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Abstract
Cerebral microbleed (CMB) is a serious public health concern. It is associated with dementia, which can be detected with 
brain magnetic resonance image (MRI). CMBs often appear as tiny round dots on MRIs, and they can be spotted anywhere 
over brain. Therefore, manual inspection is tedious and lengthy, and the results are often short in reproducible. In this paper, 
a novel automatic CMB diagnosis method was proposed based on deep learning and optimization algorithms, which used 
the brain MRI as the input and output the diagnosis results as CMB and non-CMB. Firstly, sliding window processing was 
employed to generate the dataset from brain MRIs. Then, a pre-trained VGG was employed to obtain the image features 
from the dataset. Finally, an ELM was trained by Gaussian-map bat algorithm (GBA) for identification. Results showed that 
the proposed method VGG-ELM-GBA provided better generalization performance than several state-of-the-art approaches.
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1  Introduction

Cerebral microbleeds (CMBs) appear as tiny round black 
dots with a diameter of 5–10 mm on brain magnetic reso-
nance image (MRI), which are caused by microvascular 
diseases. Typically, CMBs can be found in deep brain and 
corticosubcortical regions. Inspection of CMB with naked 
eye is difficult and time-consuming for doctors and radiolo-
gists and the diagnosis results are prone to suffer from high 
inter-observe variance, which means that different experts 
may come up with different diagnosis results. Hence, it is 
significant and urgent to develop automatic CMB diagnosis 

system which can provide a reference for doctors to make 
decisions and help improve the efficiency of whole medical 
system. Recently, the rapid development of deep learning 
and computer vision achieved substantial progress and those 
advanced algorithms and models have been successfully 
applied in many practical problems, such as face recognition, 
computer aided diagnosis, and automatic driving. Therefore, 
many researchers are trying to use artificial intelligence for 
automated and accurate CMB diagnosis. The diagnosis of 
CMB is to label every pixel as CMB or non-CMB.

Barnes et al. (2011) proposed a semi-automated CMB 
diagnosis method. Firstly, hypointensities were generated 
by statistic thresholding algorithm. Then, the true CMBs 
were classified by support vector machine (SVM) from 
the hypointensities. Their method achieved sensitivity of 
81.7% and worked faster than several alternatives. Kuijf 
et al. (2012) suggested to employ radial symmetry trans-
form (RST) to identify potential CMB. The transformed 
images were checked by human for evaluation. The proposed 
method yielded sensitivity of 71.2% and required less time 
and effort of manual checking. Bian et al. (2013) utilized 
2D fast RST to generate potential CMBs and eliminated the 
false ones by geometry features. de Bresser et al. (2013) 
analyzed the challenges and the reliability of image process-
ing in diagnosis of CMB. Fazlollahi et al. (2015) leveraged 
multi-scale Laplacian approach to generate CMB candidates 
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and extracted shape features from these candidates. Finally, a 
cascade random forest was trained to distinguish true CMB 
from false ones. They achieved sensitivity of 87% on their 
possible and definite dataset. Zhang et al. (2017) introduced 
deep learning methods for CMB diagnosis. A seven-layer 
deep neural network (DNN) was constructed and trained on 
their CMB dataset for classification.

From the above research, we can find that current diag-
nosis of CMB usually follows the flow of feature extraction, 
classifier training and classification. Feature extraction is 
used to generate some features and representations from 
brain MRIs to form the feature vector. It is a necessary step 
as MRIs are of high volume and contain massive informa-
tion, which occupy too much memory and increase the 
computational complexity during classifier training. The 
classifiers used are supervised machine learning algorithms 
which employ the image features as input and image labels 
as the expected output in training. In the final classification 
stage, the trained classifiers were tested on test sets to evalu-
ate their classification performance. The current research 
has achieved good results, but there are still some problems 
existing. RST was often employed to extract features, but 
it belongs to a domain dependent method. The features 
obtained by RST may work only on certain datasets but fail 
on others. Deep learning models are powerful in image rec-
ognition, but they are often trained on datasets with millions 
of samples. Hence, it may be inappropriate to directly use 
CMB datasets to train DNNs, which usually contain only 
thousands of samples. Overfitting is likely to happen in those 
models, which means the classifiers can achieve high accu-
racy on training set but low accuracy on testing set.

To overcome these problems, a novel cerebral microbleed 
(CMB) diagnosis method based on VGG, extreme learning 
machine (ELM) and Gaussian map bat algorithm was pro-
posed in this paper. VGG is a famous convolutional neural 
network (CNN) model, which was employed for extracting 
features from brain MRIs. Instead of training VGG with our 
CMB dataset, we just directly used a pre-trained VGG to 
generate image features. Then, the feature vectors were fed 
into an ELM for training. ELM is a learning algorithm for 
single hidden layer feedforward network (SLFN). Unlike 
back propagation algorithm, ELM trains the network in only 
three steps without gradient-descent based iterations. So, 
ELM converges thousand times faster than back propagation 
algorithm and yields good classification performance at the 
same time. Gaussian-map bat algorithm (GBA) was lever-
aged to further improve the ELM’s generalization ability. 
With all these successful components, our CMB diagnosis 
method achieved good results, which outperformed state-of-
the-art approaches.

The rest of this paper is organized as follows. The related 
work is presented in Sect. 1. Section 2 explains the CMB 
datasets. Detailed explanation and analysis are in Sect. 3, 

including: VGG, ELM and GBA. We introduced three dif-
ferent chaotic maps for Bat algorithms. Section 4 discusses 
the experiment environment and settings. Section 5 gives the 
experiment results and discussion. Finally, Sect. 6 presents 
the conclusion and future research plan.

2 � Related work

Currently, CMB detection methods can be classified into two 
categories: classifier learning and feature learning. The clas-
sifier learning generator focuses on the training and optimi-
zation of classifier and uses handcraft image features. Hong 
and Lu (2019) proposed a CMB detection system combined 
back-propagation neural network (BPNN) with discrete 
wavelet transform (DWT). DWT was for feature extraction 
and BPNN served as classification algorithm. Principle 
component analysis (PCA) was employed to reduce the fea-
ture number. Ourselin et al. (2015) firstly performed multi-
ple RST to obtain CMB candidates. Then, the 3D patches 
were used to form the feature vectors. Finally, random for-
est regression was selected as the classification algorithm. 
Experimental results suggested that their method achieved 
sensitivity of 85.7%. Tao and Cloutie (2018) utilized genetic 
algorithm (GA) to train the parameters in BPNN for identi-
fication of CMB images. van den Heuvel et al. (2016) pro-
posed a method to detect CMB in patients with traumatic 
brain injury. Firstly, twelve features were extracted from 
each voxel and a random forest was leveraged to predict 
the CMB candidates’ locations. Then, a classifier based on 
object was trained to distinguish true CMB from blood ves-
sels. They also developed user-friendly interface for experts. 
Gagnon (2017) used Naive Bayesian classifier (NBC) to 
detect CMB. Their accuracy achieved 76.90%. Zhang et al. 
(2017) used single hidden layer feedforward neural network 
with scaled conjugate gradient to detect CMB in cerebral 
autosomal-dominant arteriopathy with subcortical infarcts 
and Leukoencephalopathy (CADASIL) patients. They com-
pared the performance of their systems of three different 
activation functions: Logistic Sigmoid, rectified linear unit 
(ReLU) and leaky rectified linear unit (LReLU). Experi-
mental results showed that LReLU achieved sensitivity of 
93.05%, which was the best of the three activation functions. 
Qian (2018) employed cat swarm optimization to handle 
brain diseases.

On the other hand, feature learning is playing a more 
and more important role in machine learning and computer 
vision tasks with the deep CNN models. Feature extraction 
and reduction is inevitable for image classification problems, 
because the images contain too much information that the 
excessive features have bad effect on the classifier training. 
CNN provides a general framework for image feature learn-
ing. With convolution operation, features can be learned 
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automatically compared with fully connected networks, 
convolution also reduces the parameters in CNN and imple-
ments weight sharing. Chen et al. (2018) designed a 3D 
residual neural network to diagnose CMB in 3D brain MRIs. 
Hong et al. (2019) used ResNet to detect CMB. Transfer 
learning was leveraged to train the ResNet on CMB data-
set, which helps to improve the generalization ability of the 
network.

Therefore, we want to combine the merits of both feature 
learning and classifier learning. For feature learning, a pre-
trained VGG was employed as the feature extractor, and for 
classifier learning, we proposed a novel Gaussian-map bat 
algorithm to optimize extreme learning machine. In this way, 
the time consuming training of deep CNN can be avoided 
and better classification performance can be achieved with 
optimization of classifier parameters.

3 � Material

3.1 � Data acquisition

Totally, ten CADASIL samples and ten healthy controls 
were obtained, with each in size of 364 × 448 × 48 pixels. 
All the images were reconstructed on Syngo MR B17 soft-
ware and labeled by three experts over 10 years’ experience 
from Nanjing medical university. We disregarded the micro-
vessels and lesions of over 10 mm diameters. The voxels 
of both possible and definite CMB were included in CMB 
category in our experiment.

3.2 � Image pre‑processing

It is not suitable to directly use the ten CADASIL samples 
and ten healthy controls to train the classifier. Meanwhile, it 
is meaningful to locate the CMB while classification. Hence, 
we proposed to leverage sliding neighborhood processing 
(SNP) for image pre-processing. As is shown in Fig. 1, 
SNP employed a window to move from the top left to the 
bottom right corner of the images to generate samples for 

training and testing of the classifier. The generated samples 
are in the same size of the window, and their locations can 
be obtained. The labels of these samples are dependent on 
their center voxels. If the center voxel of a sample is located 
within CMB region, it will be labeled as CMB, if not, it is 
a non-CMB sample. Figure 2 presents some samples in our 
dataset. 

3 41 2 5 6

0 92 1 8 7

5 63 4 7 8

2 14 3 0 9

7 85 6 9 0

1 2

2 1
...

Fig. 1   Sliding neighborhood processing Fig. 2   Dataset samples a CMB samples. b Non-CMB samples
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4 � Methods

Our CMB diagnosis method followed the convention of 
image recognition, which contains feature extraction and 
classifier training. For feature extraction, a CNN model 
was used, which is called VGG. But we did not train it on 
our dataset. Instead, we simply extracted the output of cer-
tain layer in the pre-trained VGG to form the feature vec-
tor. Compared with various handcrafted image features, the 
features generated by CNN are more robust for classifica-
tion, because CNN can learn features and representations 
automatically from low level to high level. The obtained 
feature vectors were then sent into an ELM for training and 
classification. We proposed to optimize the weight and bias 
of ELM with three BAC techniques to eliminate the side 
effect of randomness in ELM and improve its classification 
performance.

4.1 � VGG

VGG is a famous CNN model proposed by Simonyan and 
Zisserman (2014). VGG won the ImageNet Large-Scale Vis-
ual Recognition Challenge (ILSVRC) in 2014, and the rep-
resentations learned can be transferred to other image recog-
nition tasks. By analysis and experiment, it can be revealed 
that the depth of CNN plays an important role for the repre-
sentation learning ability of CNN, and that deeper models 
with more representation learning layers tend to achieve bet-
ter accuracy than shallow models. 7 × 7 filters were replaced 
by 3 × 3 filters to achieve better discriminant ability. The 
depth of the model is increased while the number of total 
parameters remains at the same level. Multi-scale training 
was employed to improve the classification accuracy. VGG 
is easier to converge because the parameters in shallow lay-
ers are pre-initialized. In this study, we chose VGG-16 as 
the feature extractor, the detailed structural information is 
provided in Table 1. There are some other transfer learning 
techniques (Yu 2019; Govindaraj 2019) which we will test 
in the future studies.

There are totally 41 layers in VGG-16, but only 16 layers 
have trainable weights, including 13 convolution layers and 
3 fully connected layers. Five pooling layers are also used 
in this model.

Convolution layers use filters to generate feature from 
images (Jiang 2019; Tang 2018; Pan 2018a, b). The filters 
are assigned with trainable weights. For an image I in size 
of (W, H) and a filter F in size of (m,n), the convolution 
expression is

(1)

Convolution(I ∗ F)(x, y) =
∑
W

∑
H

I(x − m, y − n)F(m, n)

An example is given in Fig. 3, with a filter of 2 × 2 and 
stride 2. The size of obtained feature map is 2 × 2. It can 
be found that the size of feature map will shrink after each 
convolution which will inevitably cause information loss of 
image edges and corners. To keep the size of the feature 
maps, zero padding is often employed, which add pixels of 
zero intensity values around the edges of input image before 
convolutional. The relationship between the convolutional 
output feature map with the input image, the filter size and 
stride are given below:

where w and h denote the width and height, p represents the 
padding size, and s denotes the stride value. With appropri-
ate filter size and zero padding size, the size of output feature 
size can be the same as that of input image. A toy example 
is shown in Fig. 4, with 3 × 3 filter and stride 1.

The volume of feature maps can be much higher than that 
of the input image, so pooling layers are made for feature 
reduction. Pooling operation can maintain the outstand-
ing features of the input feature maps while disregard the 
excessive features. In a pooling layer, a local perspective 
field is employed to extract features from the field by certain 
strategy, like max pooling and average pooling, as shown 
in Fig. 5.

The feature maps are finally vectorized and sent to fully 
connected layers. Fully connected layers are just like the 
structure of classical neural networks, every node is con-
nected with all the nodes in adjacent layers with learnable 
weights. Fully connected layers are trained to classify the 
input features, so they usually appear at the rear of the CNN.

Deep learning was not widely applied until the recent 
10 years, because of the gradient vanishing problem. As the 
layers get deeper, the gradient will approach zero, so the 
error cannot be propagated backward effectively. Activation 
function is an important factor of this problem. Traditional 
networks usually use sigmoid function as their activation 
function, as expressed below:

Sigmoid is popular because its gradient is easy to 
compute:

However, sigmoid does not work anymore in deep mod-
els. Rectified linear unit (ReLU) is often preferred in deep 

(2)hmap=

(
hinput−hfilter+2 × p

)
s

+1

(3)wmap=

(
winput−wfilter+2 × p

)
s

+1

(4)Sigmoid(x) =
1

1 − e−x

(5)Sigmoid�(x) = sigmoid(x) × [1 − sigmoid(x)]
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learning. ReLU is an easy function, if the input is positive, 
the output is the same value as the output. Otherwise, the 
output is zero:

The gradient value of ReLU function is always 1 if the 
input is positive, so the error can be propagated backward 
effectively. Additionally, in the last fully connected layer, 

(6)ReLU(x) = max(x, 0)

Table 1   Layers in VGG-16 (C, 
MP and FC denote convolution, 
max pooling and full connected, 
respectively)

1 ‘input’ Image input Image size 224 × 224 × 3

2 ‘conv1_1’ C 64 filters in size of 3 × 3 × 3, padding (1,1) and stride (1,1)
3 ‘relu1_1’ ReLU ReLU activation function
4 ‘conv1_2’ C 64 filters in size of 3 × 3 × 3, padding (1,1) and stride (1,1)
5 ‘relu1_2’ ReLU ReLU activation function
6 ‘pool1’ MP Max pooling in size of 2 × 2, padding (0,0) and stride (2,2)
7 ‘conv2_1’ C 128 filters in size of 3 × 3 × 64, padding (1,1) and stride (1,1)
8 ‘relu2_1’ ReLU ReLU activation function
9 ‘conv2_2’ C 128 filters in size of 3 × 3 × 128, padding (1,1) and stride (1,1)
10 ‘relu2_2’ ReLU ReLU activation function
11 ‘pool2’ MP Max pooling in size of 2 × 2, padding (0,0) and stride (2,2)
12 ‘conv3_1’ C 256 filters in size of 3 × 3 × 128, padding (1,1) and stride (1,1)
13 ‘relu3_1’ ReLU ReLU activation function
14 ‘conv3_2’ C 256 filters in size of 3 × 3 × 256, padding (1,1) and stride (1,1)
15 ‘relu3_2’ ReLU ReLU activation function
16 ‘conv3_3’ C 256 filters in size of 3 × 3 × 256, padding (1,1) and stride (1,1)
17 ‘relu3_3’ ReLU ReLU activation function
18 ‘pool3’ MP Max pooling in size of 2 × 2, padding (0,0) and stride (2,2)
19 ‘conv4_1’ C 512 filters in size of 3 × 3 × 256, padding (1,1) and stride (1,1)
20 ‘relu4_1’ ReLU ReLU activation function
21 ‘conv4_2’ C 512 filters in size of 3 × 3 × 512, padding (1,1) and stride (1,1)
22 ‘relu4_2’ ReLU ReLU activation function
23 ‘conv4_3’ C 512 filters in size of 3 × 3 × 512, padding (1,1) and stride (1,1)
24 ‘relu4_3’ ReLU ReLU activation function
25 ‘pool4’ MP Max pooling in size of 2 × 2, padding (0,0) and stride (2,2)
26 ‘conv5_1’ C 512 filters in size of 3 × 3 × 512, padding (1,1) and stride (1,1)
27 ‘relu5_1’ ReLU ReLU activation function
28 ‘conv5_2’ C 512 filters in size of 3 × 3 × 512, padding (1,1) and stride (1,1)
29 ‘relu5_2’ ReLU ReLU activation function
30 ‘conv5_3’ C 512 filters in size of 3 × 3 × 512, padding (1,1) and stride (1,1)
31 ‘relu5_3’ ReLU ReLU activation function
32 ‘pool5’ MP Max pooling in size of 2 × 2, padding (0,0) and stride (2,2)
33 ‘fc6’ FC Fully connected layer with 4096 nodes
34 ‘relu6’ ReLU ReLU activation function
35 ‘drop6’ Dropout Dropout probability 50%
36 ‘fc7’ FC Fully connected layer with 4096 nodes
37 ‘relu7’ ReLU ReLU activation function
38 ‘drop7’ Dropout Dropout probability 50%
39 ‘fc8’ FC Fully connected layer with 1000 nodes
40 ‘prob’ Softmax Softmax activation function
41 ‘output’ Classification layer Cross-entropy activation function

3 7

6 1

1 6

1 8

9 0

0 2

5 1

3 0 1 1

0 1
*

6 11

15 11

Filter

=

Fig. 3   Convolution operation
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the activation function is usually selected as softmax, 
because it can map the input to probability which is ben-
eficial for classification. The softmax is defined as

4.2 � ELM

VGG is an effective model for image classification, but the 
diagnosis of CMB is a binary problem and our dataset is not 
big enough to train such a deep CNN. Overfitting is likely to 
happen. So, VGG is only employed for feature extraction, and 
for classification, a novel algorithm was selected, called ELM. 
ELM is a learning algorithm for SLFN, which is a classical 
neural network (Guang-Bin et al. 2006; Zhao 2018). The most 
famous training algorithm for classical network is back propa-
gation (BP). However, the iteration of error backward is time-
consuming, and the result obtained by BP is not ensured as the 
global best. ELM solves the training problem in another way. 
By random mapping in the input layer and pseudo inverse, 
ELM converges much fast than BP neural network. The perfor-
mance of ELM is good as well. Hence, ELM has been applied 
to solve many practical problems, including image recognition 

(7)softmax(�)i =
exp(xi)∑n

j=1
exp(xj)

(Zhang et al. 2017), prediction (Wei et al. 2019; Zou et al. 
2017), clustering (Huang et al. 2018; Peng et al. 2016).

The structure of ELM is presented in Fig. 6, which is 
composed of three layers. Training of ELM is to determine 
the values of parameters, including hidden weight wi, hidden 
bias bi and output weight βi. The input x = (x1,x2,…,xn) and 
output o = (o1,o2,…,om) are defined by the specific problems. 
Suppose a training dataset M:

where xi =
(
xi1, xi2,… , xin

)T
∈ Rn denotes the input and 

ti =
(
ti1, ti2,… , tim

)T
∈ Rm represents its label, and the ELM 

has N̂ hidden nodes, then its output is:

where f(x) is the activation function in hidden layer. The 
training object is to make the output of ELM equals to the 
labels:

(8)M = {(�i, �i)|�i ∈ Rn, �i ∈ Rm, i = 1,… ,N}

(9)
N̂∑
i=1

𝛽ifi
(
xj

)
=

N̂∑
i=1

𝛽ifi
(
wixj + bi

)
= oj, j = 1,… , N

(10)
N̂∑
i=1

𝛽ifi
(
wixj + bi

)
= tj, j = 1,… ,N

Fig. 4   Convolution with zero 
padding
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Which can be simplified as:

where

ELM finishes the training within three steps. Firstly, the 
hidden weight and bias are randomly initialized, and their 
values remain frozen during the training. Then, the output 
matrix H is computed using training set. Finally, the output 
weight is computed from Eq. (11) by Moore–Penrose pseudo 
inverse:

where H† represents the pseudo inverse.

4.3 � BAC

ELM is trained fast, and its classification performance is 
promising. However, random parameters in hidden layer 
have a bad effect on the robustness of ELM (Sun 2018). 
Therefore, ELM can be improved by further parameter opti-
mization. In this paper, we employed BAC to optimize the 
hidden weight and bias in ELM. BAC is an improved form 
of bat algorithm (Yang 2010), which initializes a set of bat 
particles to search the solution space. Each bat particle con-
tains a potential solution of the ELM parameters, moves 
with certain velocity and searches using ultrasound. In every 
iteration, the values of fitness function of all the bats will be 
computed and the parameters in bats will be updated accord-
ing to the best solution obtained so far. There are some other 
swarm intelligence methods (Wu 2011a, b) which we will 
test in our future studies.

The introduction of chaotic map to the bat algorithm aims 
to enhance the randomness of bats to help them jump out 
of local extrema and reach the global optimized solution. 
There are various chaotic map functions, like Gaussian cha-
otic map, Logistic chaotic map and cubic chaotic map (Ara-
somwan and Adewumi 2014). The functions are as follows.

•	 Gaussian map

(11)�� = T

(12)

�
�
w1,… ,wN̂ , b1,… , bN̂ , x1,… , xN

�
=

⎡
⎢⎢⎣

g
�
w1x1 + b1

�
⋯ g

�
wN̂x1 + bN̂

�
⋮ ⋱ ⋮

g
�
w1xN + b1

�
⋯ g

�
wN̂xN + bN̂

�
⎤
⎥⎥⎦
N×N̂

(13)𝛽 =

⎡⎢⎢⎣

𝛽T
1

⋮

𝛽T
N̂

⎤⎥⎥⎦
N̂×m

,T =

⎡⎢⎢⎣

t
T
1

⋮

t
T
N

⎤⎥⎥⎦
N×m

(14)� = �
†
�

(15)xk+1 = exp(−�x2
k
) + �

where α and β are two real parameters, and k represents 
the iteration time. The bifurcation diagram of Gauss-
ian chaotic map is given in Fig. 7. The discrete form of 
Gaussian map can be expressed as

where ⌊x⌋ denotes the largest integer no more than x.
•	 Logistic map

where r represents the positive integer parameter.
•	 Cubic map

The flowchart of BAC is provided in Fig. 8. Firstly, all 
the bats are initialized randomly. Then, the fitness values of 
bats are computed, and the best solution is obtained among 
the bats. The positions of bats are updated according to the 
best solution so far along with chaotic map. The original bat 
algorithm updates the bats’ positions by

where vt
i
 and xt

i
 denotes the velocity and position of bat i 

in the tth iteration. In BAC, chaotic map was employed to 
enhance the randomness of bats to better explore the solution 
space, which was used in position updating:

where w is a weighting parameter and is set as 0.3 in this 
study. Next, a new solution is generated around the best solu-
tion found by bats. If the newly generated solution performed 

(16)xk+1 =

{
0, xk = 0

1

xk
−

⌊
1

xk

⌋
, xk ∈ (0, 1)

(17)xk+1 = rxk(1 − x
k
)

(18)xk+1 = 3xk(1 − x2
k
)

(19)xt
i
= xt−1

i
+ vt

i

(20)xt
i
= xt−1

i
+ vt

i
+ w × chaotic(xt−1

i
)

Fig. 7   Diagram of Gaussian map
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better than the best solution found so far and the loudness 
of ultrasound is larger than a random generated value from 
[0,1], the new one will be accepted as the best solution and 
the ultrasound parameters will be updated. Afterwards, the 
programme will go back to calculate the bats’ fitness for 
iteration until it reaches the max iteration times.

Based on those three maps, we proposed three variants of 
BA: (1) Gaussian-map bat algorithm (GBA), (2) Logistic-
map bat algorithm (LBA), and (3) Cubic-map bat algorithm 
(CBA).

4.4 � Proposed methods

We proposed our VGG-ELM-BAC for CMB diagnosis. 
Firstly, a VGG was employed for feature extraction, which 
was pre-trained on a subset of ImageNet Large-Scale Visual 
Recognition Challenge (ILSVRC). We removed the last two 
layers before extracted its output as the image features. Then, 
the features were fed into an ELM for training. The hidden 
weights and bias of ELM were optimized by BAC algorithm. 
Finally, the trained model was evaluated on test set. The dia-
gram of VGG-ELM-BAC was given in Fig. 9. We proposed 
three BAC methods: VGG-ELM-GBA, VGG-ELM-LBA, 
VGG-ELM-CBA.

5 � Experiment

The proposed method VGG-ELM-BAC was developed on 
MATLAB 2018a with neural network toolbox. The system 
was run on a laptop with Intel i7 7700HQ CPU, 16 GB 
RAM, and NVIDIA GTX1060 GPU. We obtained totally 
13031 samples in size of 41 × 41 in our dataset, with 6407 

CMB and 6624 non-CMB, and 70% of the dataset is used for 
training set and the rest 30% for test set. Detailed informa-
tion about the dataset is given in Table 2.

The hyper-parameters in our model are given in Table 3. 
The number of hidden nodes in ELM was set as 500, because 
the input space was 1000 × 1. We set the bats population as 
20, considering the computational efficiency. The weight of 
chaotic and the parameters of bats were determined accord-
ing to convention.

6 � Results and discussion

6.1 � Confusion matrix of proposed method

Our method achieved the best classification performance 
with the optimal feature layer ‘fc8’ and Gaussian map. The 
confusion matrix is presented in Table 4. We can calculate 
that the system achieved sensitivity of 93.08%, specificity of 
87.12% and accuracy of 90.00%. Sensitivity is more signifi-
cant in real application because it denotes the possibility of 
misclassifying a CMB sample into non-CMB. The patient 
may miss the valuable time and chance to get treatment.

6.2 � Optimal feature layer

The feature layer denotes the layer in which the feature 
vector was extracted, and it is also the last layer reserved 
in VGG in our model. To get the optimal feature layer, an 
experiment was carried out. The results are illustrated in 
Table 5. The specificity of the four is relatively stable while 
the sensitivity varies. Obviously, the features from the ‘fc8’ 
layer performed better than features from other layers, so it 
is the best option. Meanwhile, the feature dimension from 
precedent layers will be larger than 4096, which is excessive 
to describe an image of 41 × 41 size.

6.3 � Optimal chaotic map

We also tested three common chaotic maps to select the best 
for our system. The results are given below in Table 6. The 
“no map” means that the ELM was optimized by original 
bat algorithm without chaotic maps. The introduction of 
chaotic map can improve the classification performance of 
our system in terms of accuracy. Gaussian map achieved the 
best results on both sensitivity and accuracy. However, in 
terms of specificity, cubic and logistic map are better than 
Gaussian map. The Gaussian map has been shown to be a 
good example of a chaotic discrete dynamical system, which 
provided better chaotic mechanism to the bat algorithm than 
other maps so that the bat particles are more likely to get the 
global optimal solution. We choose Gaussian map because 
sensitivity is more important in our application.

Initialization

Computing 
fitness and 
find out the 

best

Updating the 
bats param-

eters with 
chaotic maps 

Generating 
new solution 

randomly

Substitution?

Updating 
ultrasound 
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Y

N
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Output the 
optimal 
solution

Y

N

Gaussian map

Logistic map

Cubic map

Fig. 8   BAC algorithm
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6.4 � Comparison with state‑of‑the‑arts

We compared our VGG-ELM-GBA to state-of-the-art 
approaches: RF (Fazlollahi et al. 2015), BPNN-DWT (Hong 
and Lu 2019), NBC (Gagnon 2017), GA (Tao and Cloutie 
2018), and RF-OBC (van den Heuvel et  al. 2016). The 
results are provided in Table 7 and Fig. 10. We can see that 
our method achieved the best sensitivity and accuracy. For 
specificity, VGG-ELM outperformed just marginally. For 
medical applications, sensitivity is more significant because 

Fig. 9   Flowchart of VGG-ELM-
BAC

ELM
(Updating)

Pre-trained VGG

Last two layers 
Removed

Training 
Image

Training 
Label

Trained ELM

Normal 
(Predicted)

Pathological 
(Predicted)

Training Features

Test Image

Test Features

Test Label

Performance

VGG-ELM-BAC

Fitness/Loss 
Function

BAC

Updated 
Weights/Biases

Stopping Criteria

Gaussian Map

Logistic Map

Cubic Map

Table 2   Dataset configuration

Total samples
13,031
CMB Non-CMB
6407 6624
Training Testing
9122 3909
CMB Non-CMB CMB Non-CMB
4485 4637 1922 1987

Table 3   Hyper-parameter settings

Hyper-parameter Values

# of hidden nodes in ELM 500
# of population of bats 20
w for chaotic 0.3
Max iteration i_max 20
Max pulse loudness A0 1.6
Max pulse rate R0 1e-3
Loudness attenuation factor α 0.9
Frequency enhancement factor γ 0.99
Searching frequency range [fmin, fmax] [0,2]

Table 4   Confusion matrix of 
our method

Predicted label

Actual label Non-CMB CMB
 Non-CMB 1731 256
 CMB 133 1789
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we hope to detect all the CMBs. The GBA optimization of 
ELM parameters can converge in 170.57 s, which is afford-
able in real application.

7 � Conclusion

In this paper, a novel CMB diagnosis system was proposed 
based on VGG, extreme learning machine and bat algorithm 
with chaotic map. The trained system can distinguish CMB 
samples from non-CMB samples accurately, which provides 
a diagnosing reference for doctors.

However, it’s difficult to interpret how the diagnosis 
results are made. The model only solved a binary classifica-
tion problem, but multi-class classification is more desired in 
practical application. The accuracy of the system is 90.05%, 
which is not perfect.

Table 5   Performance of our 
system of different feature 
layers

Feature layer Feature dimen-
sion

Sensitivity (%) Specificity (%) Accuracy (%)

Last 2nd layer: ‘prob’ 1000 79.14 92.10 85.73
Last 3rd layer: ‘fc8’ 1000 93.08 87.12 90.05
Last 4th layer: ‘drop7’ 4096 79.50 89.08 84.37
Last 5th layer: ‘relu7’ 4096 75.03 89.03 82.41

Table 6   Performance of our method with difficult chaotic maps

Chaotic map Sensitivity (%) Specificity (%) Accuracy (%)

No map 88.71 88.78 88.74
Cubic 84.39 94.16 89.36
Logistic 89.02 89.83 89.43
Gaussian 93.08 87.12 90.05

Table 7   Performance 
comparison

Methods Sensitivity (%) Specificity Accuracy

RF (Fazlollahi et al. 2015) 87.00 ~ ~
BPNN-DWT (Hong and Lu 2019) 88.47 88.38% 88.43%
NBC (Gagnon 2017) 76.90 76.91% 76.91%
GA (Tao and Cloutie 2018) 72.90 72.89% 72.90%
RF-OBC (van den Heuvel et al. 2016) 87.80 ~ ~
VGG-ELM 89.02 89.98% 89.51%
VGG-ELM-BA 88.71 88.78% 88.74%
VGG-ELM-GBA (our) 93.08 87.12% 90.05%

Fig. 10   Comparison with state-
of-the-art algorithms
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In the future, we shall collect more data and re-test the 
system. We shall try to apply our method to detect specific 
brain diseases and develop multi-class detection systems. 
Advanced deep models and structures can also be utilized 
in our future research, such as dilated convolution, and 
AlphaMEX Global Pool.

Acknowledgements  This paper is supported by Hope Foundation for 
Cancer Research, UK (RM60G0680); International Exchanges Cost 
Share 2018, UK (RP202G0230); Medical Research Council Confi-
dence in Concept Scheme, UK; Henan Key Research and Development 
Project, CN (182102310629); Natural Science Foundation of Jiangsu 
Province BK20180727.

Authors contributions  SL conceived and designed the method. SHW 
undertook the data interpretation. KX helped the data analysis. SL 
developed the program and wrote the draft. SHW revised the work 
critically. All authors approved the submission of this work.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

Arasomwan AM, Adewumi AO (2014) An investigation into the perfor-
mance of particle swarm optimization with various chaotic maps. 
Math Probl Eng 2014:1–17

Barnes SR et al (2011) Semiautomated detection of cerebral micro-
bleeds in magnetic resonance images. Magn Reson Imaging 
29(6):844–852

Bian W et al (2013) Computer-aided detection of radiation-induced 
cerebral microbleeds on susceptibility-weighted MR images. Neu-
roimage Clin 2:282–290

Chen Y et al (2018) Toward automatic detection of radiation-induced 
cerebral microbleeds using a 3D deep residual network. J Digit 
Imaging 32:766–772

de Bresser J et al (2013) Visual cerebral microbleed detection on 7 T 
MR imaging: reliability and effects of image processing. Am J 
Neuroradiol 34(6):E61–E64

Fazlollahi A et al (2015) Computer-aided detection of cerebral micro-
bleeds in susceptibility-weighted imaging. Comput Med Imaging 
Graph 46(Pt 3):269–276

Gagnon B (2017) Cerebral microbleed detection by wavelet entropy 
and naive Bayes classifier. Adv Biol Sci Res 4:507–510

Govindaraj VV (2019) High performance multiple sclerosis classifica-
tion by data augmentation and AlexNet transfer learning model. 
J Med Imaging Health Inform 9(9):2012–2021

Guang-Bin H, Qin-Yu Z, Chee-Kheong S (2006) Extreme learn-
ing machine: theory and applications. Neurocomputing 
70(1–3):489–501

Hong J, Lu Z (2019) Cerebral microbleeds detection via discrete wave-
let transform and back propagation neural network. Adv Soc Sci 
Educ Humanit Res 196:228–232

Hong J et al (2019) Detecting cerebral microbleeds with transfer learn-
ing. Mach Vis Appl. https​://doi.org/10.1007/s0013​8-019-01029​-5

Huang J, Yu ZL, Gu Z (2018) A clustering method based on extreme 
learning machine. Neurocomputing 277:108–119

Jiang X (2019) Chinese sign language fingerspelling recognition via 
six-layer convolutional neural network with leaky rectified linear 
units for therapy and rehabilitation. J Med Imaging Health Inform 
9(9):2031–2038

Kuijf HJ et al (2012) Efficient detection of cerebral microbleeds on 7.0 
T MR images using the radial symmetry transform. Neuroimage 
59(3):2266–2273

Ourselin S et  al (2015) Cerebral microbleed segmentation from 
susceptibility weighted images. Med Imaging Image Process 
9413:94131E

Pan C (2018a) Abnormal breast identification by nine-layer convo-
lutional neural network with parametric rectified linear unit and 
rank-based stochastic pooling. J Comput Sci 27:57–68

Pan C (2018b) Multiple sclerosis identification by convolutional neu-
ral network with dropout and parametric ReLU. J Comput Sci 
28:1–10

Peng Y, Zheng W-L, Lu B-L (2016) An unsupervised discriminative 
extreme learning machine and its applications to data clustering. 
Neurocomputing 174:250–264

Qian P (2018) Cat swarm optimization applied to alcohol use disorder 
identification. Multimed Tools Appl 77(17):22875–22896

Simonyan K, Zisserman A (2014) Very deep convolutional networks 
for large-scale image recognition. arXiv​:1409.1556 [cs.CV]

Sun J (2018) Preliminary study on angiosperm genus classifica-
tion by weight decay and combination of most abundant color 
index with fractional Fourier entropy. Multimed Tools Appl 
77(17):22671–22688

Tang C (2018) Twelve-layer deep convolutional neural network with 
stochastic pooling for tea category classification on GPU platform. 
Multimed Tools Appl 77(17):22821–22839

Tao Y, Cloutie RS (2018) Voxelwise detection of cerebral microbleed 
in CADASIL patients by genetic algorithm and back propagation 
neural network. Adv Comput Sci Res 65:101–105

van den Heuvel TL et al (2016) Automated detection of cerebral micro-
bleeds in patients with traumatic brain injury. Neuroimage Clin 
12:241–251

Wei Y et al (2019) Application of extreme learning machine for pre-
dicting chlorophyll-a concentration inartificial upwelling pro-
cesses. Math Probl Eng 2019:1–11

Wu L (2011a) Optimal multi-level thresholding based on maximum 
tsallis entropy via an artificial bee colony approach. Entropy 
13(4):841–859

Wu L (2011b) Crop classification by forward neural network 
with adaptive chaotic particle swarm optimization. Sensors 
11(5):4721–4743

Yang X-S (2010) A new metaheuristic bat-inspired algorithm. Nat 
Inspired Coop Strateg Optim 284:65–74

Yu X (2019) Utilization of DenseNet201 for diagnosis of breast abnor-
mality. Mach Vis Appl 30(7–8):1135–1144

Zhang Y-D et al (2017a) Seven-layer deep neural network based on 
sparse autoencoder for voxelwise detection of cerebral micro-
bleed. Multimed Tools Appl 77(9):10521–10538

Zhang Y-D et al (2017b) Voxelwise detection of cerebral microbleed 
in CADASIL patients by leaky rectified linear unit and early stop-
ping. Multimed Tools Appl 77(17):21825–21845

Zhang L, He Z, Liu Y (2017c) Deep object recognition across domains 
based on adaptive extreme learning machine. Neurocomputing 
239:194–203

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00138-019-01029-5
http://arxiv.org/abs/1409.1556


5406	 S. Lu et al.

1 3

Zhao G (2018) Smart pathological brain detection by synthetic minor-
ity oversampling technique, extreme learning machine, and Jaya 
Algorithm. Multimed Tools Appl 77(17):22629–22648

Zou W et al (2017) Verification and predicting temperature and humid-
ity in a solar greenhouse based on convex bidirectional extreme 
learning machine algorithm. Neurocomputing 249:72–85

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Diagnosis of cerebral microbleed via VGG and extreme learning machine trained by Gaussian map bat algorithm
	Abstract
	1 Introduction
	2 Related work
	3 Material
	3.1 Data acquisition
	3.2 Image pre-processing

	4 Methods
	4.1 VGG
	4.2 ELM
	4.3 BAC
	4.4 Proposed methods

	5 Experiment
	6 Results and discussion
	6.1 Confusion matrix of proposed method
	6.2 Optimal feature layer
	6.3 Optimal chaotic map
	6.4 Comparison with state-of-the-arts

	7 Conclusion
	Acknowledgements 
	References




