Skip to main content
Log in

An innovative face image enhancement based on principle component analysis

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

In this paper, we propose an innovative face hallucination approach based on principle component analysis (PCA) and residue technique. First, the relationship of projection coefficients between high-resolution and low-resolution images using PCA is investigated. Then based on this analysis, a high resolution global face image is constructed from a low resolution one. Next a high-resolution residue is derived based on the similarity between the projections on high and low resolution residue training sets. Finally by combining the global face and residue in high resolution, a high resolution face image is generated. Also the recursive and two-stage methods are proposed, which improve the results of face image enhancement. Extensive experiments validate the proposed approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pratt WK (1991) Digital image processing. Wiley-Interscience, New York

  2. Wolberg G (1992) Digital image warping. IEEE Computer Society Press, Los Alamitos

    Google Scholar 

  3. Chen TC, de Figueiredo RJP (1985) Two-dimensional interpolation by generalized spline filters based on partial differential equation image models. IEEE Trans Acoust Speech Signal Process 33(3):631–642

    Article  Google Scholar 

  4. Karayiannis NB, Venetsanopolous AN (1991) Image interpolation based on variational principles. Signal Process 25(3):259–288. ISSN 0165-1684, doi:10.1016/0165-1684(91)90114-X

    Google Scholar 

  5. Xue K, Winans A, Walowit E (1992) An edge-restricted spatial interpolation algorithm. J Electr Imaging 01(02):152–161

    Google Scholar 

  6. Schultz R, Stevenson R (1994) A Bayesian approach to image expansion for improved definition. IEEE Trans Image Process 3(3):233–242

    Google Scholar 

  7. Freeman WT, Pasztor EC (1999) Learning low-level vision. In: Proceedings of ICCV ’99. Kerkyra, Greece, pp 1182–1189

  8. Hertzmann A, Jacobs CE, Oliver N, Curless B, Salesin DH (2001) Image analogies. In: Proceedings of SIGGRAPH ’01. Los Angeles, California, pp 327–340

  9. Tang Y, Yan P, Yuan Y, Li X (2011) Single-image super-resolution via local learning. Int J Mach Learn Cybern 2(1):15–23

    Article  Google Scholar 

  10. Baker S, Kanade T (2000) Hallucinating faces. In: Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition. Grenoble, France, pp 83–88

  11. Liu C, Shum HY, Freeman WT (2007) Face hallucination: theory and practice. IJCV 75(1):115–134

    Google Scholar 

  12. Liu C, Shum HY, Zhang CS (2001) A two-step approach to hallucinating faces: global parametric model and local nonparametric model. In: Proceedings of CVPR’01. Kauai Marriott, Hawaii, pp 192–198

  13. Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3:71–86

    Article  Google Scholar 

  14. Swets DL, Weng JJ (1996) Using discriminant eigenfeatures for image retrieval. IEEE Trans Pattern Anal Mach Intell 18(8):831–836

    Article  Google Scholar 

  15. Poon B, Ashraful Amin M, Yan H(2011) Performance evaluation and comparison of PCA based human face recognition methods for distorted images. Int J Mach Learn Cybern. doi:10.1007/s13042-011-0023-2

  16. Silverstein JW (1986) Eigenvalues and eigenvectors of large-dimensional sample covariance matrices. Contemp Math 50:153–159

    Article  MathSciNet  Google Scholar 

  17. Smith LI (2002) A tutorial on principal components analysis, 26 Feb 2002

  18. Shlens J (2005) A tutorial on principal component analysis, Version 2, 10 Dec 2005

  19. Wang XG, Tang XO (2005) Hallucinating face by Eigentransformation. IEEE Trans Syst Man Cybern 35(3):425–434

    Article  Google Scholar 

  20. Zhuang Y, Zhang J, Wu F (2007) Hallucinating faces: LPH super-resolution and neighbor reconstruction for residue compensation. Pattern Recognit 40(11):3178–3194

    Google Scholar 

  21. Yang J, Wright J, Huang T, Ma Y (2010) Image super-resolution via sparse representation. IEEE Trans Image Process (TIP) 19(11):2861–2873

    Google Scholar 

  22. Jia K, Gong S (2008) Generalized face super-resolution. IEEE Trans Image Process 17(6):873–886

    Article  MathSciNet  Google Scholar 

  23. Huang H, He H, Fan X, Zhang J (2010) Super-resolution of human face image using canonical correlation analysis. Pattern Recognit 43(7):2532–2543

    Google Scholar 

  24. Liang Y, Lai J-H, Xie X, Liu W (2010) Face hallucination under an image decomposition perspective. In: International Conference on Pattern Recognition, Istanbul

  25. Zhang W, Cham W-K (2008) Learning-based face hallucination in DCT domain. In: IEEE Conference on Computer Vision and Pattern Recognition

  26. Yang J, Wright J, Huang T, Ma Y(2008) Image super-resolution as sparse representation of raw image patches. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  27. Baker S, Kanade T (2002) Limits on super-resolution and how to break them. IEEE Trans Patern Anal Mach Intell 24(9):1167–1183

    Google Scholar 

  28. Penve PS, Sirovich L (2000) The global dimensionality of face space. In: IEEE International Conference on Automatic Face and Gesture Recognition

  29. Kimmel R (1999) Demosaicing: image reconstruction from color CCD samples. IEEE Trans Image Process 8(9):1221–1228

    Article  Google Scholar 

  30. Lee C, Eden M, Unser M (1998) High-quality image resizing using oblique projection operators. IEEE Trans Image Process 7(4):679–692

    Google Scholar 

  31. Li X, Orchard MT (2001) New edge-directed interpolation. IEEE Trans Image Process 10(10):1521–1527

    Article  Google Scholar 

  32. Borman S, Stevenson RL (1998) Spatial resolution enhancement of low-resolution image sequences, A comprehensive review with directions for future research, Lab. Image and Signal Analysis, University of Notre Dame, Tech. Rep

  33. Borman S, Stevenson RL (1999) Super-resolution from image sequences—a review. In: Proc.1998 Midwest Symp. Circuits and systems

  34. Shah MR, Zakhor A (1999) Resolution enhancement of color video sequences. IEEE Trans Image Process 8(6):879–885

    Google Scholar 

  35. Rhee SH, Kang MG (1999) Discrete cosine transform based regularized high-resolution image reconstruction algorithm. Opt Eng 38(8):1348–1356

    Google Scholar 

  36. Nguyen N, Milanfar P (2000) An efficient wavelet-based algorithm for image superresolution. In: Proc. Int. Conf. Image Processing, pp 351–354

  37. Zhao W, Chellapa R, Philips PJ, Rosenfeld A (2003) Face recognition: a literature survey. ACM Comput Surv 35(4):399–458

    Google Scholar 

  38. He XF, Niyogi P (2003) Locality preserving projections. In: Neural Information Processing Systems 16. Vancouver, Canada

  39. Candes EJ, Wakin MB (2008) An introduction to compressive sampling. IEEE Signal Process Mag 25(2):21–30

    Google Scholar 

  40. Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. Fisherfaces-recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Article  Google Scholar 

  41. Etemad K, Chellappa R (1997) Discriminant analysis for recognition of human face images. J Opt Soc Am 14(8):1724–1733

    Article  Google Scholar 

  42. Moghaddam B, Wahid W, Pentland A (1998) Beyond eigenfaces: Probabilistic matching for face recognition. In: IEEE Int’l Conf on Automatic Face and Gesture Recognition, pp 30–35

  43. Chang Y, Hu CB, Turk M (2004) Probabilistic expression analysis on manifolds. In: CVPR, pp 520–527

  44. Belkin M, Niyogi P (2002) Laplacian Eigenmaps and spectral techniques for embedding and clustering. In: Neural Information Processing Systems, pp 585–591

  45. Phillips PJ, Rauss P, Der S (1996) FERET(face-recognition technology) recognition algorithm development and test report, Technical Report 995, U.S. Army Research Laboratory

  46. Gong X, Li X-X, Feng L, Xia R (2011) A robust framework for face contour detection from clutter background. Int J Mach Learn Cybern. doi:10.1007/s13042-011-0044-x

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanquan Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, X., Liu, W. & Venkatesh, S. An innovative face image enhancement based on principle component analysis. Int. J. Mach. Learn. & Cyber. 3, 259–267 (2012). https://doi.org/10.1007/s13042-011-0060-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-011-0060-x

Keywords

Navigation