Skip to main content
Log in

Lattice-valued information systems based on dominance relation

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

In this paper, as a naturally generalization of classical information systems, lattice-valued information systems based on dominance relation is proposed. An approach for ranking all objects in this system is constructed consequently, and decision makers can find objects with better property to make an useful and effective decision. In addition, the rough set approach to lattice-valued information systems based on dominance relation is established. And evidence theories in this system are formulated for the analysis of lattice-valued information systems based on dominance relation. What is more, in order to acquire concise knowledge representation and extract much simpler decision rules, the methods of attribute reductions based on discernibility matrix and evidence theory are investigated carefully. These results will be helpful for decision-making analysis in lattice-valued information systems based on dominance relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ananthanarayana VC, Narasimha MM, Subramanian DK (2003) Tree structure for efficient data mining using rough sets. Patt Recogn Lett 24:851–862

    Article  MATH  Google Scholar 

  2. Banerjee M, Pal SK (1996) Roughness of a fuzzy set. Inform Sci 93:235–246

    Article  MathSciNet  MATH  Google Scholar 

  3. Biswas R (1992) On rough sets and fuzzy rough sets. Bull Pol Acad Sci Math 42:345–349

    Google Scholar 

  4. Biswas R (1994) On rough fuzzy sets. Bull Pil Acad Sci Math 42:352–355

    Google Scholar 

  5. Chan CC (1998) A rough set approach to attribute generalization in data mining. Inform Sci 107:169–176

    Article  MathSciNet  Google Scholar 

  6. Cheng W, Mo ZW, Wang J (2007) Notes on “the lower and upper approximations in a fuzzy group” and “rough ideals in semigroups”. Inform Sci 177:5134–5140

    Article  MathSciNet  MATH  Google Scholar 

  7. Davvaz B, Mahdavipour M (2006) Roughness in modules. Inform Sci 176:3658–3674

    Article  MathSciNet  MATH  Google Scholar 

  8. Dempster AP (1967) Upper and lower probabilities induced by a multi-valued mapping. Ann Math Stat 38:325–339

    Article  MathSciNet  MATH  Google Scholar 

  9. Dubois D, Prade H (1990) Rough fuzzy sets and fuzzy rough sets. Int J Gen Syst 17:191–209

    Article  MATH  Google Scholar 

  10. Dubois D, Prade H (1992) Putting fuzzy sets and rough sets together. In: Slowinski R (ed) Intelligent decision support. Kluwer Academic, Dordrecht, pp 203–232

  11. Gong ZT, Sun BZ, Chen DG (2008) Rough set theory for the interval-valued fuzzy information systems. Inform Sci 178:1968–1985

    Article  MathSciNet  MATH  Google Scholar 

  12. Greco S, Matarazzo B, Slowinski R (1999) Rough approximation of a preference relatioin by dominance relatioin. Eur J Oper Res 117:63–83

    Article  MATH  Google Scholar 

  13. Greco S, Matarazzo B, Slowinski R (1998) A new rough set approach to multicriteria and multiattribute classificatioin. In: Polkowsik L, Skowron A (eds) Rough sets and current trends in computing (RSCTC’98), Lecture Notes in Artificial Intelligence, vol 1424. Springer, Berlin, pp 60–67

  14. Greco S, Matarazzo B, Slowinski R (1999) A new rough sets approach to evaluation of bankruptcy risk. In: Zopounidis X (ed) Operational tools in the management of financial risks. Kluwer, Dordrecht, pp 121–136

  15. Greco S, Matarazzo B, Slowinski R (2001) Rough set theory for multicriteria decision analysis. Eur J Oper Res 129:11–47

    Article  MathSciNet  Google Scholar 

  16. Greco S, Matarazzo B, Slowinski R (2002) Rough sets methodology for sorting problems in presence of multiple attributes and criteria. Eur J Oper Res 138:247–259

    Article  MathSciNet  MATH  Google Scholar 

  17. Greco S, Matarazzo B, Slowinski R (2007) Dominance-based rough set approach as a proper way of handling graduality in rough set theory. In: Transaction on rough sets VII, lecture notes in computer science, vol 4400, pp 36–52

  18. Guan YY, Wang HK (2006) Set-valued information systems. Inform Sci 176:2507–2525

    Article  MathSciNet  MATH  Google Scholar 

  19. Hu QH, Pan W, An S, Ma PJ, Wei JM (2010) A efficient gene selection technique for cancer recognition based on neighborhood mutual information. Int J Mach Learn Cybern 1(1–4):63–74

    Article  Google Scholar 

  20. Kryszkiewicz M (1998) Rough set approach to incomplete information systems. Inform Sci 112:39–49

    Article  MathSciNet  MATH  Google Scholar 

  21. Kryszkiewicz M (1999) Rules in incomplete information systems. Inform Sci 113:271–292

    Article  MathSciNet  MATH  Google Scholar 

  22. Leung Y, Fischer MM, Wu WZ, Mi JS (2008) A rough set approach for the discovery of classification rules in interval-valued information systems. Int J Approx Reason 47:233–246

    Article  MathSciNet  MATH  Google Scholar 

  23. Leuang Y, Wu WZ, Zhang WX (2006) Knowledge acquisition in incomplete information systems: a rough set approach. Eur J Oper Res 168:164–180

    Article  Google Scholar 

  24. Nakamura A (1998) Fuzzy rough sets. Note Multiple Valued Logic Jpn 9:1–8

    Google Scholar 

  25. Nanda S (1992) Fuzzy rough sets. Fuzzy Sets Syst 45:157–160

    Article  MathSciNet  MATH  Google Scholar 

  26. Pawlak Z (1982) Rough sets. Int J Comput Inform Sci 11:341–356

    Article  MathSciNet  MATH  Google Scholar 

  27. Pawlak Z (1991) Rough set: theoretical aspects of reasoning about data. Kluwer Academic Publishers, Dordrecht

  28. Pawlak Z (2005) Some remarks on conflict analysis. Eur J Oper Res 166:649–654

    Article  MATH  Google Scholar 

  29. Pawlak Z, Skowron A (2007) Rudiments of rough sets. Inform Sci 177:3–27

    Article  MathSciNet  MATH  Google Scholar 

  30. Pawlak Z, Skowron A (2007) Rough sets and Boolean reasoning. Inform Sci 177:41–73

    Article  MathSciNet  MATH  Google Scholar 

  31. Qian YH, Dang CY, Liang JY, Tang DW (2009) Set-valued ordered information systems. Inform Sci 179:2809–2832

    Article  MathSciNet  MATH  Google Scholar 

  32. Qian YH, Liang JY, Dang CY (2008) Interval ordered information systems. Comput Math Appl 56:1994–2009

    Article  MathSciNet  MATH  Google Scholar 

  33. Shafer G (1976) A mathematical theory of evidence. Princeton University Press, Princeton

  34. Shao M.W, Zhang W.X (2005) Dominance relation and relus in an incomplete ordered information system. Intern J Intell Syst 20:13–27

    Article  MATH  Google Scholar 

  35. Skowron A, Stepaniuk J (1996) Tolerance approximation spaces. Fundam Inform 27:245–253

    MathSciNet  MATH  Google Scholar 

  36. Skowron A, Graymala-Busse J (1994) From rough set theory to evidence theory. In: Yager RR, Fedrizzi M, Kacprzyk J (eds) Advance in the Dempster–Shafer theory of evidence. Wiley, New York

  37. Slowinski R, Vanderpooten D (2000) A generalized definition of rough approximations based on similarity. IEEE Trans Knowl Data Eng 12:331–336

    Article  Google Scholar 

  38. Sun BZ, Gong ZT, Chen DG (2008) Fuzzy rough set theory for the interval-valued fuzzy information systems. Inform Sci 178:2794–2815

    Article  MathSciNet  MATH  Google Scholar 

  39. Swiniarski RW, Skowron A (2003) Rough set method in feature selection and recognition. Patt Recogn Lett 24:833–849

    Article  MATH  Google Scholar 

  40. Tsumoto S (1998) Automated extraction of medical expert system rules from clinical databases based on rough set theory. Inform Sci 112:67–84

    Article  Google Scholar 

  41. Vagin V, Fomina M (2011) Problem of knowledge discovery in noisy databases. Int J Mach Learn Cybern 2:135–145

    Article  Google Scholar 

  42. Wang XZ, Tsang E, Zhao SY, Chen DG, Yeung D (2007) Learning fuzzy rules from fuzzy examples based on rough set techniques. Inform Sci 117(20):4493–4514

    Article  MathSciNet  Google Scholar 

  43. Wang XZ, Zhai JH, Lu SX (2008) Induction of multiple fuzzy decision trees based on rough set technique. Inform Sci 178(16):3188–3202

    Article  MathSciNet  MATH  Google Scholar 

  44. Wu WZ, Leung Y, Zhang WX (2002) Connections between rough set theory and Dempster–Shafer theory of evidence. Intern J Gen Syst 31:405–430

    Article  MathSciNet  MATH  Google Scholar 

  45. Wu WZ, Zhang M, Li HZ, Mi JS (2005) Knowledge reduction in random information systems via Dempster–Shafer theory of evidence. Inform Sci 174:143–164

    Article  MathSciNet  MATH  Google Scholar 

  46. Xiao QM, Zhang ZL (2006) Rough prime ideals and rough fuzzy prime ideals in semigroups. Inform Sci 176:725–733

    Article  MathSciNet  MATH  Google Scholar 

  47. Xu WH, Zhang WX (2007) Measuring roughness of generalized rough sets induced by a covering. Fuzzy Sets Syst 158:2443–2455

    Article  MATH  Google Scholar 

  48. Xu WH, Zhang XY, Zhong JM, Zhang WX (2010) Attribute reduction in ordered information systems based on evidence theory. Knowl Inform Syst 25:169–184

    Article  Google Scholar 

  49. Yang XB, Song XN, Chen ZH, Yang JY (2011) On multigranulation rough sets on incomplete information system. Int J Mach Learn Cybern. doi:10.1007/s13042-011-0054-8

  50. Yao YY (1998) Relational interpretations of neighborhood operators and rough set approximation operators. Inform Sci 101:239–259

    Article  Google Scholar 

  51. Yao YY, Lingras P (1998) Interpretations of belief functions in the theory of rough sets. Inform Sci 104:81–106

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhang WX, Leung Y, Wu WZ (2003) Information system and knowledge discovery. Science Press, Beijing

  53. Zhang WX, Qiu GF (2005) Uncertain decision making based on rough sets. Science Press, Beijing

  54. Zhu W, Wang SP (2011) Matroidal approaches to generalized rough sets based on relations. Int J Mach Learn Cybern 2(4):273–279

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous referees for their valuable comments and suggestions. This work is supported by National Natural Science Foundation of China (No. 61105041, 71071124 and 11001227), Postdoctoral Science Foundation of China (No. 20100481331) and Natural Science Foundation Project of CQ CSTC (No. cstc2011jjA40037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, W., Liu, S. & Zhang, W. Lattice-valued information systems based on dominance relation. Int. J. Mach. Learn. & Cyber. 4, 245–257 (2013). https://doi.org/10.1007/s13042-012-0088-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-012-0088-6

Keywords

Navigation