Skip to main content

Advertisement

Log in

Base belief function: an efficient method of conflict management

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

Dempster–Shafer evidence theory is widely used in many applications such as decision making and pattern recognition. However, Dempster’s combination rule often produces results that do not reflect the actual distribution of belief when collected evidence highly conflicts each other. In this paper, a base belief function is proposed to modify the classical basic probability assignment before combination in closed-world. Base belief function focuses on making combination result intuitive especially when evidences highly conflict each other. Compared to other methods, the combination result produced by proposed method is logical and consistent with real world with less computational complexity and better performance. The advantage of base belief function is that it can avoid high conflicts between evidences and is especially suitable for the situation where the evidences appear in sequence. Several numerical examples as well as experiments using real data sets from the UCI machine learning repository for classification are employed to verify the rationality of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bache K, Lichman M (2013) UCI machine learning repository

  • Bian T, Deng Y (2018) Identifying influential nodes in complex networks: a node information dimension approach. Chaos. https://doi.org/10.1063/1.5030894

  • Bian T, Zheng H, Yin L, Deng Y (2018) Failure mode and effects analysis based on D numbers and TOPSIS. Qual Reliab Eng Int 34:501–515

    Article  Google Scholar 

  • Bloch I, Hunter A, Appriou A, Ayoun A, Benferhat S, Besnard P, Cholvy L, Cooke R, Cuppens F, Dubois D (2001) Fusion: general concepts and characteristics. Int J Intell Syst 16(10):1107–1134

    Article  MATH  Google Scholar 

  • Borgonovo E (2008) Epistemic uncertainty in the ranking and categorization of probabilistic safety assessment model elements: Issues and findings. Risk Anal 28(4):983–1001

    Article  Google Scholar 

  • Chao F, Yang J-B, Yang S-L (2015) A group evidential reasoning approach based on expert reliability. Eur J Oper Res 246(3):886–893

    Article  MathSciNet  MATH  Google Scholar 

  • Chen J, Ye F, Jiang T, Tian Y (2017) Conflicting information fusion based on an improved DS combination method. Symmetry 9(11):278

    Article  Google Scholar 

  • Dempster AP (1967) Upper and lower probabilities induced by a multivalued mapping. Ann Math Stat 38(2):325–339

    Article  MathSciNet  MATH  Google Scholar 

  • Deng Y (2015) Generalized evidence theory. Appl Intell 43(3):530–543

    Article  Google Scholar 

  • Deng X, Deng Y (2018) D-AHP method with different credibility of information. Soft Comput. https://doi.org/10.1007/s00500-017-2993-9 (Published online)

  • Dubois D, Prade H (1988) Representation and combination of uncertainty with belief functions and possibility measures. Comput Intell 4(3):244–264

    Article  Google Scholar 

  • Dubois D, Prade H (1992) Combination of fuzzy information in the framework of possibility theory. Data Fusion Robot Mach Intell 12:481–505

    MathSciNet  Google Scholar 

  • Fabre S, Appriou A, Briottet X (2001) Sensor fusion integrating contextual information. Int J Uncertain Fuzziness Knowl Based Syst 9(03):369–409

    Article  MATH  Google Scholar 

  • Fabre S, Appriou A, Briottet X (2001) Presentation and description of two classification methods using data fusion based on sensor management. Inf Fusion 2(1):49–71

    Article  MATH  Google Scholar 

  • Fabre S, Briottet X, Appriou A (2002) Impact of contextual information integration on pixel fusion. IEEE Trans Geosci Rem Sens 40(9):1997–2010

    Article  Google Scholar 

  • Fabre S, Dherete P (2003) Data fusion applications: classification and mapping. In: Geoscience and remote sensing symposium, 2003. IGARSS’03. proceedings. 2003 IEEE international, IEEE, vol 2, pp 1053–1055

  • Fan G, Zhong D, Yan F, Yue P (2016) A hybrid fuzzy evaluation method for curtain grouting efficiency assessment based on an AHP method extended by D numbers. Expert Syst Appl 44:289–303

    Article  Google Scholar 

  • Fernandes SL, Bala JG (2017) A novel decision support for composite sketch matching using fusion of probabilistic neural network and dictionary matching. Curr Med Imaging Rev 13(2):176–184

    Article  Google Scholar 

  • Florea MC, Jousselme AL, Bossé E, Grenier D (2009) Robust combination rules for evidence theory. Inf Fusion 10(2):183–197

    Article  Google Scholar 

  • Gong Y, Xiaoyan S, Qian H, Yang N (2018) Research on fault diagnosis methods for the reactor coolant system of nuclear power plant based on DS evidence theory. Ann Nucl Energy 112:395–399

    Article  Google Scholar 

  • Gruyer D, Demmel S, Magnier V, Belaroussi R (2016) Multi-hypotheses tracking using the Dempster–Shafer theory, application to ambiguous road context. Inf Fusion 29:40–56

    Article  Google Scholar 

  • Haenni R (2002) Are alternatives to Dempster’s rule of combination real alternatives?: Comments on “about the belief function combination and the conflict management problem”–Lefevre, et al. Inf Fusion 3(3):237–239

    Article  Google Scholar 

  • Han Y, Deng Y (2018) An evidential fractal AHP target recognition method. Def Sci J 68(4):367–373

    Article  Google Scholar 

  • Han Y, Deng Y (2018) An enhanced fuzzy evidential DEMATEL method with its application to identify critical success factors. Soft Comput 22(15):5073–5090

    Article  Google Scholar 

  • Leung Y, Li R, Ji N (2017) Application of extended Dempster–Shafer theory of evidence in accident probability estimation for dangerous goods transportation. J Geogr Syst 19(3):249–271

    Article  Google Scholar 

  • Liu YT, Pal NR, Marathe AR, Lin CT (2017) Weighted fuzzy Dempster-Shafer framework for multi-modal information integration. IEEE Trans Fuzzy Syst 26:338–352

    Article  Google Scholar 

  • Han Y, Deng Y (2018) A hybrid intelligent model for assessment of critical success factors in high risk emergency system. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-018-0882-4

  • Jafari H, Li X, Qian L, Aved A, Kroecker T (2017) Multisensor change detection on the basis of big time-series data and Dempster-Shafer theory. Concurr Comput Pract Exp 29(17):e4026

    Article  Google Scholar 

  • Jiang W, Wei B, Xie C, Zhou D (2016) An evidential sensor fusion method in fault diagnosis. Adv Mech Eng 8(3):1687814016641820

    Google Scholar 

  • Jiang W, Xie C, Wei B, Zhou D (2016) A modified method for risk evaluation in failure modes and effects analysis of aircraft turbine rotor blades. Adv Mech Eng 8(4):1687814016644579

    Google Scholar 

  • Jiang W, Cao Y, Yang L, He Z (2017) A time-space domain information fusion method for specific emitter identification based on Dempster-Shafer evidence theory. Sensors 17(9):1972

    Article  Google Scholar 

  • Jiroušek R, Shenoy PP (2018) A new definition of entropy of belief functions in the Dempster-Shafer theory. Int J Approx Reason 92:49–65

    Article  MathSciNet  MATH  Google Scholar 

  • Jousselme A-L, Grenier D, Bossé É (2001) A new distance between two bodies of evidence. Inf Fusion 2(2):91–101

    Article  Google Scholar 

  • Kabir G, Tesfamariam S, Francisque A, Sadiq R (2015) Evaluating risk of water mains failure using a Bayesian belief network model. Eur J Oper Res 240(1):220–234

    Article  Google Scholar 

  • Kang B, Deng Y, Hewage K, Sadiq R (2018a) Generating Z-number based on OWA weights using maximum entropy. Int J Intell Syst 33(8):1745–1755

    Article  Google Scholar 

  • Kang B, Chhipi-Shrestha G, Deng Y, Hewage K, Sadiq R (2018b) Stable strategies analysis based on the utility of Z-number in the evolutionary games. Appl Math Comput 324:202–217

    MathSciNet  MATH  Google Scholar 

  • Klir GJ, Folger TA (1988) Fuzzy sets, uncertainty, and information

  • Klir GJ, Yuan B (1996) Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi A. Zadeh. World Scientific Publishing, Singapore

    Google Scholar 

  • Lefevre E, Colot O, Vannoorenberghe P (2002) Belief function combination and conflict management. Inf Fusion 3(2):149–162

    Article  Google Scholar 

  • Li M, Zhang Q, Deng Y (2018) Evidential identification of influential nodes in network of networks. Chaos Solitons Fractals. https://doi.org/10.1016/j.chaos.2018.04.033

    Article  MathSciNet  Google Scholar 

  • Li Y, Deng Y (2018) Generalized ordered propositions fusion based on belief entropy. Int J Comput Commun Control 13(5):792–807  

    Article  Google Scholar 

  • Lin Y, Wang C, Ma C, Dou Z, Ma X (2016) A new combination method for multisensor conflict information. J Supercomput 72(7):2874–2890

    Article  Google Scholar 

  • Liu W (2006) Analyzing the degree of conflict among belief functions. Artif Intell 170(11):909–924

    Article  MathSciNet  MATH  Google Scholar 

  • Liu H-C, You J-X, Fan X-J, Lin Q-L (2014) Failure mode and effects analysis using D numbers and grey relational projection method. Expert Syst Appl 41(10):4670–4679

    Article  Google Scholar 

  • Ma J, Liu W, Miller P, Zhou H (2016) An evidential fusion approach for gender profiling. Inf Sci 333:10–20

    Article  Google Scholar 

  • Mo H, Deng Y (2018) A new MADA methodology based on D numbers. Int J Fuzzy Syst. https://doi.org/10.1007/s40815-018-0514-3

  • Murphy CK (2000) Combining belief functions when evidence conflicts. Decis Supp Syst 29(1):1–9

    Article  Google Scholar 

  • Peida X, Deng Y, Xiaoyan S, Mahadevan S (2013) A new method to determine basic probability assignment from training data. Knowl Based Syst 46:69–80

    Article  Google Scholar 

  • Perez A, Tabia H, Declercq D, Zanotti A (2016) Using the conflict in Dempster–Shafer evidence theory as a rejection criterion in classifier output combination for 3D human action recognition. Image Vis Comput 55:149–157

    Article  Google Scholar 

  • Rota GC (1977) A mathematical theory of evidence: G. Shafer (1976). Princeton University Press, Princeton, p 297

    Google Scholar 

  • Shafer G (2016) Dempster’s rule of combination. Int J Approx Reason 79:26–40

    Article  MathSciNet  MATH  Google Scholar 

  • Smets P (1990) The combination of evidence in the transferable belief model. IEEE Trans Pattern Anal Mach Intell 12(5):447–458

    Article  Google Scholar 

  • Talavera A, Aguasca R, Galván B, Cacereño A (2013) Application of Dempster–Shafer theory for the quantification and propagation of the uncertainty caused by the use of AIS data. Reliab Eng Syst Saf 111:95–105

    Article  Google Scholar 

  • Utkin LV (2009) A new ranking procedure by incomplete pairwise comparisons using preference subsets. Intell Data Anal 13(2):229–241

    Article  Google Scholar 

  • Voorbraak F (1988) On the justification of Dempster’s rule of combination. Logic group preprint series, 42

  • Wang P (2008) The reliable combination rule of evidence in Dempster–Shafer theory. In: Image and signal processing, 2008. CISP’08. Congress, IEEE, vol 2, pp 166–170

  • Wang J, Liu F (2017) Temporal evidence combination method for multi-sensor target recognition based on DS theory and IFS. J Syst Eng Electr 28(6):1114–1125

    Google Scholar 

  • Wang J, Qiao K, Zhang Z, Xiang F (2017) A new conflict management method in Dempster-Shafer theory. Int J Distrib Sens Netw 13(3):1550147717696506

    Google Scholar 

  • Wu Y (2017) Fault diagnosis of civil aircraft electrical system based on evidence theory. In: Information fusion (Fusion), 2017 20th international conference, IEEE, pp 1–7

  • Xiao F (2017) A novel evidence theory and fuzzy preference approach-based multi-sensor data fusion technique for fault diagnosis. Sensors 17(11):2504

    Article  Google Scholar 

  • Xiao F (2018) A hybrid fuzzy soft sets decision making method in medical diagnosis. IEEE Access 6:25300–25312

    Article  Google Scholar 

  • Xiao F (2018) A novel multi-criteria decision making method for assessing health-care waste treatment technologies based on D numbers. Eng Appl Artif Intell 71(2018):216–225

    Article  Google Scholar 

  • Xiao F (2018) An improved method for combining conflicting evidences based on the similarity measure and belief function entropy. Int J Fuzzy Syst 20(4):1256–1266

    Article  MathSciNet  Google Scholar 

  • Xiao F (2019) Multi-sensor data fusion based on the belief divergence measure of evidences and the belief entropy. Inf Fusion 46(2019):23–32

    Article  Google Scholar 

  • Yager RR (1987) On the Dempster-Shafer framework and new combination rules. Inf Sci 41(2):93–137

    Article  MathSciNet  MATH  Google Scholar 

  • Yager RR (2014) An intuitionistic view of the Dempster-Shafer belief structure. Soft Comput 18(11):2091–2099

    Article  MATH  Google Scholar 

  • Yang J-B, Dong-Ling X (2013) Evidential reasoning rule for evidence combination. Artif Intell 205:1–29

    Article  MathSciNet  MATH  Google Scholar 

  • Yao James TP (2001) Probability, reliability and statistical methods in engineering design by A. Haldar and S. Mahadevan. J Struct Eng 127

  • Ye F, Chen J, Li Y (2017) Improvement of DS evidence theory for multi-sensor conflicting information. Symmetry 9(5):69

    Article  MathSciNet  Google Scholar 

  • Yin L, Deng Y (2018) Measuring transferring similarity via local information. Phys A Stat Mech Appl 498:102–115

    Article  MathSciNet  Google Scholar 

  • Yin L, Deng Y (2018) Toward uncertainty of weighted networks: an entropy-based model. Phys A Stat Mech Appl 508:176–186

    Article  Google Scholar 

  • Yong D, WenKang S, ZhenFu Z, Qi L (2004) Combining belief functions based on distance of evidence. Decis Supp Syst 38(3):489–493

    Article  Google Scholar 

  • Zadeh LA (1986) A simple view of the Dempster-Shafer theory of evidence and its implication for the rule of combination. AI Mag 7(2):85

    Google Scholar 

  • Zhang R, Ashuri B, Deng Y (2018) A novel method for forecasting time series based on fuzzy logic and visibility graph. Adv Data Anal Classif 11(4):759–783

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang W, Deng Y (2018) Combining conflicting evidence using the DEMATEL method. Soft Comput. https://doi.org/10.1007/s00500-018-3455-8

  • Zheng H, Deng Y (2018) Evaluation method based on fuzzy relations between Dempster–Shafer belief structure. Int J Intell Syst 33(7):1343–1363

    Article  Google Scholar 

  • Zhou X, Hu Y, Deng Y, Chan FTS, Ishizaka A (2018) A DEMATEL-based completion method for incomplete pairwise comparison matrix in AHP. Ann Oper Res

  • Zhu W, Yang H, Jin Y, Liu B (2017) A method for recognizing fatigue driving based on Dempster–Shafer theory and fuzzy neural network. Math Prob Eng

Download references

Acknowledgements

The authors greatly appreciate the reviews’ suggestions and the editor’s encouragement. This work is partially supported by National Natural Science Foundation of China (Grant Nos. 61573290 and 61503237).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Deng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, K. & Deng, Y. Base belief function: an efficient method of conflict management. J Ambient Intell Human Comput 10, 3427–3437 (2019). https://doi.org/10.1007/s12652-018-1099-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-018-1099-2

Keywords

Navigation