Skip to main content
Log in

Random fuzzy bilevel linear programming through possibility-based fractile model

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

This paper focuses on random fuzzy noncooperative bilevel linear programming problems. Considering the probabilities that the decision makers’ objective function values are smaller than or equal to target variables, fuzzy goals of the decision makers are introduced. Using the fractile model to optimize the target variables under the condition that the degrees of possibility with respect to the attained probabilities are greater than or equal to certain permissible levels, the original random fuzzy bilevel programming problems are reduced to deterministic ones. Extended concepts of Stackelberg solutions are introduced and computational methods are also presented. A numerical example is provided to illustrate the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amouzegar MA, Moshirvaziri K (1999) Determining optimal pollution control policies: an application of bilevel programming. Eur J Oper Res 119:100–120

    Article  MATH  Google Scholar 

  2. Bard JF, Falk JE (1982) An explicit solution to the multi-level programming problem. Comput Oper Res 9:77–100

    Article  MathSciNet  Google Scholar 

  3. Bard JF, Moore JT (1990) A branch and bound algorithm for the bilevel programming problem. SIAM J Sci Stat Comput 11:281–292

    Article  MATH  MathSciNet  Google Scholar 

  4. Bialas WF, Karwan MH (1984) Two-level linear programming. Manag Sci 30:1004–1020

    Article  MATH  MathSciNet  Google Scholar 

  5. Colson B, Marcotte P, Savard G (2005) A trust-region method for nonlinear bilevel programming: algorithm and computational experience. Comput Optim Appl 30:211–227

    Article  MATH  MathSciNet  Google Scholar 

  6. Dempe S (2003) Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints. Optimization 52:333–359

    Article  MATH  MathSciNet  Google Scholar 

  7. Dempe S, Bard JF (2001) “Bundle trust-region algorithm for bilinear bilevel programming. J Optim Theory Appl 110:265–268

    Article  MATH  MathSciNet  Google Scholar 

  8. Dempe S, Zemkoho AB (2012) On the Karush-Kuhn-Tucker reformulation of the bilevel optimization problem. Nonlinear Anal Theor Meth Appl 75:1202–1218

    Article  MATH  MathSciNet  Google Scholar 

  9. Emam OE (2006) A fuzzy approach for bi-level integer non-linear programming problem. Appl Math Comput 172:62–72

    Article  MATH  MathSciNet  Google Scholar 

  10. Faisca NP, Rustem V, Dua B, Saraiva PM, Pistikopoulos EN (2007) Parametric global optimisation for bilevel programming. J Glob Optim 38:609–623

    Article  MATH  MathSciNet  Google Scholar 

  11. Fampa M, Barroso LA, Candal D, Simonetti L (2008) Bilevel optimization applied to strategic pricing in competitive electricity markets. Comput Optim Appl 39:121–142

    Article  MATH  MathSciNet  Google Scholar 

  12. Gil MA, Lopez-Diaz M, Ralescu DA (2006) Overview on the development of fuzzy random variables. Fuzzy Sets Syst 157:2546–2557

    Article  MATH  MathSciNet  Google Scholar 

  13. Geoffrion AM (1967) Stochastic programming with aspiration or fractile criteria. Manag Sci 13:672–679

    Article  MATH  MathSciNet  Google Scholar 

  14. Gümüs ZH, Floudas CA (2001) Global optimization of nonlinear bilevel programming problems. J Glob Optim 20:1–31

    Article  MATH  Google Scholar 

  15. Hansen P, Jaumard B, Savard G (1992) New branch-and-bound rules for liner bilevel programming. SIAM J Sci Stat Comput 13:1194–1217

    Article  MATH  MathSciNet  Google Scholar 

  16. Katagiri H, Uno T, Kato K, Tsuda H, Tsubaki H Random fuzzy bilevel linear programming through possibility-based value at risk model. Int J Mach Learn Cyberrn (in press)

  17. Koziel S, Michalewicz Z (1999) Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization. Evol Comput 7:19–44

    Article  Google Scholar 

  18. Kwakernaak H (1978) Fuzzy random variables - I. definitions and theorems. Inf Sci 15:1–29

    Article  MATH  MathSciNet  Google Scholar 

  19. Liu B (2002) Random fuzzy dependent-chance programming and its hybrid intelligent algorithm. Inf Sci 141:259–271

    Article  MATH  Google Scholar 

  20. Loridan P, Morgan J (1996) Weak via strong Stackelberg problem: New results. J Global Optim 8:263–287

    Article  MATH  MathSciNet  Google Scholar 

  21. Lv Y, Hua T, Wanga G, Wan Z (2007) A penalty function method based on Kuhn-Tucker condition for solving linear bilevel programming. Appl Math Comput 188:808–813

    Article  MATH  MathSciNet  Google Scholar 

  22. Matsui T, Sakawa M, Kato K, Uno T, Tamada K (2008) Particle swarm optimization for interactive fuzzy multiobjective nonlinear programming. Sci Math Jpon 68:103-115

    MathSciNet  Google Scholar 

  23. Nahmias S (1978) Fuzzy variables, Fuzzy Sets Syst 1:97–110

    Article  MATH  MathSciNet  Google Scholar 

  24. Nicholls MG (1996) The applications of non-linear bi-level programming to the aluminium industry. J Glob Optim 8:245–261

    Article  MATH  MathSciNet  Google Scholar 

  25. Nishizaki I, Sakawa M (1999) Stackelberg solutions to multiobjective two-level linear programming problems. J Optim Theory Appl 103:161–182

    Article  MATH  MathSciNet  Google Scholar 

  26. Nishizaki I, Sakawa M (2000) Computational methods through genetic algorithms for obtaining Stackelberg solutions to two-level mixed zero-one programming problems. Cybern Syst 31:203–221

    MATH  Google Scholar 

  27. Nishizaki I, Sakawa M, Katagiri K (2003) Stackelberg solutions to multiobjective two-level linear programming problems with random variable coefficients. Cent Eur J Oper Res 11:281–296

    MATH  MathSciNet  Google Scholar 

  28. Pal BB, Chakraborti D, Biswas P (2011) Using Genetic Algorithm for Solving Linear Multilevel Programming Problems via Fuzzy Goal Programming. Comm Comput Inf Sci 140:79–88

    Article  Google Scholar 

  29. Puri ML, Ralescu DA (1986) Fuzzy random variables. J Math Anal Appl 114:409–422

    Article  MATH  MathSciNet  Google Scholar 

  30. Roghanian E, Sadjadi SJ, Aryanezhad MB (2007) A probabilistic bi-level linear multi-objective programming problem to supply chain planning. Appl Math Comput 188:786–800

    Article  MATH  MathSciNet  Google Scholar 

  31. Sakawa M (1993) Fuzzy Sets and interactive multiobjective optimization. Plenum Press, New York

  32. Sakawa M (2001) Genetic algorithms and fuzzy multiobjective optimization. Kluwer Academic Publishers, Boston

  33. Sakawa M, Katagiri H (2012) Stackelberg solutions for fuzzy random two-level linear programming through level sets and fractile criterion optimization. Cent Eur J Oper Res 20:101–117

    Article  MATH  MathSciNet  Google Scholar 

  34. Sakawa M, Katagiri H (2010) Interactive fuzzy programming based on fractile criterion optimization model for two-level stochastic linear programming problems. Cybern Syst 41:508–521

    Article  MATH  Google Scholar 

  35. Sakawa M, Katagiri H, Matsui T (2012) Stackelberg solutions for fuzzy random bilevel linear programming through level sets and probability maximization. Oper Res Int J 12:271–286

    Article  MATH  Google Scholar 

  36. Sakawa M, Katagiri H, Matsui T (2010) Interactive fuzzy stochastic two-level integer programming through fractile criterion optimization. Oper Res Int J 178:1–10

    Google Scholar 

  37. Sakawa M, Katagiri H, Matsui T (2012) Fuzzy random bilevel linear programming through expectation optimization using possibility and necessity. Int J Mach Learn Cybern 3:183–192

    Article  Google Scholar 

  38. Sakawa M, Kato K (2009) Fuzzy random noncooperative two-level linear programming through absolute deviation minimization using possibility and necessity. International Institute for Applied Systems Analysis (IIASA), Interim Report, IR-09-021

  39. Sakawa M, Kato K (2009) An interactive fuzzy satisficing method for multiobjective nonlinear integer programming problems with block-angular structures through genetic algorithms with decomposition procedures. Adv Oper Res 2009:1–17

    Article  Google Scholar 

  40. Sakawa M, Matsui T, Ishimaru K, Ushiro S (2010) An interactive fuzzy satisficing method for multiobjective operation planning of district heating and cooling plants considering contract violation penalties. IAENG J Appl Math 40:1–9

    Google Scholar 

  41. Sakawa M, Matsui T (2012) Stackelberg solutions for random fuzzy two-level linear programming through possibility-based probability model. Expert Syst Appl 39:10898-10903

    Article  Google Scholar 

  42. Sakawa M, Nishizaki I (2009) Cooperative and noncooperative multi-Level programming. Springer, New York

  43. Sakawa M, Nishizaki I, Katagiri H (2011) Fuzzy stochastic multiobjective programming. Springer, New York

  44. Savard G, Gauvin J (1994) The steepest descent direction for the nonlinear bilevel programming problem. Oper Res Lett 15:265–272

    Article  MATH  MathSciNet  Google Scholar 

  45. Shi C, Lu J, Zhang G (2005) An extended Kuhn-Tucker approach for linear bilevel programming. Appl Math Comput 162:51–63

    Article  MATH  MathSciNet  Google Scholar 

  46. Shimizu K, Ishizuka Y, Bard JF (1997) Nondifferentiable and Two-Level Mathematical Programming. Kluwer Academic Publishers, Boston

  47. Simaan M, Cruz JB Jr (1973) On the Stackelberg strategy in nonzero-sum games. J Optim Theory Appl 11:533–555

    Article  MATH  MathSciNet  Google Scholar 

  48. Sinha SB, Sinha S (2004) A Linear Programming Approach for Linear Multi-Level Programming Problems. J Oper Res 55:312–316

    Article  MATH  Google Scholar 

  49. G-Y Wang, Qiao Z (1993) Linear programming with fuzzy random variable coefficients. Fuzzy Sets Syst 57:295–311

    Article  MATH  MathSciNet  Google Scholar 

  50. White DJ, Anandalingam G (1993) A penalty function approach for solving bi-level linear programs. J Glob Optim 3:397–419

    Article  MATH  MathSciNet  Google Scholar 

  51. Yang F, Zhang H (2011) T-S model-based relaxed reliable stabilization of networked control systems with time-varying delays under variable sampling. Int J Fuzzy Syst 13:260-269

    MathSciNet  Google Scholar 

  52. Zadeh LA (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst 1:3–28

    Article  MATH  MathSciNet  Google Scholar 

  53. Zheng Y, Wan Z, Wang G (2011) A fuzzy interactive method for a class of bilevel multiobjective programming problem. Expert Syst Appl 38:10384–10388

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masatoshi Sakawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakawa, M., Matsui, T. Random fuzzy bilevel linear programming through possibility-based fractile model. Int. J. Mach. Learn. & Cyber. 5, 499–507 (2014). https://doi.org/10.1007/s13042-012-0145-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-012-0145-1

Keywords

Navigation