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Abstract

The network theory in immunology inspired the modeling of net-
work based artificial immune system (AIS) models for data clustering.
Current network based AIS models determine the network connectiv-
ity between artificial lymphocytes (ALCs) by measuring the spatial
distance between these ALCs against a distance threshold or by group-
ing ALCs into sub-networks. This paper discusses alternative network
topologies to determine the network connectivity between ALCs and
the advantages of using these network topologies. The local network
neighborhood AIS model is then proposed as a network based AIS
model which uses an index-based ALC neighborhood to determine
the network connectivity between ALCs. The proposed model is com-
pared to existing network based AIS models which are applied to data
clustering problems. Furthermore, a sensitivity analysis is also done
on the proposed model to investigate the influence of the model’s pa-
rameters on the quality of the clusters. The paper also gives a formal
definition of data clustering and discusses the performance measures
used to determine the quality of clusters.

1 Introduction

Immunology is the study of the functioning of the natural immune system
found within organisms. The natural immune system functions as a defense
mechanism against foreign or unknown organisms in the body. The inva-
sion of pathogenic material into the body of an organism triggers an immune
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response. Artificial immune systems (AIS) model the functioning of the nat-
ural immune system. AISs have been successfully applied to classification
[12, 14, 15, 35, 36], optimization [4, 5, 7, 13], and data mining and clustering
[6, 8, 42, 43, 44]. Different AIS models exist, based on different theories of
immunology. The model presented in this paper is inspired by the network
theory and is applied to data clustering problems. Thus, the majority of the
paper will be on the network theory of the natural immune system and the
discussion of AIS models based on the network theory and their application
to data clustering problems.

The network interaction or network formation between artificial lympho-
cytes (ALCs) in existing network based artificial immune systems, is either
determined by a proximity matrix of network affinities or the grouping of
similar artificial lymphocytes in sub-networks. The former is normalized
with a network affinity threshold to determine the network links between the
artificial lymphocytes. Therefore the network affinity threshold determines
the number of ALC networks and it can be a formidable task to specify the
correct network affinity threshold to obtain the correct or required number
of clusters, i.e. the ALC network formation is sensitive to the user specified
network affinity threshold value. In the latter case where similar artificial
lymphocytes are grouped into sub-networks, a hybrid-approach is taken by
clustering the ALC population into sub-nets. A potential drawback of the
hybrid-approach is that the clusters (sub-nets) might contain ALCs which do
not have a good or generic representation of the data. Furthermore, existing
network based AIS models for data clustering have many user specified pa-
rameters which need to be determined individually for each data set. Some
of the existing network based AIS models have a low compression on the
data (unable to remove redundant data). The motivation for the research
presented in this paper is to propose a network based AIS model for data
clustering in stationary and non-stationary environments, and which has less
user specified parameters, is independent of a network affinity threshold (or
a hybrid-approach) to determine the number of ALC networks, and delivers
clusters of high quality with a good compression of the data. Furthermore
the proposed AIS model should also be capable to dynamically determine
the number of clusters in a data set. The focus of this paper is the clustering
of data in stationary environments into a user specified number of clusters.
The interested reader is referred to [17] where the proposed AIS model has
been applied to the clustering of data in non-stationary environments and
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[18] where an enhanced version of the proposed AIS model dynamically de-
termines the number of clusters in a data set.

Focusing on the network interaction or network formation between ALCs,
there are alternative and less familiar network topologies to determine the
possible interactions in a network of lymphocytes. These are the linear topol-
ogy introduced by Richter and proposed as a chain-reaction between lym-
phocytes at different levels [38, 39], the cyclic topology which is a conversion
of the linear topology and introduced by Hiernaux [21], and the Cayley tree
which is a loop-less tree [45]. The node which contains the lymphocyte with
the highest affinity with an antigen forms the root node of a Cayley tree
[34, 45]. The advantages of a neighborhood topology have been successfully
shown for particle swarm optimization (PSO) [26]. The two most common
neighborhood topologies used in PSO are the star and ring topologies [10].
The star neighborhood topology is a fully meshed network of particles where
every particle is connected to every other particle in the network topology.
Each particle can therefore communicate with every other particle. The ring

topology arranges particles in a ring structure such that each particle has a
number of particles to the right and left forming the particle’s neighborhood.
The star topology in PSO is very similar to the proximity matrix of network
affinities in AISs where a network affinity threshold is the only difference and
controls the connectivity of the ALCs in the population. The ring topology
in turn is very similar to the cyclic topology in AISs. There is however a
major difference between the network topologies in PSO and those in AIS:
Neighbors in PSO are not determined by spatial distance as in AIS but by
particle indices.

Suganthan [41] introduced the advantages of a neighborhood operator based
on spatial information and was illustrated for particle swarm optimization
(PSO). A neighborhood is defined as the ratio of the distance between a
particle that needs to adapt and all other particles in a swarm. The dis-
tance ratio is measured against a threshold to determine a particle’s local
neighborhood and is similar to the network affinity threshold used with the
proximity matrix of network affinities in AISs. An advantage of a neighbor-
hood operator is the initial diverse space coverage (greedy search), gradually
converging to a more specific search.

The novelty of the proposed network based AIS model in this paper is the
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interpretation of the network theory in that a lymphocyte’s neighbors are
not determined by spatial distance and a network affinity threshold, but by
the index in the population of lymphocytes. This results in the formation
of local network neighborhoods in the population of lymphocytes. An ad-
vantage of local network neighborhoods is increased diversity, which allows
lymphocyte networks to adapt to changes in the environment. Furthermore,
lymphocytes in a network neighborhood interact and learn from one another
to have a better local representation of patterns. Graaff and Engelbrecht [16]
introduced the concept of an index-based artificial lymphocyte neighborhood,
as applied to data clustering, with promising results.

The objectives of this paper is to:

• give a formal definition of data clustering,

• introduce a novel network based AIS model which utilizes a different
network topology,

• perform empirical analysis on the proposed model, and

• compare the clustering performance of the proposed AIS with existing
network based AIS and classical data clustering models.

Section 2 gives a formal definition of data clustering, the performance mea-
sures used to measure the quality of clusters and an overview of existing
classical data clustering algorithms used in this paper. Section 3 gives an
introduction to the natural immune system and provides a detailed expla-
nation of the network theory. An overview of existing network theory based
AISs, which are applied to data clustering problems, is given in section 3.2.
The proposed local network neighborhood algorithm is discussed in section 4.
Experimental results are presented and discussed in section 5 with a sensi-
tivity analysis on the proposed model’s parameters. The paper is concluded
in section 6 with future work on the proposed AIS model.

2 Data Clustering

Data clustering can be defined as the partitioning of patterns in a data set
into different groups in such a way that patterns within the same group are
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more similar to patterns across different groups. Data clustering can for-
mally be defined as follows [2, 22]:

Let P be the data set of patterns in N -dimensional space that needs to
be clustered. Thus,

P = {p1,p2, . . . ,pi, . . . ,pI−1,pI}

where pi is an N -dimensional feature vector (pattern) and I is the number
of feature vectors. The partitioning of P into K clusters, {C1, C2, . . . , CK},
satisfies the following conditions:

1. |Ck| 6= 0, k = 1, 2, . . . , K, meaning that clusters are not allowed to be
empty;

2. P = ∪K
k=1Ck, meaning that each feature vector is assigned to a cluster;

3. |Ck ∩ Cj | = 0, k 6= j, meaning that each feature vector is assigned to
only one cluster (in the case of crisp or hard clustering, i.e. exclusive

clustering); and

4. |Ck ∩ Cj | > 0, k 6= j, meaning that each feature vector is assigned to
all clusters with a certain degree (in the case of fuzzy clustering, i.e.
overlapping clustering).

Each of the formed clusters, {C1, C2, . . . , CK}, is respectively represented
by a centroid, {c1, c2, . . . , cK} [28]. The most commonly used measure of
similarity (or dissimilarity) between data patterns is the Euclidean distance,
defined as

σ2 (pi,pj) = ‖pi − pj‖
2 (1)

Partitioning of these patterns maximizes a specific objective function such
that the separation between clusters is maximized (inter-cluster distance)
and the compactness of the clusters is minimized (intra-cluster distance).
The inter-cluster and intra-cluster distances can be used to measure the
quality of the clusters, as explained next.
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2.1 Performance measures

The compactness of clusters is calculated as the average distance between
the centroid of each cluster and the patterns within that cluster. The com-

pactness of clusters is measured by the intra-cluster distance, calculated as

Jintra =

∑K

k=1

∑

∀p∈Ck
σ (p, ck)

|P |
(2)

Jintra is minimized for more compact clusters. The separation between clus-
ters is calculated as the average distance between the centroids of the clusters.
The separation between clusters is measured by the inter-cluster distance,
calculated as

Jinter =
2

K × (K − 1)

K−1
∑

k=1

K
∑

j=k+1

σ (ck, cj) (3)

Jinter is maximized for more separated clusters. The number of clusters
formed and the quality of these clusters needs to be evaluated. An approach
to validate the number of clusters formed is to visually present the clustering
results. For multidimensional problems where the number of dimensions
is greater than three, visualization of the formed clusters becomes difficult
[19, 27]. An alternative approach is to validate the clustered data set with a
cluster validity index. A validity index which is based on the ratio of intra-

clustering distance to the minimum inter-clustering distance was proposed
by Ray and Turi [37] and is calculated as

Qratio =
Jintra

intermin

(4)

where intermin is calculated as

intermin = min
k=1,...,K−1
j=k+1,...,K

{σ (ck, cj)} (5)

Jintra is defined in eq. (2) and σ is the Euclidean distance as defined in
eq. (1). The definition of intermin calculates the smallest distance between
the centroids of the clusters to determine the smallest separation between
clusters. Qratio needs to be minimized to have the optimal number of clus-
ters (minimized Jintra and maximized intermin). The next section discusses
two partitional clustering algorithms which respectively optimize a specific
objective function to partition a data set.
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2.2 Classical data clustering models

This section discusses two partitional clustering methods which partitions a
data set into a number of non-hierarchical clusters by means of optimizing
a specific objective function. The two algorithms discussed next are the
classical K-means clustering [11] and Clustering Particle Swarm Optimization
(CPSO) [29] algorithms as implemented for the work in this paper.

K-means: K-means initializes K centroids, where K is the number of clus-
ters into which a data set is partitioned. Based on a similarity measure (using
eq. (1)), each feature vector in the data set is then assigned to only one of
these centroids. A feature vector, p, is assigned to a centroid, c, if p is
most similar to c. Thus the subset of feature vectors assigned to a centroid
forms a cluster. After each feature vector in the data set is assigned to a
centroid, the centroid of each cluster is recalculated according to the feature
vectors assigned to the cluster. The K-means clustering algorithm optimizes
the sum of squared distances as objective function by minimizing the inter-

cluster distance [20, 22]. The stopping criterion for K-means in this paper
is based on a specified number of iterations, tmax.

Clustering Particle Swarm Optimization: Clustering Particle Swarm
Optimization (CPSO) maintains a population or a swarm of particles, S.
Each particle in the swarm represents a possible partitioning of the data
set [29]. Thus, each particle represents K number of centroids, such that
N = K × I where I is the number of features and N is the number of di-
mensions of the search space. A particle moves through the search space
by adjusting its position towards its own best experienced solution and to-
wards the best particle in the neighborhood (neighborhood with radius d [40]).
In addition to the feature vector and personal best position contained by a
particle, a particle also maintains its current velocity (which is based on the
inertia weight, w, which is a fraction of the previous velocity and acceleration
constants, c1 and c2). In order to limit the step size with which a particle’s
position is adjusted, the velocities can be clamped [9]. If a particle’s velocity
vector exceeds the specified maximum velocity vector, the particle’s veloc-
ity vector is set to maximum velocity vector. The values of the maximum
velocity vector are selected as a fraction, δ ∈ (0, 1], of the domain of each
dimension of the search space. The quantization error proposed in [29], was
used as the fitness of a particle.
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3 The Natural Immune System

Different theories exist in the study of immunology regarding the functioning
and organizational behavior between lymphocytes in response to encountered
antigen [3, 24, 34]. One of these theories is the network theory, discussed in
the next section.

3.1 The network theory

The network theory was first introduced by Jerne [24, 25]. In brief, when
an antigen stimulates a lymphocyte (in this case a B-cell lymphocyte), the
lymphocyte not only secretes antibodies to bind to the antigen but also gen-
erates mutated clones of itself in an attempt to have a higher binding affinity
with the detected antigen. The former is known as affinity maturation and
consists of two processes known as somatic hyper-mutation and clonal selec-

tion [3]. Somatic hyper-mutation is when a cloned lymphocyte is mutated
to have a higher binding affinity with the detected antigen. The theory of
lymphocyte cloning is known as clonal selection [3]. Clonal selection is the
process of selecting those lymphocytes with the highest binding affinity with
an antigen for cloning. The clonal proliferation of some lymphocytes results
in the non-proliferation of other lymphocytes in the body. Lymphocytes
(including the generated clones) which are not frequently stimulated by an
antigen or which are non-proliferated will eventually be annihilated by the
immune system.

The variable region of an antibody can be antigenic and invoke an immune
response. Thus, the variable region of an antibody, responsible for binding
to an antigen, has an antigenic profile. This antigenic profile is known as the
idiotype of the antibody. The idiotype of an antibody can invoke an immune
response for the creation of anti-idiotypic antibodies by a stimulated B-cell
[25]. As illustrated in figure 1, the idiotopic profile of an antibody consists
of multiple sites in the variable region of an antibody. These sites are known
as idiotopes.

The network theory states that a lymphocyte is not only stimulated by
an antigen, but can also be stimulated or suppressed by neighboring lym-
phocytes. Thus, whenever a lymphocyte reacts to the stimulation of an
antigen, the secretion of antibodies and generation of mutated clones stim-
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Figure 1: Idiotypic Network of Antibodies and B-cells

ulate the lymphocyte’s immediate neighbors if the neighboring B-cells bind
to the idiotopes of the produced antibodies or receptor of the stimulated B-
cell lymphocyte. A neighboring lymphocyte can then in turn also react to
the stimulation of the antigen-stimulated lymphocyte by generating mutated
clones, stimulating or suppressing the next group of neighbors, etc.

3.2 Network based artificial immune system models

This section gives a brief introduction to the network based AIS models
which are used in this paper. The interested reader is referred to the given
references for more detail on the specific models.

Stable Memory Artificial Immune Network AIS: The Stable Mem-
ory Artificial Immune Network (SMAIN) AIS contains a population of arti-
ficial lymphocytes, B, which is initialized with a cross section, Binit, of the
training data [33]. Each artificial lymphocyte (ALC) is initialized with Rinit

resources which decay at a rate, Rγ. The maximum resources that can be
allocated by an ALC are Rmax. All ALCs with a resource level less than
the mortality threshold, RΛ, are culled from the network. Rk ∈ (0, 1) is a
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constant which is used to calculate an ALC’s resource-level. Furthermore,
cloning in SMAIN is only performed on the ALC with the closest distance
to an antigen pattern if the measured distance is greater than the network
affinity threshold (NAT). Whenever an antigen triggers cloning of an ALC,
the antigen is initialized as a cloned ALC. Half of the parent ALC’s re-
sources is then assigned to the cloned ALC and the clone is integrated with
the ALC population. There is no mutation operator on the clone. SMAIN
generates stable memory networks which represents structures inherent in
complex data sets. The final population of network ALCs is then clustered
with a clustering technique such as hierarchical agglomerative clustering to
determine the clusters in the data set.

Dynamic Weighted B-cell AIS (DWB): Nasraoui et al. proposed the
DWB AIS model which can also be applied to the clustering of non-stationary
data [30, 31, 32]. An artificial lymphocyte is known as a dynamic weighted
B-cell (DWB-cell) since each training pattern is
grouped with all artificial lymphocytes to a certain degree of membership.
The ALC population, B, has a maximum of Bmax ALCs and is initialized
with the first Bmax of incoming antigen training patterns. The membership
function uses eq. (1) and an initial radius of influence, φinit. A parameter, τ ,
controls the rate at which previously presented antigen patterns contribute
to an ALC’s membership function. The stimulation of an ALC is determined
by weighting the membership with τα and τβ, which respectively weights the
co-stimulation and network suppression contribution to the stimulation of an
ALC. After every A antigen patterns, the population of ALCs are compressed
into
kcompress ALC networks using K-means clustering. The DWB AIS model
uses a cloning constant, kclone, which determines the number of clones that
needs to be generated for an activated ALC. Only mature and activated
ALCs in the DWB model are cloned and the clones are mutated with a
mutation rate, ς. The minimum threshold for an ALC to activate is mmin

(membership function value greater than mmin) and an ALC is mature if its
age is between amin and amax. An ALC’s age is incremented if the ALC is
not activated by an antigen pattern and reset to zero if activated. Whenever
the maximum size, Bmax , of the network of ALCs has been reached, the
ALCs are sorted in ascending order of their stimulation levels and starting
from the top, the ALCs with the lowest stimulation levels are removed until
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the size of the network is equal to the maximum size, Bmax . Whenever the
immune network of ALCs cannot react to an antigen pattern, the specific
antigen pattern is initialized as an ALC and added to the ALC population.

Opt-aiNet: De Castro and Von Zuben proposed a novel network based
AIS model known as aiNet. The aiNet model evolves a population of linked
memory ALCs through clonal selection [6, 8]. The ALCs are connected by
weighted edges to form pairs in an ALC network. The weight value associated
with each edge indicates the similarity between two ALCs. The aiNet model
was adapted to solve multi-modal function optimization
problems and is known as opt-aiNet [4]. The opt-aiNet model maintains a
dynamic population size and is capable of locating local optima solutions.
The ALC population, B, is initialized with Binit ALCs. The network affinity
between two ALCs is calculated as the Euclidean distance, as defined in
eq. (1). The fitness of an ALC, b, is calculated using the fitness function,
f , which is the objective that needs to be optimized. η ALC clones are
generated for each b. Each ALC clone is mutated proportionally to the
normalized fitness, f ∗, of its parent b as [4]

b
′

= b +

(

1

β

)

exp [− (1 − f ∗ (b))] N (0, 1) (6)

where N (0, 1) is a Gaussian random variable with zero mean and standard
deviation of one. β controls the decay of the inverse exponential function.
Cloning of the ALC population is done until the difference in average fitness
of B is less than a pre-defined threshold ǫfitness. After cloning, if the cal-
culated network affinities between ALCs are below the network suppression
threshold, ǫnetwork, the ALCs with the lowest fitness are removed from B. A
ratio, ϕ, (of the size of B) of randomly generated ALCs is added to B. In the
context of data clustering as an optimization problem, each ALC in the pop-
ulation represents a possible partitioning of the data set (similar to CPSO).
Thus, an ALC represents K centroids, one for each cluster. The objective
function that needs to be optimized is the quantization error as defined in
[29] and is thus the fitness function of the ALCs.
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4 A Local Network Neighborhood Artificial

Immune System

The co-operation and co-stimulation or suppression between lymphocytes to
respond and adapt to invading antigens can result in the formation of lym-
phocyte network structures in the natural immune system, i.e. the network
theory of immunology. An antigen stimulated lymphocyte not only secretes
antibodies but also proliferates by generating mutated clones to adapt to the
antigen structure. The proliferation of a lymphocyte stimulates the immedi-
ate neighboring lymphocytes,
which in turn might also proliferate to adapt to the antigen structure and
stimulate neighboring lymphocytes. Thus, a network of lymphocytes learns

the structure of an antigen by co-stimulating each other. The network topol-
ogy of co-stimulated lymphocytes inspired the modeling of the local network
neighborhood artificial immune system (LNNAIS), which was initially pro-
posed by Graaff and Engelbrecht as a proof of concept [16]. The different
parts of the LNNAIS algorithm are discussed in sections 4.1 to 4.4. The
differences and similarities between existing network based AIS models and
the proposed LNNAIS are discussed in section 4.5.

4.1 The algorithm

The proposed LNNAIS algorithm is given in pseudo code in Algorithm 1 [18]
and consists of six high level steps to respond to an antigen/training pattern.
These steps are:

1. Present an antigen to each ALC in the population and return the ALC
with the highest calculated binding affinity with the antigen.

2. The returned highest affinity ALC reacts to the antigen pattern by
initializing the antigen pattern as an antigen mutated clone and binds
to the clone.

3. If the highest affinity ALC activates, the activated ALC spawns a mu-
tated clone.

4. The spawned clone then binds to those antigen mutated clones of the
activated ALC with which the spawned clone has a higher binding
affinity than the activated ALC.
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5. The mutated clone or activated ALC then co-stimulates ALCs which
is within the local neighborhood of the activated ALC.

6. Co-stimulation of neighboring ALCs can result in co-suppression and/or
the non-proliferation of other ALCs in the population.

The first three steps simulate the affinity maturation of a lymphocyte in the
natural immune system. The first step models the clonal selection of the
natural immune system. The antigen pattern selects the ALC with which
the antigen has the highest binding affinity for cloning. The second step
models the proliferation of a lymphocyte in the natural immune system.
When a lymphocyte reaches a certain level of proliferation (clone size), the
lymphocyte activates and spawns a mutated clone (somatic hyper-mutation

in the third step). The fourth and fifth steps simulate the network theory of
co-stimulation and/or suppression, and the final step the non-proliferation of
other lymphocyte clones due to the proliferation of neighboring lymphocytes.
The above high level steps are grouped into three phases, namely react, adapt

and suppress. Each of these phases is explained next.

4.2 Reacting to an antigen

The high level steps of the react phase are basically the steps responsible
for calculating the affinity levels between the ALCs in population B and
an antigen, selecting the ALC with the highest affinity and proliferating the
selected ALC. The sections to follow explain and define each of these aspects.

4.2.1 Calculating the affinity

The affinity between an antigen pattern, a, and an ALC, b, is known as
the antigen affinity and is calculated as the Euclidean distance between b
and a. Euclidean distance is defined in eq. (1) and is also used to measure
the network affinity between two ALCs. The affinity determines the bind-
ing strength between an ALC and an antigen pattern or neighboring ALC.
Therefore, a lower Euclidean distance implies a higher affinity (stronger bind-
ing) between an ALC and an antigen pattern or neighboring ALC, and vice
versa.
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Algorithm 1 High Level LNNAIS Algorithm

1: Set the maximum size of the ALC population as Bmax

2: Initialize an empty set of ALCs as population B
3: for each antigen, aj ∈ A, at index position j in A do
4: if |B| ≤ 0 then
5: Initialize a new ALC, b, with the same structure as pattern aj

6: B = B ∪ b
7: end if
8: Calculate the antigen affinity between aj and each bi ∈ B using eq. (1)
9: Select bh ∈ B, at index h, as the ALC with highest calculated antigen

affinity
10: Proliferate bh as discussed in section 4.2.2
11: if bh is activated (|Ch| > ǫclone) then
12: Generate a mutated clone, b

′

h, using eq. (10)
13: Secrete an antibody, b∗, as discussed in section 4.2.4
14: Determine the local network neighborhood of bh using eq. (11)
15: Co-stimulate the local network neighborhood of bh with b∗, as dis-

cussed in section 4.3.3
16: end if
17: end for
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4.2.2 Proliferating the clonal selected ALC

The ALC with the highest binding affinity with an antigen pattern is selected
as bh, where h is the index position of the selected ALC in B. The antigen
pattern a is then initialized as an antigen mutated clone a

′

. The antigen
mutated clone a

′

is grouped with bh by inserting a
′

at the first index position
of the clonal set Ch. Each ALC, bi, at index position i in B, contains a set
of antigen mutated clones, Ci. Inserting an antigen mutated clone into Ci

increases the clonal level of bi. An ALC activates when the clonal level,
|C|, of the ALC exceeds the clonal level threshold, ǫclone. Once an ALC is
activated, the activated ALC generates a mutated ALC clone. When an
antigen mutated clone is inserted at the first index of C and |C| > ǫclone, the
antigen mutated clone at the last index position |C|, is removed from C. This
gives more current antigen mutated clones a higher probability to survive and
influence the generation of the mutated ALC clone. The sections to follow
discuss different definitions used to generate a mutated ALC clone.

4.2.3 Normalizing the affinity of an antigen mutated clone

The normalized affinity between an antigen mutated clone, a
′

∈ Ci, and an
ALC bi, is defined as [18]

σ∗
(

bi, a
′

, Ci

)

= 1.0 −
σ

(

bi, a
′
)

σmax + 1.0
(7)

where
σmax = maxc=1,...|Ci|

{

σ
(

bi, a
′

c

)}

(8)

and a
′

c is an antigen mutated clone at index position c in clonal set Ci of ALC
bi. The affinity between an antigen mutated clone, a

′

c ∈ Ci, and an ALC, bi,
is normalized with respect to the lowest affinity (highest Euclidean distance)
in the set of antigen mutated clones, Ci. A lower affinity between an antigen
mutated clone and an ALC will result in a lower normalized affinity and vice
versa. Thus the higher an ALC’s affinity towards an antigen mutated clone,
the more the ALC’s clone will be mutated towards the antigen mutated clone
[18], as explained in the next section.
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4.2.4 Generating a mutated clone of an activated ALC

The vector difference between two vectors q and r is defined as:

θ (r,q) = q − r (9)

The above function returns a vector with the same number of attributes
(components) as q. These attributes are calculated by subtracting each at-
tribute in r from the corresponding attribute in q. The set of antigen mutated
clones, Ci, which is contained by an ALC bi determines the mutated clone
which will be generated when an ALC is activated. The mutated clone, b

′

i,
is calculated using [18]

b
′

i = bi +

∑|Ci|
c=1 σ∗

(

bi, a
′

c, Ci

)

θ
(

bi, a
′

c

)

∑|Ci|
c=1 σ∗ (bi, a

′

c, Ci)
(10)

In the above definition, the ALC clone is mutated more towards higher affin-
ity antigen mutated clones in Ci, since higher binding affinity antigen mutated
clones with ALC bi have a higher influence on the mutation of the clone in
comparison with antigen mutated clones with a lower binding affinity.

4.2.5 Secreting an antibody for co-stimulation

The mutated ALC clone, b
′

i, inherits all the antigen mutated clones of the
parent ALC, bi, with which the mutated ALC clone has a higher affinity
than the parent ALC. The inherited antigen mutated clones are added to the
clonal set of b

′

i (bind to b
′

i). If the clonal level of the mutated ALC clone is
higher than half of the clonal level of the parent ALC, the parent ALC bi is
added as an antigen mutated clone to the clonal set of b

′

i. The parent ALC is
then replaced by the mutated ALC clone in B and secreted as a co-stimulating
antibody to neighboring ALCs. The parent ALC is suppressed if the clonal
level of the mutated ALC clone is less than half of the clonal level of the
parent ALC. A parent ALC, bi, is suppressed by removing all of the antigen
mutated clones in Ci. Suppression prevents frequently activated ALCs from
dominating the population. The mutated ALC clone is then inserted into Ci

of the parent ALC bi to co-stimulate the parent ALC and also preserve the
memory of the antigen structure. The mutated ALC clone is secreted as a co-
stimulating antibody to neighboring ALCs. The following section discusses
the co-stimulation of neighboring ALCs within a local network neighborhood.

16



4.3 Adapting the ALCs in a local network neighbor-
hood

The co-stimulating antibody which is secreted during the activation of a pro-
liferated ALC is presented to the immediate ALC neighbor(s) in the local
network neighborhood of the activated ALC. The neighboring ALCs within
a local network neighborhood adapt to the antibody as it would react to
an antigen (as explained in section 4.2). The following sections discuss the
manner in which a local network neighborhood of an activated ALC is de-
termined.

4.3.1 Determining the local network neighborhood of an activated
ALC

An ALC’s neighborhood, N , is determined by a network neighborhood win-
dow of size, ρ, and the highest average network affinity between the potential
neighboring ALCs. The neighborhood, Ni,ρ, of an ALC, bi ∈ B, is defined
as [18]

Ni,ρ =

{

∀bj ∈ B : min
j=i−(ρ−1),...,i

{µ (j, j + (ρ − 1))}

}

(11)

where

ρ ≤ |B| (12)

Ni,ρ ⊆ B (13)

bi ∈ Ni,ρ (14)

and µ calculates the average network affinity between ALCs in the population
from index position i to i+(ρ − 1) and is defined in section 4.3.2. The above
definition is a network window of size ρ which starts at position i − (ρ − 1),
sliding over the ALC population in search of the highest average network
affinity (minimum average distance) [18]. Figure 2 illustrates a local network
neighborhood where ρ = 5 and the network with the highest average network
affinity starts at index position h − 2.
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Figure 2: Adapting an ALC network neighborhood

4.3.2 Calculating the average network affinity in a local network
neighborhood

The average network affinity level of a network of ALCs starting at index
position x to y, is defined as [18]

µ (x, y) =

∑y−1
i=x σ (bi,bi+1)

y − x
(15)

where σ is the Euclidean distance (as defined in eq. (1)).

4.3.3 Co-stimulating the local network neighborhood

The neighboring ALCs within a local network neighborhood, Ni,ρ, adapts
to the secreted antibody of its predecessor in the neighborhood. Figure 2
illustrates a local network neighborhood with ρ = 5 adapting to an antigen.
In this figure, ALC bh, is selected by the antigen for cloning and prolifera-
tion (as explained in section 4.2.2). As a result of proliferating bh, the ALC
became active (|Ch| > ǫclone) and secreted an antibody for co-stimulation of
the immediate neighbors of bh. The immediate neighbors of bh at indices
h−1 and h+1 react to the secreted antibody by adding the clonal set of the
antibody to Ch−1 and Ch+1, respectively. If either or both of the neighboring
ALCs, bh−1 and bh+1 becomes activated, either or both will secrete antibod-
ies (as explained in section 4.2.4), which will co-stimulate their immediate
ALC neighbors at indices h − 2 and h + 2, respectively. If a neighboring
ALC is not activated by the co-stimulation of a predecessor’s antibody, the
antibody is inserted into the local network at the index of the neighboring
ALC, increasing the population size through clonal expansion (discussed in
section 4.3.4). The neighboring ALCs with the highest network affinity in

18



i∗ (b∗,bi) =

{

i if σ(b∗,bi−1)+σ(b∗,bi)
2

<
σ(b∗,bi)+σ(b∗,bi+1)

2

i + 1 otherwise
(16)

the population, which are not within the local network neighborhood, are
merged to stabilize the population size. Merging of ALCs simulate the non-
proliferation of other ALC clones in the population (discussed in section 4.4).
The process of co-stimulation continues until the ALCs on the boundary
of the local network neighborhood are co-stimulated or until a neighboring
ALC is not activated by the co-stimulation of a predecessor’s antibody. Al-
gorithm 2 lists the pseudo code for adapting the ALCs in a local network
neighborhood.

4.3.4 Clonal expansion of a local network neighborhood

A local network neighborhood is clonally expanded
whenever a neighboring ALC, bi, is not activated by the co-stimulation of
a predecessor’s secreted antibody. The secreted antibody, b∗, is inserted at
position i∗ which is defined in eq. (16). The secreted antibody is inserted at
the index position where the average network affinity is the highest between
the secreted antibody and its potential neighboring ALCs.

4.4 Suppression (Non-proliferation) of the ALC pop-

ulation

The maximum ALC population size, Bmax, is exceeded whenever clonal
expansion occurs in a local network neighborhood. Therefore, the non-
proliferation and suppression of other ALCs in the population keeps the size
of the ALC population stable. Non-proliferation (suppression) is simulated
by merging two ALCs in the population which is not within the clonally
expanded local network neighborhood, and which has the highest network
affinity in the population.
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Algorithm 2 Adapting the Neighborhood, Nh,ρ, to an Activated ALC, bh

1: Let b∗ be the secreted antibody of the activated ALC bh

2: l = h − 1; r = h + 1
3: Let b∗

l = b∗ and b∗
r = b∗ be the secreted antibodies for co-stimulation

of neighboring ALCs bl and br, respectively
4: Activated=true
5: for bl ∈ Nh,ρ and Activated do
6: Add antigen mutated clones of b∗

l to clonal set Cl of neighboring ALC
bl

7: if bl is activated (i.e. |Cl| > ǫclone) then
8: Generate a mutated clone, b

′

l, using eq. (10)
9: Secrete an antibody b∗

l from bl, as discussed in section 4.2.4
10: l = l − 1
11: else
12: Activated=false
13: Insert b∗

l into Nh,ρ at position i∗ (b∗
l ,bl) (as defined in eq. (16))

14: Merge two ALCs in the population with the highest network affinity,
as discussed in section 4.4

15: end if
16: end for
17: Activated=true
18: for br ∈ Nh,ρ and Activated do
19: Add antigen mutated clones of b∗

r to clonal set Cr of neighboring ALC
br

20: if br is activated (i.e. |Cr| > ǫclone) then
21: Generate a mutated clone, b

′

r, using eq. (10)
22: Secrete an antibody b∗

r from br, as discussed in section 4.2.4
23: r = r + 1
24: else
25: Activated=false
26: Insert b∗

r into Nh,ρ at position i∗ (b∗
r ,br) (as defined in eq. (16))

27: Merge two ALCs in the population with the highest network affinity,
as discussed in section 4.4

28: end if
29: end for

20



4.5 Similarities and differences with other network based
AIS models

This section discusses some of the differences and similarities between the
proposed algorithm and existing network based AIS models.

4.5.1 Training data

Although the proposed LNNAIS model can be trained on normalized data,
the normalization of training data is not a prerequisite for LNNAIS. Similar
to other network based AIS models, LNNAIS sees all training patterns as
antigen patterns.

4.5.2 Population of ALCs

The population of ALCs can be initialized with a number of randomly ini-
tialized ALCs or a number of randomly selected training patterns as ALCs,
i.e. a cross section of the training data is used to initialize the ALCs. The
initial population of ALCs in LNNAIS is an empty set. The first randomly
selected training pattern is initialized as an ALC and added to the popula-
tion of ALCs. This concept is known as dendritic injection in the natural
immune system. The population of ALCs are grown and pruned in LNNAIS.
The growth of the population of ALCs in LNNAIS is based on the process
of affinity maturation. When an activated ALC of a local network neighbor-
hood does not adapt to the presented antigen pattern, the clonal level of the
ALC is penalized and a mutated clone of the ALC is inserted into the local
network of ALCs.

4.5.3 ALC presentation and affinity measurement

An ALC in LNNAIS is presented by a continuous valued array with the
same dimension as the antigen patterns in the training set, as is the case for
other network based AIS models. The affinity between an antigen pattern
and an ALC is measured using the Euclidean distance as defined in section
4.2.1. The affinity between two ALCs, referred to as network affinity, is
also measured using the Euclidean distance. Some of the existing network
based AIS models also measure antigen and network affinity using Euclidean
distance. The difference between LNNAIS and the existing network based
AIS models is that LNNAIS has no threshold to determine whether two
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ALCs are linked to form a network. LNNAIS introduces a new concept of
an ALC network neighborhood size, as defined in section 4.3.1 and proposed
by Graaff and Engelbrecht [16].

4.5.4 Learning the antigen structure

Another similarity between existing network based AIS models and the pro-
posed LNNAIS is that some ALCs are cloned and mutated to adapt to antigen
patterns. LNNAIS also models the process of affinity maturation to intro-
duce new ALCs into the population as discussed in section 4.3.3. LNNAIS
also models the non-proliferation of ALCs, as discussed in section 4.3.3. The
difference between LNNAIS and existing network based AIS models is that
expansion of the ALC population is done on a per local network neighborhood
bases. LNNAIS models the idiotopic network theory of ALCs. This means
that the insertion of new ALCs into a population will be done within a local
network neighborhood (as discussed in section 4.3.3). Non-proliferation on
the other hand is only done on ALCs which do not form part of the activated

local network neighborhood. This means that only ALCs outside a network
neighborhood will be non-proliferated in the ALC population (as discussed
in section 4.3.3). This approach penalizes the population of ALCs by non-

proliferating the population but also reinforces the network neighborhood by
clonal expansion.

4.5.5 Determining the number of clusters

The number of ALC networks formed in existing network based AIS models
represents potential clusters in the data set. In most of the existing network
based AIS models the number of ALC networks in a population is determined
by a network affinity threshold or a hybrid-approach is taken by clustering
the ALC population into sub-nets (as discussed in section 3.2). The thresh-
olding technique uses a proximity matrix of network affinities between the
ALCs in the population. The ALCs with a network affinity below the thresh-
old value are allowed to be linked and form networks. Therefore the specified
value of the network affinity threshold determines the number of ALC net-
works and it can be a formidable task to specify the correct network affinity
threshold to obtain the correct or required number of clusters. A poten-
tial drawback of the hybrid-approach is that the clusters (sub-nets) might
contain ALCs which do not have a good or generic representation of the data.

22



Figure 3: Determining the Number of Clusters in LNNAIS [18]

The proposed LNNAIS model has the advantage that an ALC can only link to
its immediate neighbors to form an ALC network. This is due to the network
topology and an index-based neighborhood technique. Therefore, there is no
need for a network affinity threshold and/or a proximity matrix of network
affinities to determine the number of ALC networks in LNNAIS. It is also
not necessary to follow a hybrid-approach of clustering the ALC population.
Determining the number of clusters in LNNAIS is explained next. In order
to obtain a specified number of clusters, K, the network affinities between
neighboring ALCs in the population need to be calculated. The boundaries
of each cluster are then determined by pruning the network links between
the K lowest calculated network affinities. Figure 3 illustrates this technique
where K = 3 [18]. The edges between ALCs have an associated network
affinity. The K edges that form the boundaries between the ALCs (dotted
lines) have the lowest network affinity in the ALC population, i.e. highest
Euclidean distance. The centroid of each of the formed ALC networks is
calculated as the mean vector of the ALCs in the network.

4.5.6 The number of parameters

Focusing on existing network based AIS models which are used in this paper;
there is also a significant difference in the number of parameters that need
to be specified for each of the models. The DWB model has a total of 12
parameters, SMAIN has a total of seven parameters and Opt-aiNet a total
of six parameters. The proposed LNNAIS model has only three parameters
which are the maximum population size, Bmax, the neighboring radius, ρ,
and the activation level for ALC cloning, ǫclone.
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5 Experimental Results and Analysis

This section discusses and compares the clustering results obtained by K-
means, CPSO, SMAIN, DWB, Opt-aiNet and LNNAIS. Furthermore, a sen-
sitivity analysis of LNNAIS is done on the different data sets.

5.1 Data clustering problems

Table 1 lists the selection of data sets used to benchmark the clustering per-
formance and quality of the proposed LNNAIS model against the clustering
quality of existing clustering methods like K-means clustering and CPSO (as
discussed in section 2.2) and network based AIS models for data clustering
like SMAIN, DWB-AIS and Opt-aiNet (as discussed in section 3.2). The
characteristics of each data set are also listed in the table. These are the
number of patterns in the data set (|P |), the number of features per pattern
in the data set (N - number of dimensions), the maximum distance between
the patterns in the data set (σmax), the number of clusters selected for par-
titioning the data set (K) and whether there are any overlapping patterns
in the data set. The two spiral, hepta, engytime, chainlink and target data
sets are part of a fundamental clustering problems suite [23]. The other data
sets were collected from the UCI Machine Learning repository [1].

The data sets in table 1 can be categorized into four groups.

• Group 1 (small number of features / small number of patterns): The
data sets within this group have a small number of features and a small
number of patterns. The iris data set, two spiral problem and hepta
data set form part of this group. All of these data sets have less than
500 patterns and less than five features per pattern.

• Group 2 (small number of features / large number of patterns): The
data sets within this group also have a small number of features but a
larger number of patterns in comparison to the data sets in group 1.
The engytime data set, chainlink data set and the target data set (to a
lesser extent) form part of this group. All of these data sets have more
than 500 patterns and less than five features per pattern.

• Group 3 (large number of features / small number of patterns): This
group contains data sets with a larger number of features in comparison
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Table 1: List of Eleven Benchmarking Data Sets for Clustering

Data set name |P | N σmax K Overlap?
Iris 150 4 7.7 3 Y
Two Spiral 190 2 3.045 12 Y
Hepta 212 3 13.383 7 N
Engytime 4096 2 14.806 2 Y
Chainlink 1000 3 4.383 6 Y
Target 770 2 8.627 5 Y (outliers)
Ionosphere 351 34 11.358 2 Y
Glass 214 9 16.449 6 Y
Image Segmentation 2310 19 1775.117 7 Y
Spambase 4601 57 18758.75 2 Y
Letter Recognition 20000 16 60 26 Y

to groups 1 and 2, but a small number of patterns. The ionosphere data
set and the glass data set form part of this group and both have less
than 500 patterns, with each pattern having more than eight features.

• Group 4 (large number of features / large number of patterns): The last
group contains data sets with a larger number of features (compared to
groups 1 and 2) and a larger number of patterns (compared to groups
1 and 3). The image segmentation data set, spambase data set and
letter recognition data set form part of this group. All of these data
sets have more than 500 patterns and more than eight features.

Taken as a whole, the listed data sets in table 1 represent a good distribu-
tion of data clustering problems with the number of patterns in the range
[150, 20000] and the number of features in the range [2, 57]. All the data sets
have overlapping patterns except the hepta data set. The target data set
also contains outlier patterns.

5.2 Experimental setup and methodology

All experimental results in this paper are averages taken over 50 runs, unless
stated otherwise. The stopping criteria for all algorithms was set to 1000
iterations (tmax = 1000). Populations/Swarms in the respective algorithms
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were initialized by randomly selecting patterns from the data set. The pat-
terns in a data set were randomly presented to each model. None of the
data sets were normalized for training. Tables 2,3,4,5 and 6 summarize the
parameter values used by the respective algorithms for each data set. All
parameter values for the respective algorithms were found empirically to de-
liver the best performance for clustering the applicable data set. The Qratio

validity index, intra error distance (Jintra) and inter error distance (Jinter)
are used as performance measures to determine the clustering quality of the
different models. These clustering performance measures were discussed in
section 2.1.

The following sections investigate whether there is a difference between the
clustering quality, Qratio, of two models for a specific data set or not. The
hypothesis is defined as

• Null hypothesis, H0: There is no difference in Qratio.

• Alternative hypothesis, H1: There is a difference in Qratio.

The above hypothesis was tested with a non-parametric Mann-Whitney U
hypothesis test (0.95 confidence interval, i.e. α = 0.05) between the cluster-
ing quality of LNNAIS and the clustering quality of each of the other models.
The result is statistical significant if the calculated probability (p-value is the
probability of H0 being true) is less than α. The results for each data set
group are discussed next.

5.3 Testing for statistical significance - data group 1

Table 7 summarizes the results obtained for data group 1 using the applicable
parameter values in tables 2-6 for each of the data sets (results with the
lowest average Qratio are shown in boldface). The corresponding statistical
hypothesis tests between LNNAIS and the remaining models for each of the
data sets in group 1 are summarized in table 8 (based on the clustering
quality, Qratio).
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Table 2: DWB Parameter Values

Data set K Bmax φinit mmin A amin amax kclone ς τ τα τβ kcompress

Iris 3 39 0.362 0.087 37 49 49 1.688 0.24 14 5 10 6
Two Spiral 12 46 0.668 0.025 55 6 6 2.438 0.913 12 13 13 5
Hepta 7 47 0.959 0.959 78 35 54 1.625 0.592 1 6 15 2
Engytime 2 39 0.485 0.209 24 24 86 3.188 0.852 6 6 1 4
Chainlink 6 40 0.592 0.102 41 72 91 2.125 0.714 7 11 2 2
Target 5 47 0.554 0.982 36 62 62 3.844 0.89 13 12 11 3
Ionosphere 2 17 0.561 0.929 44 7 68 1.25 0.929 5 7 9 3
Glass 6 46 0.845 0.018 13 11 11 4.031 0.569 2 5 9 7
Image Segmentation 7 47 0.201 0.538 16 2 2 2.906 0.477 12 14 7 1
Spambase 2 46 0.27 0.546 71 9 9 4.562 0.025 3 8 4 4
Letter Recognition 26 45 0.148 0.423 9 27 46 3.062 0.148 8 10 13 3
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Table 3: CPSO Parameter Values

Data set K |S| d w c1 c2 δ

Iris 3 6 3 0.82 1.33 1.218 0.301
Two Spiral 12 9 4 0.558 0.656 1.94 0.326
Hepta 7 44 4 0.697 1.696 0.963 0.62
Engytime 2 63 11 0.641 0.719 0.156 0.359
Chainlink 6 11 5 0.234 0.656 1.969 0.266
Target 5 23 2 0.789 0.422 1.658 0.258
Ionosphere 2 45 8 0.683 1.518 1.207 0.961
Glass 6 13 6 0.914 1.344 1.246 0.115
Image Segmentation 7 10 5 0.77 0.875 1.545 0.312
Spambase 2 42 18 0.812 0.125 1.152 0.938
Letter Recognition 26 49 3 0.836 0.828 1.641 0.055

Table 4: SMAIN Parameter Values

Data set K Binit Rγ RΛ NAT Rk Rmax Rinit

Iris 3 0.25 0.836 3 1.115 0.422 238 37
Two Spiral 12 0.182 0.516 91 0.039 0.656 975 92
Hepta 7 0.191 0.938 38 0.259 0.375 900 88
Engytime 2 0.019 0.672 35 2.322 0.469 725 36
Chainlink 6 0.2 0.859 23 0.038 0.094 425 91
Target 5 0.049 0.824 22 0.077 0.852 819 31
Ionosphere 2 0.157 0.637 34 0.099 0.727 319 68
Glass 6 0.157 0.637 34 0.015 0.727 319 68
Image Segmentation 7 0.29 0.926 2 24.618 0.898 281 76
Spambase 2 0.123 0.805 33 6.571 0.359 388 43
Letter Recognition 26 0.051 0.93 24 8.595 0.109 988 68
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Table 5: Opt-aiNET Parameter Values

Data set K Binit η ǫnetwork ǫfitness ϕ β

Iris 3 44 10 0.186 1.317 0.131 0.356
Two Spiral 12 14 1 0.324 0.902 0.219 0.169
Hepta 7 39 1 0.297 1.54 0.491 0.459
Engytime 2 29 2 0.037 0.412 0.403 0.322
Chainlink 6 7 22 0.178 0.723 0.306 0.283
Target 5 12 3 0.362 1.109 0.338 0.412
Ionosphere 2 28 3 0.477 1.97 0.294 0.144
Glass 6 35 1 0.155 0.961 0.456 0.431
Image Segmentation 7 14 5 0.021 1.184 0.316 0.134
Spambase 2 6 5 0.32 1.985 0.409 0.191
Letter Recognition 26 45 2 0.416 1.258 0.444 0.394

Table 6: LNNAIS Parameter Values

Data set K Bmax ρ ǫclone

Iris 3 14 3 8
Two Spiral 12 39 3 6
Hepta 7 29 3 6
Engytime 2 10 3 22
Chainlink 6 24 3 8
Target 5 28 3 6
Ionosphere 2 10 3 17
Glass 6 24 3 8
Image Segmentation 7 20 2 27
Spambase 2 10 5 22
Letter Recognition 26 104 3 10
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Table 7: Descriptive Statistics: Data Group 1
Data set

Algorithm Jintra Jinter Qratio

Iris
K-means 0.689 3.269 0.509

(± 0.073) (± 0.201) (± 0.268)
CPSO 0.725 2.964 0.658

(± 0.089) (± 0.201) (± 0.354)
SMAIN 0.766 3.705 0.295

(± 0.041) (± 0.207) (± 0.021)
DWB 0.753 3.103 0.547

(± 0.152) (± 0.282) (± 0.304)
Opt-aiNet 0.887 2.977 0.882

(± 0.021) (± 0.095) (± 0.168)
LNNAIS 0.738 3.546 0.333

(± 0.054) (± 0.309) (± 0.048)
Two Spiral

K-means 0.212 1.014 0.521
(± 0.005) (± 0.021) (± 0.102)

CPSO 0.251 0.829 1.648
(± 0.025) (± 0.079) (± 0.978)

SMAIN 0.213 1.096 0.433
(± 0.004) (± 0.013) (± 0.015)

DWB 0.241 0.988 1.094
Continued on next page
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Algorithm Jintra Jinter Qratio

(± 0.010) (± 0.065) (± 0.501)
Opt-aiNet 0.279 0.813 2.740

(± 0.027) (± 0.105) (± 3.020)
LNNAIS 0.233 1.030 0.847

(± 0.009) (± 0.041) (± 0.296)
Hepta

K-means 0.976 4.041 0.999
(± 0.232) (± 0.147) (± 0.465)

CPSO 0.893 3.930 1.095
(± 0.355) (± 0.344) (± 1.748)

SMAIN 0.641 4.147 0.219
(± 0.001) (± 0.005) (± 0.001)

DWB 1.187 3.990 1.254
(± 0.260) (± 0.238) (± 0.618)

Opt-aiNet 1.179 3.681 1.643
(± 0.462) (± 0.499) (± 1.353)

LNNAIS 0.748 4.140 0.345
(± 0.102) (± 0.099) (± 0.206)

The Mann-Whitney U statistical hypothesis test accepts H0 that the means
are the same at a 0.05 level of significance between LNNAIS and Opt-aiNet
and between LNNAIS and CPSO for data set hepta. The remainder of
the Mann-Whitney U statistical hypothesis tests showed a significant differ-
ence in performance between LNNAIS and the other clustering algorithms.
LNNAIS tends to deliver clusters of a higher quality when compared to
K-means, CPSO, DWB and Opt-aiNet for data sets iris and hepta. Al-
though SMAIN tends to deliver clusters of a higher quality when compared
to LNNAIS for all data sets in group 1, LNNAIS delivers more compact clus-
ters for the iris data set. Also, K-means tends to deliver clusters of a higher
quality for data set two spiral (refer to table 7). SMAIN tends to find clusters
in the data sets of group 1 with a higher quality, followed by LNNAIS.

5.4 Testing for statistical significance - data group 2

The results obtained for data group 2 with the applicable parameter values
in tables 2-6 are summarized in table 9. The Mann-Whitney U statistical
hypothesis test accepts H0 that the mean clustering quality, Qratio, are the
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Table 8: Statistical Hypothesis Testing between LNNAIS and Other Mod-
els based on Qratio: Data Group 1 (α = 0.05; with continuity correction;
unpaired; non-directional)

Data set Algorithm z p Outcome
K-means 4.539 < 0.001 Reject H0

CPSO 5.958 < 0.001 Reject H0

Iris DWB 5.115 < 0.001 Reject H0

SMAIN 3.726 < 0.001 Reject H0

Opt-aiNet 6.646 < 0.001 Reject H0

K-means 5.773 < 0.001 Reject H0

CPSO 4.361 < 0.001 Reject H0

Two Spiral DWB 2.21 0.027 Reject H0

SMAIN 6.646 < 0.001 Reject H0

Opt-aiNet 6.246 < 0.001 Reject H0

K-means 3.726 < 0.001 Reject H0

CPSO 1.331 0.183 Accept H0

Hepta DWB 5.892 < 0.001 Reject H0

SMAIN 6.646 < 0.001 Reject H0

Opt-aiNet 1.804 0.071 Accept H0
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same between LNNAIS and DWB for data set chainlink; and rejects H0 for
all other cases (as summarized in table 10).

Table 9: Descriptive Statistics: Data Group 2
Data set

Algorithm Jintra Jinter Qratio

Engytime
K-means 1.431 2.998 0.477

(± 0.000) (± 0.000) (± 0.000)
CPSO 1.435 2.935 0.489

(± 0.001) (± 0.012) (± 0.002)
SMAIN 2.097 5.975 0.355

(± 0.103) (± 0.670) (± 0.039)
DWB 1.599 3.057 0.540

(± 0.120) (± 0.526) (± 0.115)
Opt-aiNet 1.435 2.932 0.490

(± 0.001) (± 0.025) (± 0.004)
LNNAIS 1.944 4.557 0.438

(± 0.281) (± 1.043) (± 0.069)
Chainlink

K-means 0.488 1.550 0.517
(± 0.006) (± 0.049) (± 0.031)

CPSO 0.592 1.412 1.092
(± 0.053) (± 0.150) (± 0.667)

SMAIN 0.487 1.643 0.471
(± 0.007) (± 0.039) (± 0.023)

DWB 0.538 1.506 0.751
Continued on next page
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Algorithm Jintra Jinter Qratio

(± 0.025) (± 0.074) (± 0.320)
Opt-aiNet 0.646 1.363 1.352

(± 0.059) (± 0.185) (± 0.554)
LNNAIS 0.535 1.493 0.640

(± 0.021) (± 0.116) (± 0.118)
Target

K-means 0.544 2.393 0.337
(± 0.030) (± 0.244) (± 0.032)

CPSO 0.749 2.340 1.133
(± 0.077) (± 0.556) (± 0.578)

SMAIN 1.008 5.794 0.238
(± 0.000) (± 0.000) (± 0.001)

DWB 0.649 2.058 0.752
(± 0.059) (± 0.319) (± 0.285)

Opt-aiNet 0.792 2.706 1.750
(± 0.050) (± 0.494) (± 1.491)

LNNAIS 0.804 2.985 0.559
(± 0.124) (± 0.525) (± 0.155)

Referring to table 9, LNNAIS tends to deliver clusters of a higher quality
when compared to CPSO, DWB and Opt-aiNet for all data sets in group
2. K-means tends to deliver clusters of a higher quality when compared to
LNNAIS for data sets chainlink and target but of lower quality for data set
engytime. SMAIN also tends to deliver clusters of a higher quality for all
data sets in group 2, followed by LNNAIS.

5.5 Testing for statistical significance - data group 3

The results of the Mann-Whitney U statistical hypothesis test accepts H0

that the mean clustering quality, Qratio, are the same between LNNAIS and
DWB, and LNNAIS and CPSO for data set ionosphere and rejects H0 for all
other cases (as summarized in table 11). LNNAIS tends to deliver clusters
of a higher quality for all data sets in group 3 when compared to K-means,
CPSO and DWB (refer to table 12). However, SMAIN and Opt-aiNet tend to
deliver clusters of a higher quality for data set ionosphere when compared to
cluster quality of LNNAIS. SMAIN also tend to deliver clusters of a higher
quality for the data sets in group 3, followed by LNNAIS. LNNAIS does
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Table 10: Statistical Hypothesis Testing between LNNAIS and Other Mod-
els based on Qratio: Data Group 2 (α = 0.05; with continuity correction;
unpaired; non-directional)

Data set Algorithm z p Outcome
K-means 3.097 0.002 Reject H0

CPSO 3.4 < 0.001 Reject H0

Engytime DWB 3.888 < 0.001 Reject H0

SMAIN 4.931 < 0.001 Reject H0

Opt-aiNet 3.4 < 0.001 Reject H0

K-means 4.886 < 0.001 Reject H0

CPSO 3.748 < 0.001 Reject H0

Chainlink DWB 0.85 0.395 Accept H0

SMAIN 6.32 < 0.001 Reject H0

Opt-aiNet 5.759 < 0.001 Reject H0

K-means 6.513 < 0.001 Reject H0

CPSO 4.517 < 0.001 Reject H0

Target DWB 2.964 0.003 Reject H0

SMAIN 6.646 < 0.001 Reject H0

Opt-aiNet 4.657 < 0.001 Reject H0

however deliver more compact clusters than SMAIN for the glass data set.

Table 12: Descriptive Statistics: Data Group 3
Data set

Algorithm Jintra Jinter Qratio

Ionosphere
Continued on next page
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Table 11: Statistical Hypothesis Testing between LNNAIS and Other Mod-
els based on Qratio: Data Group 3 (α = 0.05; with continuity correction;
unpaired; non-directional)

Data set Algorithm z p Outcome
K-means 2.24 0.025 Reject H0

CPSO 1.833 0.067 Accept H0

Ionosphere DWB 1.582 0.114 Accept H0

SMAIN 6.646 < 0.001 Reject H0

Opt-aiNet 3.837 < 0.001 Reject H0

K-means 4.664 < 0.001 Reject H0

CPSO 6.513 < 0.001 Reject H0

Glass DWB 6.291 < 0.001 Reject H0

SMAIN 4.916 < 0.001 Reject H0

Opt-aiNet 6.646 < 0.001 Reject H0

Algorithm Jintra Jinter Qratio

K-means 2.302 3.192 0.728
(± 0.125) (± 0.486) (± 0.045)

CPSO 2.806 4.197 0.778
(± 0.221) (± 1.306) (± 0.387)

SMAIN 2.767 6.047 0.458
(± 0.000) (± 0.000) (± 0.000)

DWB 2.632 3.488 0.799
(± 0.168) (± 0.888) (± 0.195)

Opt-aiNet 2.781 4.623 0.662
(± 0.068) (± 1.086) (± 0.275)

LNNAIS 2.807 3.962 0.725
(± 0.207) (± 0.576) (± 0.127)

Glass
Continued on next page
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Algorithm Jintra Jinter Qratio

K-means 1.035 4.557 0.901
(± 0.038) (± 0.464) (± 0.309)

CPSO 1.581 3.017 1.685
(± 0.120) (± 1.121) (± 0.674)

SMAIN 1.709 7.663 0.381
(± 0.003) (± 0.038) (± 0.007)

DWB 1.198 3.716 1.458
(± 0.089) (± 0.899) (± 0.471)

Opt-aiNet 1.446 3.256 2.188
(± 0.170) (± 1.179) (± 0.701)

LNNAIS 1.358 5.367 0.541
(± 0.149) (± 0.423) (± 0.113)

5.6 Testing for statistical significance - data group 4

Table 13 summarizes the results obtained for data group 4. The correspond-
ing statistical hypothesis tests between LNNAIS and the remaining models
for each of the data sets in group 4 are summarized in table 14. The Mann-
Whitney U statistical hypothesis test accepts H0 that the means are the same
between LNNAIS and K-means for data set image segmentation, and between
LNNAIS and Opt-aiNet for data set letter recognition. The Mann-Whitney
U statistical hypothesis test rejects H0 for all other cases (as summarized in
table 14). In most cases LNNAIS tends to deliver clusters of a higher quality
except for data set image segmentation and letter recognition where SMAIN
tends to deliver clusters of a higher quality (refer to table 13). Also, K-means
tends to deliver clusters of a higher quality for data set letter recognition.

The experimental results show that in general LNNAIS delivers clusters of
similar or higher quality than classical data clustering models like K-means
and CPSO, and network based AIS models like DWB and Opt-aiNet. Over-
all, SMAIN tends to deliver clusters of a higher quality for all data sets,
followed by LNNAIS. Although SMAIN tends to deliver clusters of a higher
quality than LNNAIS, a cursory assessment indicates that SMAIN tends to
utilize a larger ALC population than LNNAIS. Since the final population
of ALCs in SMAIN is clustered with a hierarchical agglomerative clustering
technique to determine the clusters in the data set, the larger ALC pop-
ulation size of SMAIN results in superior clustering quality. Furthermore,
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LNNAIS has less user specified parameters when compared to SMAIN. The
next section compares and discusses the ALC population sizes of SMAIN,
DWB and LNNAIS to elaborate on the cursory assessment of the compres-
sion of the data. This is then followed by a sensitivity analysis of the LNNAIS
parameters on the clustering quality of the model.

Table 13: Descriptive Statistics: Data Group 4
Data set

Algorithm Jintra Jinter Qratio

Image Segmentation
K-means 65.274 356.964 0.694

(± 0.523) (± 32.396) (± 0.033)
CPSO 77.522 177.950 1.493

(± 7.161) (± 24.600) (± 0.598)
SMAIN 126.990 787.028 0.400

(± 0.283) (± 1.906) (± 0.001)
DWB 71.657 245.495 1.060

(± 3.074) (± 133.903) (± 0.301)
Opt-aiNet 74.457 174.931 1.621

(± 6.321) (± 28.219) (± 0.990)
LNNAIS 87.984 597.456 0.989

(± 9.635) (± 116.260) (± 1.015)
Spambase

K-means 216.058 2003.26 0.108
(± 0.000) (± 0.000) (± 0.000)

CPSO 301.660 136.613 2.301
(± 19.617) (± 30.941) (± 0.452)

Continued on next page
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Algorithm Jintra Jinter Qratio

SMAIN 239.369 1599.79 0.194
(± 27.139) (± 831.832) (± 0.096)

DWB 185.926 1216.17 0.236
(± 22.246) (± 1509.06) (± 0.120)

Opt-aiNet 247.833 71.578 5.586
(± 18.812) (± 37.181) (± 6.421)

LNNAIS 432.734 6720.66 0.074
(± 221.003) (± 2691.21) (± 0.046)

Letter Recognition
K-means 5.383 11.121 1.090

(± 0.012) (± 0.157) (± 0.043)
CPSO 6.571 11.028 1.480

(± 0.121) (± 0.764) (± 0.225)
SMAIN 7.297 17.299 0.751

(± 0.238) (± 0.455) (± 0.029)
DWB 6.562 12.268 1.758

(± 0.108) (± 0.704) (± 0.662)
Opt-aiNet 6.419 11.778 1.367

(± 0.108) (± 0.630) (± 0.179)
LNNAIS 6.072 12.601 1.351

(± 0.080) (± 0.331) (± 0.202)

5.7 ALC Population Size - Compression of the Data

This section investigates the ALC population sizes between SMAIN, DWB
and LNNAIS to indicate compression of the data (ability to remove redun-
dant data). Low compression of the data could result in superior clustering
quality of a specific model when compared to other models which utilize a
smaller ALC population size. Figure 4 illustrates a histogram of the ALC
population size of SMAIN, DWB and LNNAIS to cluster the data sets. The
size of the ALC population is expressed as a ratio of the applicable data set
size. Therefore, an ALC population size ratio closer to 1.0 indicates a lower
compression of the applicable data set. The figure illustrates that LNNAIS
has a population size ratio of less than 0.2 for all of the data sets. On the
contrary, SMAIN has a population size ratio of more than 0.4 for six of the
data sets (two-spiral, hepta, chainlink, target, ionosphere and glass). For
data sets glass and ionosphere, the ALC population size of SMAIN is almost
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Table 14: Statistical Hypothesis Testing between LNNAIS and Other Mod-
els based on Qratio: Data Group 4 (α = 0.05; with continuity correction;
unpaired; non-directional)

Data set Algorithm z p Outcome
K-means 1.922 0.055 Accept H0

Image CPSO 5.093 < 0.001 Reject H0

Segmen- DWB 3.6 < 0.001 Reject H0

tation SMAIN 6.646 < 0.001 Reject H0

Opt-aiNet 5.064 < 0.001 Reject H0

K-means 3.984 < 0.001 Reject H0

CPSO 6.646 < 0.001 Reject H0

Spambase DWB 5.603 < 0.001 Reject H0

SMAIN 5.5 < 0.001 Reject H0

Opt-aiNet 6.646 < 0.001 Reject H0

K-means 5.404 < 0.001 Reject H0

Letter CPSO 2.144 0.032 Reject H0

Recog- DWB 3.053 0.002 Reject H0

nition SMAIN 6.646 < 0.001 Reject H0

Opt-aiNet 0.288 0.773 Accept H0

equal to the size of the data sets (ratio close to 1.0). In general, SMAIN uti-
lizes a larger ALC population to cluster the data than DWB and LNNAIS.
This not only explains the superior clustering quality of SMAIN in the pre-
vious section but also a drawback of SMAIN which has a low compression
of the data (unable to remove redundant data). Compared to SMAIN in
view of these findings, LNNAIS delivers clusters of high quality with a good
compression of the data.

5.8 Influence of LNNAIS parameters

This section investigates the influence of the LNNAIS parameters on the
clustering quality of the model with reference to Qratio, Jintra, Jinter and the
number of obtained clusters K. These parameters are the maximum pop-
ulation size, Bmax, the neighborhood size, ρ, and the clonal level threshold,
ǫclone. Compared to the network based AIS models which are used in this
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Figure 4: ALC Population Size Ratios of SMAIN, DWB and LNNAIS

paper, LNNAIS has significantly less parameters. The clustering results of a
representative data set were selected from each of the defined data groups for
the discussion. All of the other clustering results of the remaining data sets
within the same data group, followed similar trends unless stated otherwise.
The identified data sets include two spiral from group 1, chainlink from group
2, glass from group 3 and image segmentation from group 4. The LNNAIS
model has been executed with population sizes of 10 to 50 ALCs, clonal level
threshold values of 6 to 27 and neighborhood sizes which are calculated as a
ratio of the population size. Neighborhood size ratios from 0.05 to 0.9 were
used to calculate the neighborhood size ρ using ρ = ρr × Bmax (ρr is the
neighborhood size ratio). In cases where a parameter was kept constant, the
parameter was set to the value as listed in table 6 for each of the applicable
data sets.

Population Size: Figures 5 to 8 show the effect of different ALC popu-
lation sizes, Bmax, at different neighborhood size ratios, ρr, and a constant
clonal level threshold, ǫclone. These figures show that for small neighborhood
sizes an increase in the ALC population size has less significant influence on
the clustering quality, Qratio, when compared to larger neighborhood sizes.
The cluster compactness and separation do however tend to decrease at low
neighborhood sizes with an increase in the ALC population size (increasing
Jintra and decreasing Jinter). Furthermore, figures 5 to 8 also show that for
all the different neighborhood sizes, no significant improvement is achieved
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Figure 5: Two Spiral data set (ǫclone = 6): Effect of the ALC population size
with a constant clonal level threshold

in the number of obtained clusters for ALC population sizes larger than a
specific optimal value (which is problem dependent). This can also be ob-
served in figures 13 to 16. Figures 13 to 16 show that for different clonal
level threshold values with a low constant neighborhood size, an increase
in the ALC population size increases the cluster compactness and separa-
tion (decreasing Jintra and increasing Jinter). Therefore, an increase in the
ALC population size increases diversity which obtains the required number
of clusters and improves the clustering quality.

Neighborhood Size: Figures 9 to 12 show the effect of different neigh-
borhood size ratios, ρr, at different clonal level threshold values, ǫclone, and
a constant ALC population size, Bmax. An increase in the neighborhood
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Figure 6: Chainlink data set (ǫclone = 8): Effect of the ALC population size
with a constant clonal level threshold
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Figure 7: Glass data set (ǫclone = 8): Effect of the ALC population size with
a constant clonal level threshold
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Figure 8: Image Segmentation data set (ǫclone = 27): Effect of the ALC
population size with a constant clonal level threshold
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Figure 9: Two Spiral data set (Bmax = 39): Effect of the neighborhood size
with a constant ALC population size

size decreases the cluster compactness and separation for all of the different
clonal level threshold values, resulting in clusters of a lower quality (increas-
ing Qratio and Jintra with a decreasing Jinter). This effect is also shown in
figures 5 to 8 where an increase in the neighborhood size ratio decreases
the cluster compactness (increases Jintra) and decreases the cluster separa-
tion (decreases Jinter) for all values of Bmax. From these observations it can
be concluded that small values of ρr deliver more compact and more sep-
arated clusters (lower Jintra, higher Jinter) and therefore clusters of higher
quality (lower Qratio) when compared to higher values of ρr. From the above
mentioned figures, lower neighborhood sizes also tend to obtain the required
number of clusters.
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Figure 10: Chainlink data set (Bmax = 24): Effect of the neighborhood size
with a constant ALC population size

47



1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

lo
g

(Q
r
a
ti

o
)

ρr

(a) Cluster quality

1.2

1.4

1.6

1.8

2

2.2

2.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

J
in

tr
a

ρr

(b) Cluster compactness

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

J
in

te
r

ρr

(c) Cluster separation

5.4

5.5

5.6

5.7

5.8

5.9

6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

K

ρr

ǫclone = 6
ǫclone = 8

ǫclone = 11
ǫclone = 14
ǫclone = 17
ǫclone = 19
ǫclone = 22
ǫclone = 25
ǫclone = 27

(d) Number of obtained clusters

Figure 11: Glass data set (Bmax = 24): Effect of the neighborhood size with
a constant ALC population size
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Figure 12: Image Segmentation data set (Bmax = 20): Effect of the neigh-
borhood size with a constant ALC population size
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Clonal Level Threshold: Figures 13 to 16 show the effect of different
clonal level threshold values, ǫclone, at different ALC population sizes, Bmax,
and a constant neighborhood size, ρ. An increase in the clonal level threshold
has no significant improvement in the number of obtained clusters at differ-
ent ALC population sizes (as illustrated in figures 13 to 16) and also not at
different neighborhood sizes (as illustrated in figures 9 to 12). Furthermore,
the different clonal level threshold values follow similar trends with reference
to the quality, compactness and separation of the clusters when the neigh-
borhood size increases (as illustrated in figures 9 to 12 and explained in the
previous paragraph). In the case of the chainlink and image segmentation
data sets, increasing the clonal level threshold also results in less compact
clusters at different ALC population sizes (as illustrated in figures 14 and 16),
whereas for the two spiral and glass data sets there is no significant change in
the compactness of the clusters (as illustrated in figures 13 and 15). There-
fore, the clonal level threshold influences the cluster compactness and is prob-
lem specific. In summary, the clustering performance of LNNAIS is sensitive
to the values of the ALC population size and neighborhood size. The ALC
population size is problem specific and in general low neighborhood size val-
ues deliver clusters of higher quality. The clustering performance of LNNAIS
is generally insensitive to the value of the clonal level threshold.

6 Conclusion and Future Work

A formal definition of data clustering was given with different performance
measures to determine the quality of clusters. The network interaction and
formation between artificial lymphocytes (ALCs) in existing network based
AIS models were discussed as well as alternative and less familiar ALC net-
work topologies. A new network based AIS model (LNNAIS) was proposed
for data clustering. LNNAIS utilizes a different network topology, which
is an index-based ALC neighborhood topology to determine the network
connectivity between ALCs. The clustering performance of the LNNAIS
model was compared against classical clustering algorithms (K-means clus-
tering and CPSO) and existing network based AIS models (SMAIN, DWB
and Opt-aiNet). In most cases, LNNAIS produced better or similar results
with reference to the quality, compactness and separation of the clusters.
Although SMAIN tends to deliver clusters of a higher quality than the pro-
posed LNNAIS, a cursory assessment indicates that SMAIN tends to utilize a
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Figure 13: Two Spiral data set (ρ = 3): Effect of the clonal level threshold
with a constant neighborhood size
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Figure 14: Chainlink data set (ρ = 3): Effect of the clonal level threshold
with a constant neighborhood size
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Figure 15: Glass data set (ρ = 3): Effect of the clonal level threshold with a
constant neighborhood size
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Figure 16: Image Segmentation data set (ρ = 2): Effect of the clonal level
threshold with a constant neighborhood size
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larger ALC population than LNNAIS and therefore has a lower compression
of the data. Further investigation is needed to qualify this assessment. A
sensitivity analysis was done on the parameters of LNNAIS to investigate the
effect of the parameters on the clustering quality. An increase in the ALC
population size increases diversity which obtains the required number of clus-
ters and improves the clustering quality. Smaller neighborhood sizes deliver
more compact and more separated clusters when compared to larger neigh-
borhood sizes, and tend to obtain the required number of clusters. Therefore
small neighborhood sizes deliver clusters of a higher quality. The clonal level
threshold influences the compactness of the clusters and is problem specific.
Although none of the discussed AIS models in this paper require any user
specified parameter of the number of required clusters to cluster the data, the
techniques used by these models to determine the number of ALC networks
do, however. Therefore, future work also needs to investigate alternative
techniques that can be used with LNNAIS to dynamically determine the
number of clusters in a data set [18]. Furthermore, as proposed in [17], fu-
ture work also includes the application of LNNAIS to the problem of image
segmentation and classification problems. In the case of image segmentation,
the pixels of an image are seen as antigen patterns which are clustered by
LNNAIS. Each cluster represents a segment of the image. In the context of
classification problems, an amended LNNAIS model labels the ALCs with
the same class labels with which patterns in the antigen set are labeled. This
is a semi-supervised approach of the amended LNNAIS model, where ALCs
only adapt to antigen patterns of the same class and the final ALC networks
represent different classes in the antigen set.
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