standards have been designed in a way to allow power

sensitive devices like sensors to function with minimum

low consumption of energy [102] by staying in the power

saving mode as long as possible. Some research studies

suggest that LPW technologies will shape the future of

SH networking, particularly in the context of health-

care [28, 84]. The most common LPW standards are

described in the following.

ZigBee is the mostly used standard among the LPW

family. It is a small, low-cost, low-power, short-range

wireless technology. It operates on a signal range of

2.4 GHz with data rate of 250 Kbps [7]. Its transmis-

sion distance can spread up to 75 meters depending

on the environment and the type of sensors deployed.

Zigbee has been used in smart homes since long time.

For instance, Cavallo et al. [19] used ZigBee to de-

velop a system called “Pervasive Intelligence System

for Rehabilitation and Assistance” (PISRA) dedicated

to people with dementia. The system serves to track

people activities within SHs such as sleep, movement,

fall, social communication and taking drugs. Moreover,

the PISRA system offers help and guidance to the res-

idents for conducting their daily activities. Van Hoof et

al. [110] developed a ZigBee-based system, called “Un-

attended Autonomous Surveillance (UAS)”, to monitor

the security and safety of old people with mild demen-

tia. UAS consists of a number of wireless sensors located

in the living room, bedroom and the kitchen which com-

municate through ZigBee. UAS detects incidents such

as falling and inactivity and triggers adequate alarms

when the person is in a risky situation.

U-Health [66] is a ZigBee-based system designed

for monitoring older adults health using 12 different

types of wireless sensors for capturing heartbeat, blood

pressure, body temperature, motion, location, blood

sugar, cholesterol, SpO2, dehydration, camera, humid-

ity, smoke, and temperature. In the evaluation, authors

only tested two of U-health sensors (the blood gluc-

ometer sensors, the ECG monitoring system) for 29 pa-

tients. They provided 20 patients with a ZigBee-based

blood glucometer sensors that transmit the readings

through a mobile phone to web, and caregivers were

instructed on using a web service which could illustrate

the readings. The other 9 have participated in ECG

monitoring system, with a ZigBee-based ECG attached

to their chest that transmit the readings through a mo-

bile phone to web, and caregivers who could see the

reading through web. The result showed the satisfac-

tion scores of 8.59 and 9.01 out of ten points for blood

glucometer sensors and web service, respectively. The

mean satisfaction scores for ECG sensor and ECG mon-

itoring services were 5.79 and 7.29, respectively.

Likewise, in [104] a monitoring system relying on

ZigBee was developed to track the activities of people in

an SH. Authors employed a variety of sensors including

pressure and contact switches attached to household

appliances like microwave, kettle, toaster, heater, TV
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Table 1 Some of SHs research studies and their sensor technologies.

Refrence Sensors Activities Purpose
[124] Video cameras, Micro-

phones, Floor pressure,
Motion, RFIDs

Watching TV, Cooking, Tracking
personal items

Behaviour monitoring, Tracking
personal items

[85] Air pressure Not mentioned Residents’ location
[89] Video cameras, Bed pressure,

Stove door CSS, Motion
Cooking, Sleeping, Walking in the
house

Resting hours, Behaviour monit-
oring

[116] Signal strength of wireless
devices

Not mentioned Resident’s location

[119] Motion detectors, Pressure
mats, CSSs, RFIDs

Eating, Bathing, Dressing, Toileting,
Cooking, Watching TV

Resident’s location, Behaviour
monitoring and prediction

[6] Accelerometer, Blood pres-
sure readings, Microphones,
Heart rate, Temperature

Movement, Blood pressure changes,
Speech, Sound

Healthcare Monitoring

[55] Infra-red cameras, Micro-
phones, Pressure mats,
Motion, Water and gas
flow,Light switches

Cooking, Socializing, Sleeping,
Cleaning, Relaxing, Working

Behaviour monitoring

[80] Motion Not Applicable Producing elderly’s life scenario
[94] Video Cameras Getting home and watching TV,

Eating while watching TV, Reading
Behaviour monitoring

[65] Motion, CSSs Bathing, Dressing, Toileting, Eating Behaviour monitoring
[122] Heart rate, Movements,

ECG, Pulse oximeter,
Weight, Pulse monitoring

Toileting, Sleeping, Showering, Eat-
ing and drinking, Walking,

Healthcare Monitoring, Beha-
viour Monitoring

[25] Motion, CSSs Bathing, Walking, Cooking, Eating,
Relaxing, Personal hygiene, Sleep-
ing, Taking medicine

Behaviour monitoring

[115] Motion, CSSs Toileting, Showering, Eating and
drinking, Walking,

Behaviour monitoring

and dishwasher. The system was used to estimate the

well-being of the residents based on usage frequency of

the appliances. The proposed system was experimented

on four SHs inhabited by single old persons. The system

outcome showed the type appliance and excess used by

the elderly at their houses and also its outcome could
be used to predict early risky situations.

The Bluetooth is a low-cost wireless communication

protocol that has been originally manufactured to con-

nect mobile and handheld devices at a maximum data

rate of 1Mbps within up to 10 meters of distance [9]. It

uses the standard 2.4GHz signal band for communica-

tion. However the Bluetooth technology has not been

frequently used as a communication standard for SHs,

although some authors [31] claimed that Bluetooth is

better because it enables users to interact with the sys-

tem via conventional handheld devices such as mobile

phones and tablets.

In [67], it was shown that Bluetooth supports fewer

cell nodes compared to ZigBee and Wi-Fi. Moreover

it has lower data rate compared to Wi-Fi. For these

reasons and because also of the predominance of Wi-

Fi-enabled handheld devices Bluetooth is less perefrred

for SHs.

RFID is a technology for automatic identification

of the objects and people by computer-based systems.

RFID tags and readers use a variety of frequency ranges

that can be categorised as low (124-135 kHz), high

(13.56 MHz) and ultra-high (860-950 MHz). As the

frequency range increases the reading range increase

too. The number of SH projects for health that utilized

the RFID technology have increased significantly in the

past few years. RFID was particularly used for identify-

ing people in a multi-occupant SH (see Section 5). For

instance, in [123] the authors used two separate RFID

systems, an active RFID for environment monitoring

and a passive one for resident identification (known also

as data association problem).

2.2.2 Power Line Communication

Power line communication (PLC) technologies allow SHs

to adopt universally available electrical communication

terminals as the communication infrastructure. In the

following, some of the most common PLC technologies

are presented.

X10 is an international networking protocol that en-

ables home appliances to transmit digital data through

an electrical power line. X10 is commonly recognized as

a low-cost data transmission protocol with no installa-
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tion requirements as it is uses existing wiring. Although

the implementation of PLC is not as flexible as the wire-

less technologies [3], many researchers considered X10

as a cheap and available option to control appliances.

They advise that a mix of wired and wireless techno-

logies can offer the best of the two worlds to meet the

requirements of SH systems [24].

In [89], an X10 sensor network for monitoring old

people living in a retirement community was applied.

Motion sensors and pressures sensors were attached to

rooms and beds. The research investigated the correla-

tion between resident’s daily activities and health prob-

lems such as falling or emergency medical needs. The

study illustrated that the residents go into a period of

restlessness before facing a problem.

Other Power Line Communication Technologies A num-

ber of different PLC-based protocols for home automa-

tion have been proposed. Among others, these include

European Installation Bus (EIB), Home Plug and Lon-

works. Often these PLC protocols are enhanced ver-

sions of X10 [48]. The Home Plug Power Line Alli-

ance introduced a PLC network protocol which con-

nects nodes with significant bandwidth of 200Mbps in

an indoor distance of up to 350 meters using exist-

ing electric line [126]. In [127], the authors, discussed

some reliability measures to ensure that Home Plug

protocol is secure when handling sensitive data such

as healthcare data. They compared home plug against

some other more conventional wired and wireless proto-

cols like 100BaseT and 802.11b. The comparison stud-

ied the network reliability factors such as the number

of supported simultaneous connections, packet drops,

data jitters and delays. The study stated that the PLC

network successfully delivered low, medium and high

bit rate data without any packet drops.

Despite the significant improvement of service in the

new PLC protocols, the number of wired SH studies is

limited compared to SHs that employ wireless and com-

puter network technologies [2]. The characteristics of

wireless systems like mobility, accessibility and compat-

ibility push most of the research studies to use wireless

protocols or a mix of wireless and wired protocols.

Heterogeneous networking protocols for intelligent

buildings Diversity in sensor types and communication

protocols have led to the development of hybrid proto-

cols. One of the most successful heterogeneous protocols

used for smart buildings is KNX [108]. KNX is a modern

standard which has incorporated three European stand-

ards (BatiBUS, EIB, KNX-RF) and internet protocol

to offer one package solution to SH networking. KNX

allows designers to use various types of media such as

radio frequency, power line and twisted pairs and the IP

protocol. Heterogeneous protocols are not only limited

to combining wired and wireless technologies, but also

protocols from the same family such as home wireless

(e.g. Wi-Fi) and low powered wireless technologies (e.g.

ZigBee) [116].

2.2.3 Personal computer networking protocols

Single-board advance computing units (e.g. Raspberry

Pi, Arduino) are cheap and broadly available nowadays.

Many studies tend to use computer networking proto-

cols for SHs. Wi-Fi (Wireless Fidelity) is a computer

networking protocol that is known as the IEEE 802.11

networking standard. Designers initially built it for the

wireless local area networking, and it works on 2.4, 3.6

and 5 GHz frequency bands. Until recently Wi-Fi was

considered not suitable for sensor networks and exclus-

ive for PC networking [39]. Nowadays, there is a vari-

ety of Wi-Fi enabled devices with sensors (e.g., smart

phones, smart TVs, etc.) and houses are equipped with

Wi-Fi access points for internet sharing. Hence, the cre-

ation of a Wi-Fi based sensor networks for SHs will be

easy as illustrated with the CareNet [57].

2.2.4 Mobile Telecommunications System (MTS)

MTSs are capable of transmitting different types of

data such as text, digitized voice, images, and video.

MTS can be used in SH applications. For instance stud-

ies in [42, 109, 129] adopted the SMS as an instrument

for interacting with SHs’ monitoring and remote con-

trol applications. In [4], the authors proposed a control

system for SHs that allows the users to manage home

appliances (e.g. air conditioner, light) by SMSs. The

same platform could be applied to SH in healthcare.

Airmed-cardio [100] is an MTS based monitoring sys-

tem for cardiac patients follow-up in their home. Each

patient has a portable monitoring equipment and cel-

lular phone that supports data transmission. The col-

lected data is transmitted to a base station which is

monitored by a human operator.

3 Data Processing and Knowledge Engineering

Following the layered architecture presented in Fig. 1,

the data is collected and transmitted through the com-

munication medium to a data processor. In this stage,

data potentially undergoes a pre-processing step for

cleansing and preparation before further processing is

initiated. The main step is, however, analysis which

encompasses: mining behavioral patterns, recognizing

activities, detecting abnormal behaviour, etc. This stage

is the “smart part” of a SH system.
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For healthcare application of SHs, the aim of data

processing is to:

– present the sensor data in a way that caregivers can

track the changes of the resident’s health state and

how the daily activities are accomplished by the res-

ident under observation.

– detect anomalies when carrying on activities and

trigger alerts in critical situations (i.e. falling down,

forgetting to turn off the cooker).

– identify the progress of chronic diseases and condi-

tions (e.g. case of elderly with dementia).

– remind the resident about scheduled activities (e.g.

taking pills).

– predict activities by the resident and assist him in

their accomplishment.

A variety of knowledge engineering and data pro-

cessing methods can be used to analyse the collected

data. In the following we will focus on the main prob-

lem in SHs which is activity modelling and recognition

from sensor readings. The common computational mod-

els used for activity recognition in SHs will be high-

lighted and related studies will be summarized. The

models considered are: decision trees, fuzzy logic, ar-

tificial neural networks, support vector machines, Na-

ive Bayes classifier, hidden Markov models, emerging

patterns, and ontologies. Table 2 shows some of the

SH research studies including the data source, the al-

gorithms, and the performance of such algorithms.

3.1 Decision Trees

A decision tree (DT) is used to model the relation

between input data and the corresponding output. A

decision tree can be used for either classification if the

output is discrete indicating class labels or regression

if the output is continuous. A classification tree con-

sists of nodes that represent features and branches that

represent the values of the features. The leaf nodes rep-

resent the class labels. Figure 4 shows a classification

tree with 2 classes: safe and risky. A tree can be rewrit-

ten as a set of IF-THEN rules. For instance the rule:

IF Resident in kitchen =NO and Gas Hobs Timer >30

THEN Class=Risky

can be derived from the tree in Fig. 4. DTs are built

through an induction process using a training dataset.

Many induction algorithms have been devised such as

TDIDT/ID3, C4.5, CART, MARS, and CHAID. Some

algorithms like C4.5 and CART execute two phases:

growing and pruning of the tree, while others only grow

the tree [98].

In [56], C4.5 was used to generate a DT for classi-

fying the actions of the resident that is a combination

Gas_Hobs

Resident_in_kitchen

Safe

Risky 

Gas_Hobs_Timer

Safe

ON

Yes
No

Less than 30 mins More than 30 mins

OFF

Safe

Figure 4 The structure of a DT.

of the resident location and the object touched. The

training dataset was collected from pressure sensors on

the floor for locating the resident and RFID tags on the

objects (e.g. gas hobs, cupboard). The evaluation of the

classifier on kitchen activities achieved an accuracy of

90% to 100% depending on the size of learning data

used.

C4.5 was also applied in [90] to recognize activities

using data from a wearable triaxial accelerometer. The

activities considered were: standing, walking, running,

climbing up stairs, climbing down stairs, sit ups, vacu-

uming and brushing teeth. C4.5 was used among other

classifiers such as k-nearest neighbour, SVM and Naive

Bayes. The results showed that C4.5 achieved 97.29%

when trained and tested on data from the same user

over many days. An accuracy of 98.53% was achieved

when C4.5 was trained and tested on data stemming

from many users and over many days and 77.95% when

trained and tested on data not from the same day.

In [72], the authors used ID3, the perceptron and

k-NN to determine the location of the resident based

on the wireless signal strength. Two datasets were used:

Peter Kiewit Institute dataset (PKI) and Maxwell Work-

ing (MD) dataset [88]. The results showed that for ID3,

the mean error was 4.9 m and 2.5 m for PKI and MD

respectively. The mean error of k-NN was 4.9 m and

2.4m, while that of the perceptron was 7m and 2.4 m

respectively.

In [87], the authors applied decision trees to model

activities of daily living in a multi-resident context. An

extension of ID5R, called E-ID5R, was proposed where

the leaf nodes are multi-labeled. E-ID5R induces a de-

cision tree incrementally to accommodate new instances

and new activities as they become available over time.

To evaluate the proposed algorithm, the ARAS dataset
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Membership Degree

Distance
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0.5

Figure 5 Fuzzy set represented as a fuzzy membership func-
tion.

which is a real-world multi-resident dataset stemming

from two houses was used. E-ID5R performs differently

on activities of both houses: for house A whose data

is quite challenging, the classification rate was modest

(40%), while for house B the rate approached 82%.

3.2 Fuzzy Logic

As an extension of the classical set theory, Zadeh [128]

defined a fuzzy set as “a class of objects with a con-

tinuum grades of membership. Such a set is character-

ized by a membership (characteristic) function which

assigns each object to a grade of membership ranging

between zero and one. Fuzzy sets have been used to

develop fuzzy logic systems. Many SH studies have ap-

plied fuzzy logic to build monitoring and prediction sys-

tems.

To explain what is a fuzzy set, the primary step is

to understand the membership function. This function

maps each input data to a membership degree ∈ [0, 1].

For instance, Fig. 5 illustrates membership value of the

distance value 4 to three to three fuzzy sets correspond-
ing to the linguistic concepts:“close”, “medium” and

“far”.

Using fuzzy sets, rule based systems (RBS)can be

extended to include fuzzy “IF-THEN” rules of the form:

IF sink water level is High then stop tap. As shown in

Fig. 6, a fuzzy RBS has the same components as a tra-

ditional RBS but the input is fuzzified at beginning and

the output is defuzzified at the end. The inference sys-

tem maps the input data to the rule base and aggregate

fuzzy output of the system according to an inference

method. The defuzzification converts the fuzzy output

of the system to crisp output.

The fuzzy rule-based systems are used in the form

of fuzzy rule-based classifiers. For instance, a fuzzy rule

looks as follows: IF Resident stay in bed for Long and

bedroom TV=OFF then Class risky. Rules can be as-

sociated with confidence level which may be obtained

in different ways. The structure of a fuzzy rule-based

classifier is similar to the Figure 6 however since the

outputs are classes the defuzzification step is often not

Fuzzification
Inference 

system
DefuzzificationCrisp Input Crisp Output

Rule Base 
IF … THEN ….
IF … THEN ….

Membership 
function

Figure 6 Structure of a fuzzy rule-based system

necessary. A good overview of fuzzy classifiers can be

found in [11].

In [46], the authors used a fuzzy rule-based con-

troller where the output of the rules is not a class but

a function in order to monitor a smart environment,

called “iDorm”, based on preferences of the occupants.

The data was generated over two months by record-

ing two student activities in a dormitory flat which is

equipped with 11 sensors: internal light level, external

light level, internal temperature, external temperature,

chair pressure, bed pressure, occupancy and time etc.

The output is provided by six actuators: variable in-

tensity spot lights, the desk and bed side lamps, the

window blinds, the heater and PC-based applications

comprising of a word processing program and a media

playing program. The induction process led to a rule

base consisting of 280 rules based on 132 hours of col-

lected data.

Bouchachia [10] introduced a rule-based fuzzy classier,

called IFS that stands for incremental fuzzy classifica-

tion system, which is capable of dealing with the dy-
namic nature of SHs. The classifier is based on gener-

alized fuzzy minmax neural networks (GFMMNN). It

is designed to learn and self-adjust in a exible man-

ner to react to dynamic changes such as the occurrence

of new events, inputs’ change, seasonal changes, etc.

The study demonstrated how fuzzy rules can be con-

tinuously generated online to meet the requirements of

a dynamic environment. The author used the iDorm

data [46]. The data was split into two subsets: the train-

ing set contains 75% samples for the first month, and

The testing set contains 25% of the first month and all

samples of the second month. The evaluation of IFS

shows that the adaptation is essential for online track-

ing of people’s activities. The current error rate con-

tinuously decreases reaching 0.01. Compared with fuzzy

ARTMAP and nearest generalized exemplar, IFS pro-

duces a lower current error.

In [81] some fuzzy classifiers such as Class0, eClass1,

k-NN, NB and HMM were used to recognize activit-

ies. The following activities were considered: leaving
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the house, using the toilet, showering, sleeping, eating

breakfast, eating dinner and drinking. Using data col-

lected from 3 smart homes, it was found that on average

the evolving classifiers, eClass0 and eClass1 achieve an

f-measure value of 0.6 and 0.7 respectively outperform-

ing the other classifiers, especially when the size of the

training data increases.

Bouchachia and Vanaret [12] developed an online

type 2 self-learning fuzzy classifier, called GT2FC stand-

ing for Growing Type-2 Fuzzy Classifier. For the rule

learning from data streams. They suggested that the

classifier is suitable for ambient intelligence (e.g. SHs)

where the goal is to use sensed data to monitor the

living space on behalf of the residents. The research

tackled three challenges of online learning, complexity

of the rule-based classifiers and accommodation of la-

belled and unlabelled data during rule learning. To il-

lustrate the model’s performance, they conducted ex-

periments using an ambient intelligence which iDorm

dataset [46]. The paper investigates the effect of la-

belled and unlabelled on the classification accuracy. It

also compares the outcome of GT2FC against other on-

line classifiers such as IFCS [10], Nearest Generalized

Exemplar, Growing Type-1 Fuzzy Classifier with 70%

of data being labelled, the accuracy of GT2FC classifier

was 81.65% while the GT1FC was 81.42, Nearest Gen-

eralized Exemplar was 75.54% and IFCS was 75.24%.

3.3 Artificial Neural Networks

Artificial Neural Networks (ANN) is a computing model

made up of a number of simple, highly interconnec-

ted processing elements, which process information by

their dynamic state response to external inputs [18].

The fundamental processing elements of an ANN are

articial neurons (or nodes) which are interconnected by

weighted links forming layers as shown in Fig. 7. Typic-

ally in an ANN there is one input layer and one output

layer and a number of hidden layers that varies depend-

ing on the complexity of the problem at hand [79]. Neur-

ons transform the weighted input into output using an

activation function which can take different forms (lin-

ear and non-linear). The process by which the weights

are adjusted is called learning. A number of non-linear

ANNs are known to perform as function approximat-

ors. There are various parameters that define the archi-

tecture of a neural network: the connection type (e.g.

feed-forward networks recurrent neural networks etc.),

learning rule (e.g. hebbian rule, perceptron learning,

back-propagation, etc.), and activation functions (e.g.

sigmoidal, hyperbolic tangent, etc.). Because of these

shaping parameters, there are different types of ANNs

Input layer

Hidden layer

Output layer

Figure 7 Architecture of a 3-layer feedforward network.

(e.g. Multi-Layer Perceptron (MLP), Echo State Net-

works (ESN), Radial basis function networks (RBFN),

Boltzmann machine, etc.).

ANNs can be applied to a number of SH problems

such as activity classification, control of appliances, nov-

elty and anomaly recognition and prediction of activit-

ies. In relation to health monitoring in SHs, ANNs were

used to diagnose and monitor chronic diseases as well

to build medical decision support systems [36,60,69].

MLP is the most commonly used ANN models for

activity recognition [8]. A precursory work using MLP

for SHs is presented in [78]. MLP is used to control the

energy consumption in accordance with the lifestyle of

the residents. It is trained using the back-propagation

algorithm on a dateset collected from state of the lamps,

intensity level of the lamps, speed of the fans, temper-

ature, illumination, sound level, motion and state of the

doors and windows. By predicting the future activities

of the resident using this MLP, energy consumption of

appliances in the home can be monitored.

In the MavHome project [26], an MLP-based frame-

work was proposed to detect activity anomalies and

identify repetitive tasks performed by residents. The

sensors used in this framework are motion, light, hu-

midity, and CSS. The empirical evaluation showed an

average of 64% accuracy for activity recognition in five

randomly generated resident ADL scenarios. Rivera-

Illingworth et al. [95] employed a recurrent neural net-

work (RNN) based on Evolving Connectionist System

(ECoS) [59] to recognize activities like sleeping, eat-

ing, working with computer, and to detect abnormal

behaviours. ECoS operates online, which means that

new sensors can be added to the architecture, and new

activities can be accommodated at any stage. The au-

thors evaluated RNN using a dataset collected from a

student dormitory in Essex using different sensors like

light, temperature, pressure, etc. They achieved an av-
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erage of 74.57% accuracy rate on a test dataset and

89.14% of abnormal activity detection rate.

In [68] a One-Pass Neural Network (OPNN) was

applied to identify anomalies and to perform activity

recognition. Similar to EcoS, OPNN runs online. In the

study, a bedroom was used as an experimental space.

The room was equipped with a set of sensors like chair

and bed pressure sensors, light, table lamp, bed lamp,

air condition, and window blind. To produce the dataset

of simulated ADLs, the authors gave questionnaires to

the students to annotate their activities (e.g. working

on the table, computer use, listening to music, sleep-

ing). OPNN was evaluated on a sample of achieving

92% accuracy. A layer was added to OPNN for deciding

the type of abnormality: abnormal behaviour, abnormal

sequence, and abnormal frequency. For instance, when

the duration of cooking exceeds a specified upper limit

or when using the toilet frequently, the system will per-

ceive this as abnormality.

Lotfi et al. [70] applied Echo State Networks (ESN-

NN) to predict future abnormal activities for elderly

with dementia. The system aims at identifying anom-

alies such as sleep deprivation and sending alerts or

reports via e-mail or phone to the caregivers. The data

used was collected from PIR and CSS sensors. The em-

pirical evaluation produced an anomaly prediction rate

of 93% to 99% for very simple activities. In this study

k-means and fuzzy c-means clustering algorithms were

applied to detect abnormal activities using the start-

time and the duration of activities. Large clusters have

found to match normal activities and smaller ones to

as abnormal activities.

3.4 Support Vector Machines (SVMs)

Support Vector Machines (SVMs) are quite popular

classification methods and have been used various ap-

plications such as face identification, text categorisation

and stock classification. SVMs have been used for activ-

ity recognition in a number of studies. Consider the lin-

early separable data in Figure 8. Classes are separated

by hyperplanes. SVMs maximize the margin around the

separating hyperplane. The margin is the distance from

the hyperplane to the closest data points which are

called support vectors. SVMs use different optimization

techniques to find the optimal hyperplane by maxim-

ising the margin. SVMs use kernel functions (e.g., ra-

dial basis kernel, polynomial kernel, etc.) to map the

non-linearly separable data from the input space into a

higher space where data become linearly separable.

SVMs have been used for activity recognition in a

number of studies. For example, an application of SVMs

was described in [40]. The data was collected through a
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Figure 8 The hyperplane, margin and support vectors.

set of binary (e.g., PIR, CSSs, flood detectors) and non-

binary (e.g., microphones, wearable kinematic sensors)

sensors. An SVM-based system was applied to recognise

seven activities: sleeping, resting, dressing, eating, using

the toilet, hygiene activities and communications. The

cross-validation test gave the results with a satisfactory

classification rate of 75% for a polynomial kernel and

86% for a Gaussian kernel.

Cook et al. [25] employed SVM and the Naive Bayesian

classifier (see Sec.3.5) and Hidden Markov Model (see

Sec.3.6) to deal with activity discovery and recognition.

The data was obtained from 3 SHs inhabited by eld-

erly residents using PIR and CSS on doors. The daily

activities targeted included bathing, walking, cooking,

eating and taking medicine. The results revealed that

SVM outperformed the other models, achieving an av-

erage accuracy of 91.52% for the 3 homes. Moreover,

an activity discovery model was introduced in order to

detect novel activities and to enhance activity recogni-

tion. SVM could improve the accuracy up to 10% when

using activity discovery along with activity recognition.

In [71] applied SVM among other algorithms (C4.5

DT, NBC, K-nearest neighbour, and random forest) for

fall detection. The data was collected using 12 radio tag

equipments attached to the shoulders, elbows, wrists,

hips, knees and ankles of three people. The evaluation

of the algorithms showed that SVM outperforms the

rest of classifiers obtaining an accuracy of 97.7%.

In [49] an activity recognition technique based on

the discrete cosine transform (DCA) and SVM was pro-

posed. The dataset was collected via a Bluetooth-based

triaxial accelerometer from 11 people. Four activities

were considered: running, staying still, jumping and
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walking. First, the features were extracted from the

data employing DCA, then SVM was trained to recog-

nise these activities. A high accuracy of 97.51% was

obtained.

3.5 Naive Bayes Calssifier (NBC)

The Naive Bayes classifier (NBC) is one of the simplest

probabilistic classifiers. It relies on Bayes’ theorem to

build the decision boundary making use of the assump-

tion that all of the input features are independent. This

assumption makes the classification process tractable.

Given an input X = [x1, x2, · · · , xd]t and a set of classes

{C1, · · · , CJ}, the conditional probability P (X|Cj) can

be written as:

P (x1, x2, · · · , xd|Cj) =

d∏
i=1

P (xi|Cj)

The label of X is then predicted as follows:

C = arg max
j=1···J

P (Cj)

d∏
i=1

P (xi|Cj)

NBCs have been employed in many SH research

studies. Tapia et al. [106] used NBC to recognize daily

activities such as washing hand, toileting, cooking, rest-

ing and dressing. A set of 77 binary sensors were in-

stalled on targeted objects like doors, windows, cabin-

ets, a microwave, a stove and a dishwasher. Using accur-

acy (number of times the activities were correctly recog-

nized) and whether the activities were detected with or

without delays, NBC has produced the best accuracy

of 89% considering different settings. Using the same

dataset, Kasteren et al. [114] applied dynamic NBC

(DNBC) for activity recognition. The experimental res-

ults showed that DNBC outperformed NBC.

NBC was also evaluated on a video data in [74].

In this study activities like ”working with the phone”,

”drinking water” and ”eating snacks” were targeted.

The experimental evaluation showed that NBC could

perform well on video data achieving an accuracy of

89%.

3.6 Hidden Markov Model and its Variants

Hidden Markov Model (HMM) is a special case of Bayesian

Networks which model joint probabilities of states and

observations.

It used to estimate hidden state sequence (y1, y2, · · · , yT )

given the input sequence (x1, x2, · · · , xT ) as illustrated

in Fig 9.

Figure 9 Structure of HMM

AD1-B AD1-C D01 I01 I08 M01 M23 AD1-A asterisk 

.... 

.... .... 

Wash hands Phone call Cook Eat Clean 

Figure 10 Activity modeling using HMM

HMM is one of the most common computational

models applied to activity recognition. As shown in

Fig 10, the activities represented as ovals are modeled

as hidden states, while observations (called also ob-

served states) represented as rectangles indicate the

data emitted by the sensors. The horizontal edges rep-

resent transition probabilities and downwards edges rep-

resent the emission probabilities of the corresponding

observed state.

This encoding was reflected on in [115] where HMM

was applied to recognize some target activities: leav-

ing the house, toileting, showering, sleeping, preparing

breakfast, preparing dinner and preparing a beverage.

Using a set of 14 CSSs located on doors, cupboards,

refrigerator and toilet flush were used to collect data,

the study investigated 3 aspects: data representation,

size of the training data and difference between on-line

and off-line inference. The experimental results showed

that a better data representation through preprocessing

improves the recognition ability of HMM, while a min-

imum of 12 days of data is required for an efficient train-

ing. The experiments also showed that off-line inference

is more effective than on-line.

In another study [23] HMM was applied on the MIT

PlaceLab [106]. Compared to many similar studies, this

study focuses on tracking a whole behavior as a se-

quence of activities that occur close to one another in

time, in one location. Thus, the activities are seen as a

data stream giving room to consider variable and fixed

sized windows of observations. Two accuracy measures

were used: behavior-level recognition and observation-

level recognition. In the first the HMM output is com-

pared against the ground truth whenever the beha-

viour changes, while in the second the output is com-

pared against the label of the observation. Using dif-
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Figure 11 HHMM representation

ferent splits of data, the experiments showed that vari-

able sized windows provided very good recognition rate

using both types of measures. However, the values of

the observation-level measure were always higher than

those of the behavior-level measure.

Despite its popularity, HMM suffers from several

limitations. HMM cannot capture long-range or transit-

ive dependencies of the observations due to the strict in-

dependence assumptions on the observations. Further-

more, without significant training, HMM may not be

able to recognize all of the possible observation sequences

that lead to a particular activity [61]. Moreover HMM

does not take temporal considerations into account, mean-

ing that the duration of an action is not explicitly modeled

and the interaction cannot be encoded directly. To over-

come these limitations, Hidden Semi-Markov Model (HSMM)

was proposed to explicitly model the duration of activ-

ities.

HSMM was compared against HMM in [112]. In

this study, binary CSS sensors were used to collect 3

datasets related to two different individuals who are

26 and 57 years old. Activities that were targeted in-

clude eating main meals, using a dishwasher, drinking

and eating snacks. To evaluate the accuracy of HSMM

and HMM, the f-measure was used. The experimental

evaluation showed that HSMM (65.5%) outperformed

HMM (54.1%). This means that considering duration

improved the classification, specifically when the sensor

data does not provide enough information for activities

to be distinguished.

Another variation of HMM is the Hierarchical Hid-

den Markov Model (HHMM). HHMM was devised to

cope complex activities that can be split into smaller

units (actions) with a hierarchical structure. It extends

the traditional HMM in a hierarchic manner to include

a hierarchy of hidden states. Each state SHMM is gen-

eralized recursively as another sub-HMM with special

terminal states. Thus, HHMM contains 3 types of states

(see Fig. 11): root, internal and production states. The

root state is the starting node at the top of the hier-

Figure 12 HHMM representation as proposed in [113]

archy. The production state is the leaf node which emits

the observable output and the internal state is the com-

posite node which is composed of several internal sub-

states or production sub-states and does not emit ob-

servable output directly.

Van Kasteren et al. [113] investigated the applic-

ation of HHMM in activity recognition following the

model shown in Fig. 12. A set of sensors were used to

collect the data from three houses: CSSs, pressure mats,

PIRs, and toilet float sensors. It was found that when

the actions are allocated separately for each HHMM

outperform the other models like HMM and HSMM us-

ing the F-measure. For the first house HHMM, HMM

and HSMM achieved 79%, 72% for HMM and HSMM.

About 56% for HHMM, 51% for HMM and 52% for the

second house, while 52% for HHMM and 45% for HMM

and HSMM for the third one were obtained.

3.7 Conditional Random Field (CRF)

CRF is a discriminative graphical model in contrast

to HMM and its variants which are generative. CRF
is the most popular discriminative model and can be

applied to find a hidden state transition from obser-

vation sequences. However, instead of finding a joint

probability distribution p(x; y) as HMM does, CRF at-

tempts to find only the conditional probability p(x|y).

Moreover, it allows arbitrary, non-independent relation-

ships among the observations. Hence, it is more flexible.

Another significant difference is the relaxation of the

independence assumptions, in which the hidden state

probabilities may depend on the past and even future

observations [105]. A CRF is modelled as an undirec-

ted acyclic graph, flexible for capturing any relation

between an observation variable, and a hidden state

see Fig. 13.

Studies presented in [59,112] have demonstrated that

CRF commonly gives a better accuracy than other prob-

abilistic models in the context of activity recognition. In

the first study [59] CRF and HMM were compared us-

ing different activity data representations to show that

CRF outperforms HMM. In the second study [111] CRF
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Figure 13 Structure of CRF.

was compared against NB, HMM, and HSMM and CRF

scored again better.

3.8 Emerging Patterns (EPs)

Emerging Patterns (EPs) [45] were used to model and

discriminate the activities. Thus, an EP of an activity

consists of the most discriminating set of features. For

instance, {location = kitchen, object = stove} is an EP

for the activity ”cooking”, while {object = cleanser, ob-

ject = plate, location = kitchen} is an EP for ”cleaning

the kitchen”. The set of EPs of an activity constitute

the corresponding activity model. Often the features in

an EP can be found simply by frequency counting.

Gu et al. [45] showed how activity models can be

built from sensor readings using EPs. To evaluate this

technique, a real-world data set was collected from wear-

able sensors (RFID wristband readers and iMote2 sets)

by 4 people. In all 26 common ADLs such as coffee mak-

ing, tea making, oatmeal making, shaving, toileting, etc.

have been considered. EPs were then generated for each

activity. Using time-slice accuracy to recognize activit-

ies through intervals of time, an average accuracy of

85.84% was achieved for different activities.

3.9 Ontological modeling

Used to model, encode, and represent knowledge of a

given domain, an ontology is a conceptual model con-

sisting of a set of representational concepts. The con-

cepts are typically classes, attributes, and relationships

[43]. Activity ontologies describe the hierarchy of activ-

ities, activity types and their relationships. Relation-

ships can be of different types: ”is-a” or ”part-of”. For

instance, ”MakeTea” is a subclass of MakeHotDrink.

Properties are used to establish the interrelations between

concepts. For instance, ”hasDrinkType” is a property of

the ”MakeHotDrink” activity that links the DrinkType

concept (e.g., tea, coffee, chocolate) to the “MakeHot-

Drink” concept. The ontological approach to activity

modelling defines the formal semantics of human activ-

ities using some ontological language like OWL and

RDF.

Ontological reasoning is used to recognize activit-

ies by identifying contextual information such as sensor

reading, location of persons and objects, properties of

objects, etc. Chen et al. [22] described an algorithm for

recognizing activities using ontologies which can be il-

lustrated by the following scenario. For example, the

activation of the contact sensors on a “cup” and “milk

bottle” can link the “cup” and “milk” to the unknown

activity through a concept “hasContainer” and “hasAd-

dings” properties. By aggregating sensor observations

along a time line, a specific situation that corresponds

to an unknown activity could be reached. For instance

the situation can be described by “hasTime(10am)”,

“hasLocation(kitchen)”, “hasContainer(cup)” and “has-

Addings (milk)”. By matching this situation against

activity ontologies, the activity class that mostly over-

lap with the situation (e.g.,“MakeDrink”) is considered

to be the actual activity.

Riboni et al. [93] followed a similar idea using activ-

ity ontologies to recognize the daily activities. In par-

ticular they evaluated the effectiveness of the ontolo-

gical approach based on dataset described in [115]. This

study showed that ontological techniques underperform

the data-driven techniques like HMM in absence of tem-

poral reasoning. But when ontological techniques were

extended with temporal information, their effectiveness

(80.3% accuracy) becomes comparable to HMM (79.4%

accuracy).

3.10 Context-Aware Reasoning

Context awareness refers to the exploitation of vari-

ous kinds of information to recognise the environmental
conditions within the living space to help make the

smart home system intelligently interactive and self-

adaptive. Information can be temporal, spatial, and re-

lated to the resident and objects in the environment [1].

Context awareness enhances the usability of a system

by enabling it to react suitably and offers optimised

interfaces for different contexts. There exist a number

of approaches for modelling and reasoning about the

context such as Unified Modelling Language, Object-

oriented Models, key-Value models, and domain/web

ontologies. The latter enable the system to define con-

texts semantically and share common knowledge of the

structure of context among users, devices, and services

[44].

In [50], a reference model for healthcare context-

aware SHs was introduced. The context was generated

by a set of sensors and actuators that were managed

through OSGi (Open Service Gateway initiative) ser-

vice bundles. System objects represented the sensors

and actuators in the environment and were modeled
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along with contexts using ontologies. Authors presen-

ted two mere applications of “Smart Floor” and “Smart

Plug” to prove the effectiveness of the system.

Wongpatikaseree et al. [121] introduced a context-

aware activity recognition system. An ontology was ex-

ploited to model the context which is obtained through

a set of sensors. To handle various activities of daily

living, especially in ambiguous situations, the context

is augmented with information obtained through the

ontology which consists of various classes. To illustrate

how the system works, some simple activities such as

watching TV, relaxing and sleeping and were simulated.

Fenza et al. [38] proposed a hybrid context-aware

healthcare system consisting of a web service ontology

(OWL-S) and a fuzzy rule base. The residents’ health

context is obtained by means of sensed health data such

as heartbeat, blood pressure, blood sugar, blood oxy-

gen, height, weight, age, and temperature. The data is

used to run a fuzzy rule-based clustering. Given an in-

put, the fired rule indicates the cluster in its consequent

part. The premise of the rule, corresponding to the con-

text, is matched against the description of the service

required in the current context of the person. In order

to evaluate approach, a simple rule was studied using

recall and precision to indicate to which extent the con-

text is well identified through the matched services. The

results obtained were moderate.

Authors in [92] introduced a hybrid of ontology and

statistic context-aware activity recognition system ad-

opting the Android platform. Activities such as walk-

ing, brushing teeth, writing on a blackboard and hiking

were considered. The data was collected via a phone

GPS and Accelerometer, and an accelerometer wrist-

band. The activity recognizer relied on an ontological

reasoning which is combined with statistical classifica-

tion to recognize activities that are not identifiable by

the classifier only. The experiments showed an activity

recognition accuracy of the 93.44%.

4 Human Interfaces

Interfaces of an SH must be designed in a way that

empowers the users (stakeholders) to interact effectively

and comfortably with the SH system. In the case of SHs

for healthcare, we can distinguish four groups of users:

– Residents (e.g., dementia patients, disabled people,

elderly people, etc.)

– Informal caregivers (e.g., family members of older

adults)

– Social caregivers (e.g., care homes, professional care-

givers)

– Formal caregivers (e.g., doctors, nurses)

User need analysis

Problem areas to be 
tackled

User interface aspects
Engineering support 

features

Care-giver’s emulation

Prompts and reminders Appropriate monitoringFamiliarity

Prototype design

Caregiver evaluation

Integrated prototype

Evaluation with people 
with dementia

Integration into the 
smart home

Figure 14 A Design methodology for developing SH tech-
nologies for people with dementia [82]

Therefore the design requirements of the interface

must be specific for these user groups. For instance,

a formal caregiver is interested in receiving updates

about the progress of the resident’s disorder by cap-

turing physiological signs such as blood pressure, blood

sugar and body temperature. However, such informa-

tion is not necessarily relevant to the informal care-

givers. Moreover, choosing an adequate interaction me-

dium for a stakeholder needs particular considerations.

As an instance, people with dementia might not be able

to learn how to operate a new equipment; thus SHs for

people with dementia should be able to operate regard-

less of the residents’ capacity.

A detailed design methodology is required to ac-

knowledge unique requirements and specifications of

SHs for healthcare. The design methodology of SH in-

terfaces follows the standards of general user interface

design that consists of: requirement analysis, design,

and evaluation. Sommerville [103] defined a functional

user interface in a way that matches the skills, exper-

ience, and expectations of the anticipated users. Four

main human factors should be taken account of during

the process of designing interfaces:

– Users have limited short-term memory

– Users make mistakes

– Users are different

– Users have different interaction preferences
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Table 2 Excerpt of SHs research studies

Reference Dataset
Type

Algorithm Target Evaluation
metrics

Results

[78] private ANN (MLP) ADL(General) Not mentioned -
[26] private ANN (MLP) ADL(General) Accuracy Activity recognition: 64%
[95] private ANN (EcoS) ADL(Healthcare) Accuracy Anomaly detection: 74.57%,

Activity recognition: 89.14%
[68] private ANN (OPNN) ADL(Healthcare) Accuracy Activity recognition: 92%
[70] private ANN (ESN) ADL(Healthcare) Accuracy Abnormally detection: 93%-

99%
[56] private DT (C4.5) ADL(General) Accuracy Activity recognition: 90 %-

100%
[90] private DT (C4.5) ADL(General) Accuracy Activity recognition: 57 %-

97.29%
[72] private DT (ID3) Resident’s Loca-

tion
Mean error of loc-
ation prediction
in Meters

The Mean error: 4.9 meters
on the first dataset and 2.5
meters on the second dataset.

[46] private ISL (Fuzzy) ADL(General) Number of the
generated rules
by the algorithm

280 rules in 72 hours.

[47] private Fuzzy type-2 ADL(General) RMSE 0.229
[10] private GFMMNN

(Fuzzy+ANN)
ADL(General) Current error

(Missed / No
Presentations)

Adapted: 0.01 for 220 online
presentations

[5] private Evolving
fuzzy classifi-
ers

ADL(General) F-measure 60% - 70%

[12] private GT2FC(Fuzzy) ADL(General) Accuracy For 70% labelled data accur-
acy is 81.65%

[23] public HMM ADL(Healthcare) Accuracy 90.75% behaviour-level re-
cognition accuracy, 98.45%
observation-level recognition
accuracy

[112] private HSMM ADL(General) F-measure 65.5%
[45] private EPs ADL(General) Time-slice accur-

acy
85.84%

[93] public Ontological
approach

ADL(General) Accuracy 80.3%

In many cases, the resident of an SH for health-

care has special design requirements. For example, the

limitation of short-term memory is more severe for eld-

erly people and on some occasions, it is difficult for

them to learn new interaction methods. Consequently,

an SH’s interface design process needs to reflect on ad-

ditional human factors and use natural user interfaces

(NUI) such as gesture recognition and speech recogni-

tion. Multi-modal NUI is a family of interfaces which

are invisible to the users and allow them to communic-

ate with the system in a way that they communicate

with the world.

Orpwood et al. [82] presented an interface design

methodology for people with dementia (Fig. 14). The

study argued that the interface design is successful only

if it is human-centred and led by users themselves. Con-

sidering demented people’s memory condition, only care-

givers were involved during the evaluation step. Sev-

eral scenarios were studied to demonstrate the effect-

iveness of the methodology proposed. Many considera-

tions have resulted from this study, including caregiver

emulation, familiarity of the user with the new inter-

face/device, prompts and reminders, and patient beha-

viour monitoring.

In another study, Koskela et al. [62] carried out a set

of usability experiments to evaluate different interfaces

for remote control of SHs. Three types of user interfaces

were evaluated: a PC-based interface, a media-terminal

interface (attached to the TV) and a mobile phone in-

terface. The results stated that a PC-based interface

was more appropriate for a central unit to control func-

tions that can be planned and determined in advance

(i.e., turn on the kitchen light every day at 8am). The

study showed that the mobile phone interfaces are more

suitable for instant control (i.e., switch off the gas hob

now). In six months of trial with two people, a young

couple, the mobile phone was the primary and most

frequently-used interface.

The Sweet-Home project [86] suggested a voice in-

terface for elderly residents. The system was designed
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for control of windows blinds, lights, kitchen appliances,

etc. The evaluation involved 18 participants consist-

ing of eight old persons, seven informal caregivers (re-

latives) and three formal caregivers (professional care-

givers). To assess the effectiveness of the system, a series

of qualitative evaluation methods such as wizard of

OZ and interviews were used. Results revealed that old

residents prefer voice interfaces over other interaction

methods such as typing or touch interfaces.

Rocker et al. [97] employed three qualitative research

methods to collect the interface requirements based on:

scenarios, focus group and open discussion. The study

resulted in a set of prioritised design guidelines:

– The residents must always remain in charge of the

system

– The system must be secure, safe and protect user’s

privacy

– The system must provide added value over existing

ones

– The system should never unnecessarily replace dir-

ect interaction between people

– The home comfort should always be a priority and

not be subversive to the system

In [73] a web-based interface for SHs, called Casal-

endar, was presented. Casalendar which visualizes SH

data in the form of a calendar [time, event/task], was

evaluated by 6 participants. Results illustrated that the

participants were thoroughly in favour the calendar-like

(temporal) interface. In [53] an interesting approach

was presented. A “smart space” was created where ob-

jects, e.g., glass, table, digital photo frame, or MP3

player can be interactive. For instance an interactive

table could perceive users’ actions on a glass and trig-

gers events like changing the music. The “smart space”

was evaluated by some participants who provided pos-

itive feedbacks.

More interestingly, in [96] the authors reported on

a prototype for elderly monitoring SH. In particular

design aspects and core functionalities of the system

architecture were described. The prototype is based

service-oriented architecture (SOA) that addresses data

distribution and scalability of SHs in healthcare. The

prototype is equipped with web-interface that was eval-

uated by a certain number of people who rated it 7.8/10.

The interface displays the sensor readings such as room

temperature, fire sensors status and blood pressure.

Also, it provided the users ability of configuring the

SH based on the residents’ preferences.

The study [77] introduced a set of requirements for

SH user interfaces and relevant technologies. In par-

ticular it is stated that a user interface for domestic

home applications should be simple, social, ethical and

beautiful. The simplicity in design was studied in re-

lation to people with dementia on how to make such

people not forget which knob controls which stove. For

the social requirement, the authors measured the en-

joyment made by using services through a set of qual-

itative experiments. The ethical criterion in design was

analysed in the tele-care context. Privacy was discussed

from the perspective of agreement of the people through

formal consent and responsibility of tele-care services.

The “beauty” criterion was studied on two pieces of

necklaces with monitoring sensors that could transmit

signals to each other remotely. Unfortunately in this

study no evaluation was done.

5 Discussion

This overview covers various technologies used to build

SH systems. It summarizes sensing technologies, com-

munication platforms, data processing techniques and

user interfaces with illustrative research studies. The

aim is to provide sufficient information to draw a broad

picture of the state of the art technologies without in-

tending to be exhaustive. In the following, we will dis-

cuss the challenges of design and implementation of SHs

in general and in healthcare in particular. It addresses

the challenges of data processing and particularly activ-

ity recognition that plays a significant role in the func-

tionality of SHs.

5.1 Security, Privacy and Reliability

Many qualitative studies [27,130] pointed out that pri-

vacy and the security are key concerns in SH technology.

For instance, to investigate the importance of privacy,

Demiris et al. [30] ran a qualitative study with 14 old

persons living in a retirement home confirming that the

major concern is the privacy, especially the use of video

cameras at the home. On the other hand, wireless tech-

nologies raise more security issues compared to wired

ones. Data collected from SHs is highly sensitive and

therefore privacy measures have to be taken to meet

the legal and ethical standards.

In [20], 6 major issues were identified: sensor com-

promise, eavesdropping, privacy of data, denial of ser-

vice attacks, and malicious use of the sensor network

and the limitations and advantages of the existed solu-

tions for these issues were addressed. Kotz et al. [63]

compared different existing privacy frameworks and pro-

posed a set of privacy policies for mobile healthcare ap-

plications and SH systems. Some of these policies are:

– People should be informed on the matters related

to collection and storage of data.
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– People should always be enabled to access their own

data.

– Easy-to-use interfaces should be provided.

– The collection and storage of data should be restric-

ted only for the purpose of monitoring.

– The quality of data in terms of completeness, au-

thenticity and accuracy should be ensured.

– People’s identity and personal data should be pro-

tected against unauthorised access.

Preserving reliability and safety is an important mat-

ter in SHs. The well-being of the occupant can be af-

fected by the SH system itself if safety requirements

are not considered during the design and development

of the SH system. For instance, if a (vulnerable) occu-

pant increases the heater temperature inadvertently to

an unacceptable level, the consequence for him can be

severe. To prevent critical problems, SH systems should

be equipped with safety measures, especially in the case

of vulnerable people [32]. Moreover, to develop stable

SH systems, designers should use reliable components

(software, hardware, communication protocols, etc.).

A challenging aspect of SH security is that conven-

tional security methods and components i.e., authen-

tication are often complicated for stakeholders in a dia-

logue of care such as patients, formal, informal and so-

cial caregivers. For instance, it is rather difficult for an

elderly person with mild cognitive disorder to remem-

ber a complex passwords. On the other hand, most of

SH data is quite sensitive and private, and requires an

adequate security arrangement. Many research studies

attempted to address these issues by employing novel

security measures such as biometric and graphical pass-

words.

In [41], the benefits and drawbacks of biometric tech-

nologies for authentication in healthcare environment

have been presented. The outcomes suggested that the

main advantages of biometric technologies are the re-

liability of user authentication mechanisms, restriction

in delegation of access rights as well as discouraging

fraudulent access or impersonation of users. Moreover,

the biometric authentication technologies facilitate the

remote access to electronic health records for both pa-

tients and other stakeholders, reduces maintenance cost

and provides a secure method for encryption of personal

data. They also presented some limitations of biometric

technologies such as the ability of a user can be influ-

enced by age, skin colour, damage or lack of a biomet-

ric feature. Furthermore, biometric technologies could

not be suitable for particular health settings. For ex-

ample, fingerprint technology for laboratories and hy-

gienic areas where user would be required to wear hy-

gienic gloves.

Another feasible solution for authentication chal-

lenges in healthcare SH is to use video-based systems.

Authors in [17] presented a prototype “mean of video

event recognition protocol” for authentication. Evalu-

ation of the prototype with an initial test of usability

illustrated that that the authentication mechanism was

well accepted by users and achieved a considerably low

error rates.

In [54], a security architecture for healthcare sys-

tems was proposed. The key concern that authors at-

tempted to address was the necessity of having an ar-

chitecture that is secure while flexible. The approach

security relies on a modern cryptographic scheme. The

schema that is not entirely based on smart cards and

allows the patient to authorize other stakeholders re-

motely (e.g., by phone) to access their healthcare data

securely.

Authors in [15] proposed an entirely distributed peer

to peer system that allows secure sharing of both med-

ical and none-medical information for healthcare man-

agement. In the system, each node can access swiftly,

easily and in a secure way to a substantial amount of

data. Hence, the system advances the speed of clinical

evaluation performed by the stakeholders in a dialogue

of care. A group of physicians were asked to use the

system with simulated data. For evaluating the parti-

cipants’ experience, they asked them questions regard-

ing how the system affects and improve the existing

systems. The responses to the questions were positive

in all cases.

Graphical passwords are functioning by clicking on

images rather than typing alphanumeric strings. These

authentication methods have a great possibility of being

used in healthcare systems since they are safer and sim-

pler compared with conventional passwords. To make

them even more secure, authors in [16] proposed a two-

factor graphical password scheme and analysed the se-

curity and usability for an authentication mechanism

based on it. The research illustrated that the time re-

quired to extract the user password in the method in-

creases exponentially.

5.2 Activity recognition

While there has been an extensive work on activity re-

cognition in the context of smart homes, not all com-

putational models have been uniformly applied. Clearly

the data-driven algorithms have been predominantly

applied in various studies [25, 101, 112] to model hu-

man activities. Moreover, even among the data-driven

models, the probabilistic ones such as HMMs and alike

have been the mostly used. Few authors have applied
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non-probabilistic models such as neural networks, de-

cision trees, emerging patterns, etc.

Knowledge-driven techniques seem not to be very

popular. Only very few authors have tried to apply lo-

gic and ontologies [93] to model activities. Some work

mixed probabilistic models with knolwedge-based tech-

niques as in [51,52] where the evidential theory and on-

tologies are combined to handle uncertainty attached

to activity recognition.

Reflecting on the approaches studied in the section

3 it can be assumed that selecting the best approach for

constructing the activity model heavily depends on the

problem that the authors focused on, while modelling

the activities. The construction of the activity model is

affected by numerous factors and can face many chal-

lenges. The followings are the challenges and open ques-

tions in the area of activity recognition.

– Recognizing interweaved and concurrent activities:

It remains a challenging and active area of research.

As an example, a study [45] adopted an EP-based

approach to recognize these types of activities in

addition to sequential ones. Some authors advised

that CRF is a more flexible alternative to HMM

when modelling these types of activities [61].

– Imbalanced data: The amount of data recorded for

each activity in the dataset in the field of activity re-

cognition is often imbalanced like the one described

in [115]. There are many events belonging to the

activity going to the bed rather than to the other

activities. The study in [115] stated that HMM is

more appropriate for imbalanced classes than CRF.

– Multi-resident activities: Most of the work on smart

homes has been concerned with single-occupancy.

However, in general a home is occupied by more

than one person. In the simplest situation, a person

lives alone but could have a pet and receive visitors

such as family members, caregivers, friends, neigh-

bors, etc. In presence of more than one occupant,

many of the daily activities can be performed in par-

allel or together in a group. The modeling and recog-

nition of such activities require a different approach

from the ones used for single-occupancy activities.

A few number of studies have recently focused on

multi-occupancy [45,87], but the area is still to grow

as it comes with is own scientific challenges and ap-

plication potential.

– Online activity learning: In comparison to offline

activity recognition, online activity recognition has

not been much investigated by the researchers. In

fact, most of the methods used by the researchers

in the field are based on offline supervised learn-

ing. An interesting comparison study of online and

offline inference using fuzzy rule based systems is

presented in [12] showing that online learning per-

forms equally well as offline learning. In [115] also a

comparison between offline and online settings us-

ing HMM and CRF has been presented. However

the online setting considered is not the usual set-

ting used in online learning where only part of the

data, ideally only the new sample(s) is used. The

authors pointed out that the offline inference per-

formed better for both models. Because of the rel-

evance of online learning in this context of activity

monitoring, it is important that more effort should

be devoted to it.

– Applicability and adaptability of the activity model:

Existing activity recognition systems were trained

either on private datasets or publicly available data-

sets. The fundamental problem with these systems

is that they require real-world data. Often such sys-

tems are trained on particular data stemming from

a particular setting and therefore the activity re-

cognition models are tightly tailored to the char-

acteristics of the living space from which data has

been collected, to a particular user’s habits, and to

the types of activities monitored at home. As a con-

sequence, an activity recognition system trained in

an environment would not be applicable to other en-

vironments. To overcome this problem, the authors

in [101] suggested the use of an alternative source of

activity data, such as web data, to train the activity

model. However this solution does not reflect on the

real-world situations.

– Scalability of the activity model: Scalability of the

activity model is an important issue and can be dis-

cussed in terms of:

a- New activities: Considering scalability of activ-

ity models presented in section 3, some of them

present the advantage of having a separate model

for each activity. As in [45] the authors mined

a set of EPs for each activity. In the same con-

text, the authors of the study [51,52] constructed

an EON for each activity. Hence, adding a new

activity in the environment only implies con-

structing the corresponding model for the latter

(mining the set of EPs or constructing an EON

respectively). Also, it would be easier to achieve

high recognition rate with separate models than

with a global model for all activities.

b- New residents: all the methods discussed here

have focused on single-occupancy. Dealing with

scalability in SHs should consider not only new

activities, but also new occupants. Obviously,

the scalability of the models with respect to the

number of residents is the most important issue.

Evaluating the activity model with more than
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one resident is an important aspect for real world

situations.

6 Conclusion

While this survey paper does not claim to be exhaust-

ive, it gives a fairly complete overview of the techniques

and technologies involved in smart homes. The survey

follows a logical structure inspired by the processing

layers a smart home system consists of: sensing, pro-

cessing, interacting. To the best of our knowledge there

is no survey that outlines all these layers at the same

time. While the survey tries to focus on the healthcare

application of SHs, it does cover the methods and tech-

nologies in general terms regardless of the application.

Clearly SHs as a technology is not only a research

topic, but it is being established as a product in the

market. Because it is versatile, it can be applied for

various purposes like tele-care, tele-health, comfort, en-

ergy saving, etc. These applications share basically the

same design principles, but differ in terms of practical

requirements. Each targeted application comes with its

own and typical requirements that SHs have to con-

sider. When developing SHs for a particular applica-

tion, there are a lot of choices and therefore one has to

take the specificity of that application into account. In

other words, developing a SH system for healthcare is

not the same as for comfort.

The literature overview presented in this paper sheds

light on the main research areas including the hard-

ware, the data analytics and artificial intelligence, and

human-computer interfaces. It also discusses the poten-

tial and limitation of the approaches presented as well
as various aspects like security, privacy, reliability and

activity recognition. The survey highlighted also some

of the open issues that still need further investigations.
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