Skip to main content
Log in

Temporal-correlation-based compressive channel estimation for universal filtered multicarrier system over fast-fading channels

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

The universal filtered multicarrier technique is a competitive candidate multicarrier modulation scheme for 5G communication systems. Conventional channel-estimation algorithms suffer from significant performance losses due to the large spread in the delay of multipath channels in high-speed scenarios. To address this problem, we here propose a low-complexity, partial priori information-sparsity adaptive matching pursuit (PPI-SAMP) algorithm. Unlike the conventional SAMP algorithm, the PPI-SAMP algorithm improves performance over fast-fading channels by adequately exploiting the sparse characteristics and temporal correlation of wireless channels. First, the PPI-SAMP algorithm averages the channel impulse responses (CIRs) of consecutive symbols over the coherence time for achieving the accuracy required for coarse channel estimation. Second, the improved SAMP algorithm acquires the accurate CIRs with low complexity based on the coarse CIR. Moreover, the MSE performance and recovery probability with varying sizes of IBI-free region indicate that the proposed PPI-SAMP algorithm offers a longer CIR for multipath interference and is more robust against larger multipath-channel delay than the conventional SAMP and CoSaMP algorithms. The proposed algorithm also estimates channels more accurately than conventional SAMP and CoSaMP algorithms despite having a complexity reduced by approximately 52% compared to conventional SAMP algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andrews JG, Buzzi S, Choi W et al (2014) What will 5G be? IEEE J Sel Areas Commun 32(6):1065–1082. doi:10.1109/JSAC.2014.2328098

    Article  Google Scholar 

  • Bajwa WU, Haupt J, Sayeed AM, Nowak R (2010) Compressed channel sensing: a new approach to estimating sparse multipath channels. Proc IEEE 98(6):1058–1076. doi:10.1109/JPROC.2010.2042415

    Article  Google Scholar 

  • Berger CR, Wang Z, Huang J, Zhou S (2010) Application of compressive sensing to sparse channel estimation. IEEE Commun Mag 48(11):164–174. doi:10.1109/MCOM.2010.5621984

    Article  Google Scholar 

  • Boccardi F, Heath RW, Lozano A et al (2014) Five disruptive technology directions for 5G. IEEE Commun Mag 52(2):74–80. doi:10.1109/MCOM.2014.6736746

    Article  Google Scholar 

  • Borade S, Zheng L (2012) Writing on fading paper, dirty tape with little ink: wideband limits for causal transmitter CSI. IEEE Trans Inf Theory 58(8):5388–5397. doi:10.1109/TIT.2012.2201330

    Article  MathSciNet  MATH  Google Scholar 

  • Candès EJ, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52(2):489–509. doi:10.1109/TIT.2005.862083

    Article  MathSciNet  MATH  Google Scholar 

  • Dai L, Wang Z, Yang Z (2012) Next-generation digital television terrestrial broadcasting systems: key technologies and research trends. IEEE Commun Mag 50(6):150–158. doi:10.1109/MCOM.2012.6211500

    Article  Google Scholar 

  • Ding W, Yang F, Pan C, Dai L, Song J (2014) Compressive sensing based channel estimation for OFDM systems under long delay channels. IEEE Trans Broadcast 60(2):313–321. doi:10.1109/TBC.2014.2315913

    Article  Google Scholar 

  • Ding W, Yang F, Dai W, Song J (2015a) Time–frequency joint sparse channel estimation for MIMO-OFDM systems. IEEE communications letters 19(1):58–61. doi:10.1109/LCOMM.2014.2372006

    Article  Google Scholar 

  • Ding W, Yang F, Liu S, Song J (2015b) Approach to suppress out-of-band emission for dual pseudo noise padded time-domain synchronous-orthogonal frequency division multiplexing systems. IET Commun 9(13):1606–1614. doi:10.1049/iet-com.2014.1251

    Article  Google Scholar 

  • Ding W, Yang F, Liu S, Wang X, Song J (2016a) Nonorthogonal time–frequency training-sequence-based CSI acquisition for MIMO systems. IEEE Trans Veh Technol 65(7):5714–5719. doi:10.1109/TVT.2015.2463716

    Article  Google Scholar 

  • Ding W, Yang F, Liu S, Song J (2016b) Structured compressive sensing-based non-orthogonal time-domain training channel state information acquisition for multiple input multiple output systems. IET Commun 10(6):685–690. doi:10.1049/iet-com.2015.0697

    Article  Google Scholar 

  • Do TT, Gan L, Nguyen N, Tran TD (2008) Sparsity adaptive matching pursuit algorithm for practical compressed sensing. In: 42nd Asilomar conference on signals, systems and computers, IEEE, pp 581–587. doi:10.1109/ACSSC.2008.5074472

  • Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306. doi:10.1109/TIT.2006.871582

    Article  MathSciNet  MATH  Google Scholar 

  • Gao Z, Dai L, Shen W, Wang Z (2015) Temporal correlation based sparse channel estimation for TDS-OFDM in high-speed scenarios. In: Military communications conference, MILCOM 2015–2015 IEEE, pp 798–803. doi:10.1109/MILCOM.2015.7357542

  • Gui G, Peng W, Adachi F (2014) High-resolution compressive channel estimation for broadband wireless communication systems. Int J Commun Syst 27(10):2396–2407. doi:10.1002/dac.2483

    Article  Google Scholar 

  • Lee D (2016) MIMO OFDM channel estimation via block stagewise orthogonal matching pursuit. IEEE Commun Lett 20(10):2115–2118. doi:10.1109/LCOMM.2016.2594059

    Article  Google Scholar 

  • Ma X, Yang F, Ding W, Song J (2016) Novel approach to design time-domain training sequence for accurate sparse channel estimation. IEEE Trans Broadcast 62(3):512–520. doi:10.1109/TBC.2016.2550760

    Article  Google Scholar 

  • Ma X, Yang F, Liu S, Ding W, Song J (2017) Structured compressive sensing-based channel estimation for time frequency training OFDM systems over doubly selective channel. IEEE Wirel Commun Lett 6(2):266–269. doi:10.1109/LWC.2017.2669974

    Article  Google Scholar 

  • Mukherjee M, Shu L, Kumar V, Kumar P, Matam R (2015) Reduced out-of-band radiation-based filter optimization for UFMC systems in 5G. In: Wireless communications and mobile computing conference (IWCMC), 2015 international, IEEE, pp 1150–1155. doi:10.1109/IWCMC.2015.7289245

  • Nadal J, Nour CA, Baghdadi A (2016) Low-complexity pipelined architecture for FBMC/OQAM transmitter. IEEE Trans Circuits Syst Express Briefs 63(1):19–23. doi:10.1109/TCSII.2015.2468926

    Article  Google Scholar 

  • Qin Q, Gui L, Gong B, Ren X, Chen W (2016) Structured distributed compressive channel estimation over doubly selective channels. IEEE Trans Broadcast 62(3):521–531. doi:10.1109/TBC.2016.2550761

    Article  Google Scholar 

  • Schaich F, Wild T, Chen Y (2014) Waveform contenders for 5G-suitability for short packet and low latency transmissions. In: Vehicular technology conference (VTC Spring), 2014 IEEE 79th, pp 1–5. doi:10.1109/VTCSpring.2014.7023145

  • Schellmann M, Zhao Z, Lin H (2014) FBMC-based air interface for 5G mobile: challenges and proposed solutions. In: Cognitive radio oriented wireless networks and communications (CROWNCOM), 2014 9th International Conference, IEEE, pp 102–107. doi:10.4108/icst.crowncom.2014.255708

  • Tropp JA, Gilbert AC (2007) Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory 53(12):4655–4666. doi:10.1109/TIT.2007.909108

    Article  MathSciNet  MATH  Google Scholar 

  • Tropp J, Needell D, Vershynin R (2008) Iterative signal recovery from incomplete and inaccurate measurements. In: Proc. information theory and applications workshop. doi:10.1016/j.acha.2008.07.002

  • Wan F, Zhu WP, Swamy MNS (2010) Semi-blind most significant tap detection for sparse channel estimation of OFDM systems. IEEE Trans Circuits Syst Regul Pap 57(3):703–713. doi:10.1109/TCSI.2009.2023765

    Article  MathSciNet  Google Scholar 

  • Wang R, Cai J, Yu X (2017) Compressive channel estimation for a UFMC system in high-speed scenarios. IET Commun. doi:10.1049/iet-com.2017.0308

    Google Scholar 

  • Yu F, Li D, Guo Q, Wang Z, Xiang W (2015) Block-FFT based OMP for compressed channel estimation in underwater acoustic communications. IEEE Commun Lett 19(11):1937–1940. doi:10.1109/LCOMM.2015.2427806

    Article  Google Scholar 

  • Zhang L, Ijaz A, Xiao P, Quddus A, Tafazolli R (2016) Single-rate and multi-rate multi-service systems for next generation and beyond communications. In: Personal, indoor, and mobile radio communications (PIMRC), 2016 IEEE 27th annual international symposium, pp 1–6. doi:10.1109/PIMRC.2016.7794635

Download references

Acknowledgements

This research was supported in part by the National Science and Technology Specific Program of China (2016ZX03002019-007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Cai, J., Yu, X. et al. Temporal-correlation-based compressive channel estimation for universal filtered multicarrier system over fast-fading channels. J Ambient Intell Human Comput 10, 1681–1692 (2019). https://doi.org/10.1007/s12652-017-0593-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-017-0593-2

Keywords

Navigation