Skip to main content
Log in

DWDH: directed and weighted dynamics of hierarchical wireless sensor networks

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

Hierarchical topology control is an efficient technique and commonly used in wireless sensor networks (WSNs). Complex network theory is used for depicting and investigating structures and functions of natural and artificial networks/systems. In this paper, we explore directed and weighted dynamics of hierarchical WSNs, based on complex network theory. Early work did not considerate edge directions and attribute of heterogeneous node. We present two dynamic evolution models, which consider link/communication directions in real WSNs, and two kinds of nodes: router node and normal node are introduced into two evolution models with directed weighted edges. Then we conduct theoretical analysis by using statistical physics approach. With numerical simulations, the results show that two models fit well with expect goals. The two models could be extended in some practical projects and have better effects than common un-weighted network model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atmojo UD, Salcic Z, Wang KI, Park H (2015) System-level approach to the design of ambient intelligence systems based on wireless sensor and actuator networks. J Ambient Intel Humaniz Comput 6(2, SI):153–169

  • Barabási AL (2009) Scale-free networks: a decade and beyond. Science 325(5939):412–413

    Article  MathSciNet  MATH  Google Scholar 

  • Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 297(5439):509–512

    MathSciNet  MATH  Google Scholar 

  • Barrat A, Barthelemy M, Vespignani A (2004) Modeling the evolution of weighted networks. Phys Rev E 70(6):1–12

    Article  MATH  Google Scholar 

  • Batrat A, Pastor-Satorras R, Barthelemy M, Vespignani A (2004) The architecture of complex weighted networks. In: Proceedings of the national academy of sciences of the United States of America, pp 3747–3752

  • Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D-U (2006) Complex networks: structure and dynamics. Phys Rep 424(4–5):175–308

    Article  MathSciNet  Google Scholar 

  • Chen LJ, Chen DX, Li X, Cao JN (2007) Evolution of wireless sensor network. In: IEEE wireless communications and networking conference (WCNC’07), pp 3003–3007

  • Hassan MK, Hassan MZ, Pavel NI (2010) Scale-free network topology and multifractality in a weighted planar stochastic lattice. New J Phys 12:1–13

    Article  Google Scholar 

  • Hébert-Dufresne L, Allard A, Marceau V, Noel P-A, Dubé LJ (2011) Structural preferential attachment: network organization beyond the link. Phys Rev Lett 107(15):1–5

    Article  Google Scholar 

  • Holme P, Edling CR, Liljeros F (2004) Structure and time evolution of an internet dating community. Soc Netw 26(2):155–174

    Article  Google Scholar 

  • Jeong H, Mason SP, Barabasi AL, OItvai ZN (2001) Lethality and centrality in protein networks. Nature 411(6833):41–42

  • Jiang N (2014) Wdem: weighted dynamics and evolution models for energy-constrained wireless sensor networks. Phys A Stat Mech Appl 404:323–331

    Article  MathSciNet  Google Scholar 

  • Jiang N, Chen H, Xiao X (2012) A local world evolving model for energy-constrained wireless sensor networks. Int J Distrib Sens Netw 1–9. ISSN 1550-1329. doi:10.1155/2012/542389

  • Jiang N, Li FY, Wan T, Liu LF (2014) Pdf: poisson dynamics in fitness evolution model for wireless sensor networks. J Ambient Intel Humaniz Comput 5(6):919–927

    Article  Google Scholar 

  • Jiang N, Xiao X, Liu L (2015) Localization scheme for wireless sensor networks based on “shortcut” constraint. Ad Hoc Sens Wirel Netw 26(1–4):1–19

    Google Scholar 

  • Li SD, Li LX, Yang YX (2011) A local-world heterogeneous model of wireless sensor networks with node and link diversity. Phys A 390(6):1182–1191

    Article  Google Scholar 

  • Li W, Cai X (2004) Large-scale topological and dynamical properties of the internet. Phys Rev E 695(4):1–6

    Google Scholar 

  • Li X, Chen GR (2003) A local-world evolving network model. Phys A 328(1–2):274–286

    Article  MathSciNet  MATH  Google Scholar 

  • Liu Y, Yuan J, Shan XM, Ren Y, Ma ZX (2008) Self-determined mechanisms in complex networks. Phys A 387:2145–2154

    Article  Google Scholar 

  • Maslov S, Sneppen K, Zaliznyak A (2004) Detection of topological patterns in complex networks: correlation profile of the internet. Phys A 333:529–540

    Article  Google Scholar 

  • Pastor-Satorras R, Vespignani A (2004) Evolution and structure of the internet: a statistical physics approach. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Pastor-Satorras R, Vazquez A, Vespignani A (2001) Dynamical and correlation properties of the internet. Phys Rev Lett 87(25):1–4

    Article  Google Scholar 

  • Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi A-L (2002) Hierarchical organization of modularity in metabolic networks. Science 297(5586):1551–1555

    Article  Google Scholar 

  • Serrano MA, Boguna M, Diaz-Guilera A (2005) Competition and adaptation in an internet evolution model. Phys Rev Lett 94(3):1–4

    Article  Google Scholar 

  • Serrano MA, Boguna M, Diaz-Guilera A (2006) Modeling the internet. Eur Phys J B 50(1–2):249–254

    Article  Google Scholar 

  • Shakkottai S, Fomenkov M, Koga R, Krioukov D, Claffy KC (2008) Evolution of the internet as-level ecosystem. Eur Phys J B 74(2):271–278

    Article  MATH  Google Scholar 

  • Stefancic H, Zlatic V (2005) Winner takes it all: strongest node rule for evolution of scale-free networks. Phys Rev E 72(3):1–6

    Article  Google Scholar 

  • Vazquez A, Pastor-Satorras R, Vespignani A (2002) Large-scale topological and dynamical properties of the internet. Phys Rev E 65(6):1–12

    Article  Google Scholar 

  • Wang XF, Chen GR (2003) Complex networks: small-world, scale-free and beyond. IEEE Circuits Syst Mag 3(1):6–20

    Article  Google Scholar 

  • Zeng H, Shi Y, Hou YT, Zhu RB, Lou W (2014) A novel mimo dof model for multi-hop networks. IEEE Netw 28(5):81–85

    Article  Google Scholar 

  • Zhu HL, Luo H, Peng HP, Li LX, Luo Q (2009) Complex networks-based energy-efficient evolution model for wireless sensor networks. Chaos Solitons Fractals 41(4):1828–1835

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China under Grant Nos. 41402290, 61462028 and 81460275; Major Project for Natural Science Foundation of Jiangxi Province of China under Grant No. 20152ACB21011; Key Technology Research; Development Program of Jiangxi Province of China under Grant No. 20151BBE50068; External Science and Technology Cooperation Project of Jiangxi Province of China under Grant No. 20151BDH80010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, N., Li, B., Chen, H. et al. DWDH: directed and weighted dynamics of hierarchical wireless sensor networks. J Ambient Intell Human Comput 7, 257–265 (2016). https://doi.org/10.1007/s12652-015-0326-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-015-0326-3

Keywords

Navigation