Skip to main content

Advertisement

Log in

Differential analysis of gene regulatory networks modeled with structural equation models

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

A gene regulatory networks (GRN) is composed of a set of genes as well as the regulatory relationships between them. Under different conditions, GRNs with the same gene set usually have similar but not exactly the same structure. The differential analysis of GRNs under different conditions is of great significance to understand gene functions and biological mechanisms. In a naive approach, GRNs under different conditions can be separately inferred via existing GRN inference algorithms, and then the difference between them can be identified by comparing the estimated structures. However, such an approach does not consider the commonality of the pairwise GRNs, which may decrease the predictive accuracy of the differential GRN. In this paper, we model GRNs with the structural equation models (SEMs) to integrate gene expression data and genetic perturbations, and propose a joint differential analysis algorithm named differential sparse SEM (DiffSSEM) to identify the topology structures of GRNs under different conditions as well as the difference between them. The DiffSSEM algorithm simultaneously consider the sparsity of separate GRNs and differential GRN. Simulations were run on synthetic data and the results demonstrated that the DiffSSEM algorithm outperforms the naive approach based on a state-of-the-art sparse SEM inference algorithm. Finally, a real data set of 15 lung genes from 42 tumor tissues and normal tissues was analyzed with the DiffSSEM algorithm to identify the differential GRN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akutsu T, Miyano S, Kuhara S (2000) Algorithms for identifying boolean networks and related biological networks based on matrix multiplication and fingerprint function. J Comput Biol 7(3–4):331–343

    Article  Google Scholar 

  • Bansal M, Belcastro V (2007) How to infer gene networks from expression profiles. Mol Syst Biol 3(1):78

    Article  Google Scholar 

  • Basso K, Margolin AA, Stolovizky G, Klein U, Dallafavera R, Califano A (2005) Reverse engineering of regulatory networks in human b cells. Nat Genet 37(4):382–390

    Article  Google Scholar 

  • Brazhnik P, De LFA, Mendes P (2002) Gene networks: how to put the function in genomics. Trends Biotechnol 20(11):467–472

    Article  Google Scholar 

  • Butte AJ, Tamayo P, Slonim D, Golub TR, Kohane IS (2000) Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. P Natl Acad Sci USA 97(22):12182–12186

    Article  Google Scholar 

  • Cai X, Andrés BJ, Giannakis GB (2013) Inference of gene regulatory networks with sparse structural equation models exploiting genetic perturbations. PloS Comput Bio 9(5):e1003068

    Article  Google Scholar 

  • Chen C, Ren M, Zhang M, Zhang D (2018) A two-stage penalized least squares method for constructing large systems of structural equations. J Mach Learn Res 19(2):40–73

    MathSciNet  MATH  Google Scholar 

  • Crick F (1970) Central dogma of molecular biology. Nature 227(5258):561–563

    Article  Google Scholar 

  • Danaher P, Wang P, Witten DM (2014) The joint graphical lasso for inverse covariance estimation across multiple classes. J R Stat Soc B 76(2):373–397

    Article  MathSciNet  Google Scholar 

  • De LFA (2010) From ‘differential expression’ to ‘differential networking’ identification of dysfunctional regulatory networks in diseases. Trends Genet 26(7):326–333

    Article  Google Scholar 

  • Fan J, Liao Y (2014) Endogeneity in high dimensions. Ann Stat 42(3):872–917

    MathSciNet  MATH  Google Scholar 

  • Friedman N, Linial M, Nachman I, Pe’er D (2000) Using Bayesian networks to analyze expression data. J Comput Biol 7(3–4):601–620

    Article  Google Scholar 

  • Gardner TS, Bernardo DD, Lorenz D, Collins JJ (2003) Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301(5629):102–105

    Article  Google Scholar 

  • Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) Affy:analysis of affymetrix genechip data at the probe level. Bioinformatics 20(3):307–315

    Article  Google Scholar 

  • Golub GH, Heath M, Wahba G (1979) Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21(2):215–223

    Article  MathSciNet  Google Scholar 

  • Greene CS, Krishnan A, Wong AK et al (2015) Understanding multicellular function and disease with human tissue-specific networks. Nat Genet 47(6):569–576

    Article  Google Scholar 

  • Ideker T, Krogan NJ (2012) Differential network biology. Mol Syst Biol 8(1):565

    Article  Google Scholar 

  • Kalmus H, Beament JWL (1961) Symposia of the society for experimental biology. Biometrika 48(3–4):482

    Article  Google Scholar 

  • Krämer N, Schäfer J, Boulesteix AL, (2009) Regularized estimation of large-scale gene association networks using graphical gaussian models. BMC Bioinformatics 10(1):384–390

    Article  Google Scholar 

  • Lin W, Feng R, Li H (2015) Regularization methods for high-dimensional instrumental variables regression with an application to genetical genomics. J Am Stat Assoc 110(509):270–288

    Article  MathSciNet  Google Scholar 

  • Liu B, De LFA, Hoeschele I (2008) Gene network inference via structural equation modeling in genetical genomics experiments. Genetics 178(3):1763–1776

    Article  Google Scholar 

  • Logsdon BA, Mezey J (2010) Gene expression network reconstruction by convex feature selection when incorporating genetic perturbations. PloS Comput Bio 6(12):e1001014

    Article  MathSciNet  Google Scholar 

  • Lu TP, Lai LC, Tsai MH et al (2011) Integrated analyses of copy number variations and gene expression in lung adenocarcinoma. PLoS One 6(9):e24829

    Article  Google Scholar 

  • Marbach D, Costello JC, Küffner R et al (2012) Wisdom of crowds for robust gene network inference. Nat Methods 9(8):796–804

    Article  Google Scholar 

  • Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Favera RD, Califano A (2006) ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7(Suppl 1):7

    Article  Google Scholar 

  • Masood MMD, Manjula D, Sugumaran V (2018) Identification of new disease genes from protein–protein interaction network. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-018-0788-1

    Article  Google Scholar 

  • Mi X, Eskridge K, Wang D, Baenziger PS, Campbell BT, Gill KS, Dweikat I, Bovaird J (2010) Regression-based multi-trait qtl mapping using a structural equation model. Stat Appl Genet Mol 9(1):38

    MathSciNet  MATH  Google Scholar 

  • Mohan K, London P, Fazel M, Witten D, Lee SI (2014) Node-based learning of multiple gaussian graphical models. J Mach Learn Res 15(1):445–488

    MathSciNet  MATH  Google Scholar 

  • Pe’er D, Regev A, Elidan G, Friedman N (2001) Inferring subnetworks from perturbed expression profiles. Bioinformatics 17(Suppl 1):215–224

    Article  Google Scholar 

  • Rockman MV (2008) Reverse engineering the genotype-phenotype map with natural genetic variation. Nature 456(7223):738–744

    Article  Google Scholar 

  • Sampathkumar A, Rastogi R, Arukonda S et al (2020) An efficient hybrid methodology for detection of cancer-causing gene using CSC for micro array data. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-020-01731-7

    Article  Google Scholar 

  • Schäfer J, Strimmer K (2005) A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat Appl Genet Mol 4(1):32

    MathSciNet  Google Scholar 

  • Schaffter T, Marbach D, Floreano D (2011) Genenetweaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics 27(16):2263–2270

    Article  Google Scholar 

  • Shabalin AA (2015) Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics 28(10):1353–1358

    Article  Google Scholar 

  • Tegner J, Yeung MK, Hasty J, Collins JJ (2003) Reverse engineering gene networks: integrating genetic perturbations with dynamical modeling. P Natl Acad Sci USA 100(10):5944–5949

    Article  Google Scholar 

  • Tian D, Gu Q, Ma J (2016) Identifying gene regulatory network rewiring using latent differential graphical models. Nucleic Acids Res 44(17):e140

    Article  Google Scholar 

  • Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc B 58(1):267–288

    MathSciNet  MATH  Google Scholar 

  • Wang C, Gao F, Giannakis GB, D’Urso G, Cai X (2019) Efficient proximal gradient algorithm for inference of differential gene networks. BMC Bioinformatics 20(1):224

    Article  Google Scholar 

  • Xiong M, Li J, Fang X (2004) Identification of genetic networks. Genetics 166(2):1037–1052

    Article  Google Scholar 

  • Zhu J, Wiener MC, Zhang C, Friedman A, Minch E, Lum PY, Sachs JR, Schadt EE (2007) Increasing the power to detect causal associations by combining genotypic and expression data in segregating populations. PloS Comput Biol 3(4):e69

    Article  MathSciNet  Google Scholar 

  • Zhu Y, Zhao X, Chen Y et al (2019) Algorithm for predicting weighted protein complexes by using modularity function. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-019-01594-7

    Article  Google Scholar 

  • Zou H (2006) The adaptive lasso and its oracle properties. J Am Stat Assoc 101(476):1418–1429

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61502198, 61572226, 61472161 and 61876069.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, D., Zhu, Y. et al. Differential analysis of gene regulatory networks modeled with structural equation models. J Ambient Intell Human Comput 12, 9181–9192 (2021). https://doi.org/10.1007/s12652-020-02622-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-020-02622-7

Keywords

Navigation