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Abstract

In this paper, we study Bayesian network (BN) for form identification based on partially filled fields. It
uses electronic ink-tracing files without having any information about form structure. Given a form format,
the ink-tracing files are used to build the BN by providing the possible relationships between corresponding
fields using conditional probabilities, that goes from individual fields up to the complete model construction.
To simplify the BN, we sub-divide a single form into three different areas: header, body and footer, and
integrate them together, where we study three fundamental BN learning algorithms: Naive, Peter & Clark
(PC) and maximum weighted spanning tree (MWST). Under this framework, we validate it with a real-world
industrial problem i.e., electronic note-taking in form processing. The approach provides satisfactory results,
attesting the interest of BN for exploiting the incomplete form analysis problems, in particular.

Index Terms

Bayesian Networks, Electronic Note-taking, Form Processing.
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1 INTRODUCTION

1.1 Context

This work is done in direct collaboration with the Actimage company who has been investigating
technological innovations through on-line interfaces like pens and tablets. The global aim is to
complete the partially filled form in accordance with the clients. This is however, common in
some applications like sketching interfaces in which the user sketches a few partial schemas and
the system then adjusts the ratings, scales and completes the missing parts. In this paper, we
focus on business form processing. Purchase orders and control forms like an inspection health
service, an inventory and a site record, are two different types of examples. In order to provide
an intuitive feeling, in the very beginning, we start with an example showing the partially filled
form in Fig. 1. In this illustration, on the left, an overall form (structure plus partially filled

?This work has been conducted under a CIFRE agreement. Thanks to the Actimage company for collaboration and for learning database
that are used in our study.
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(a) (b)

Fig. 1. An example showing (a) the partially filled form where (b) ink-tracing files i.e., input data
are separated.

fields) is shown and the input data via electronic ink is shown on the right. As said before, in
form processing, fields are partially filled i.e., a few fields are filled but, in some cases, one can
get all information about a client or only identification number. Having complete information
is however, not happened in reality.

To handle form processing, professionals are basically used to fill the fields by using electronic
pen that yields ink-tracing files. These files are then used to parse in order to determine the
corresponding form format and of course, the associated class. Globally, our approach can be
explained as follows.

1) We first decompose a single form mainly into three different areas of interest. Convention-
ally speaking, areas of interest are header, body and footer.

2) In each area of interest, corresponding fields (using electronic ink-tracing files) are used to
build Bayesian sub-network (BsN). These BsNs from all areas are then integrated together
to represent the whole form.
Such a decomposition simplifies the complexity in matching problem.

In this paper, we have studied three major Bayesian learning algorithms such as Naive, PC and
MWST. To validate our approach, an interesting real-world industrial application i.e., electronic
note-taking is taken.
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1.2 Organisation of the paper

We organise the rest of the paper as follows. An overview of pertinent literature is given in
Section 2, followed by a brief explanation of the BN in Section 3. We explain the proposed
approach in Section 4, which mainly includes ink-tracing files via electronic pen, form description
and its format, areas of interest and BN representation. The approach has been implemented and
validated with a real-world application in Section 5 i.e., electronic note-taking in form processing.
In our implementation, we start with explaining field extraction, BN learning and recognition
process. Full experimental results are reported in Section 6. It includes dataset and evaluation
protocol, and test results. The test results are followed by the discussion in Section 7. The paper
is concluded in Section 8.

2 RELATED WORK

Research on form classification has an extremely rich state-of-the-art literature but, the use of
BN has not been noticeably appeared. However, using BN is not a novel concept. Under this
purview, we are limited to handwriting and document analysis and or classification using BNs,
aiming to attest the interest of it in the domain. After that, we will highlight very recent works
on Bayesian classifiers.

In character recognition, several approaches provide BN’s ability to accurately identify the
structure of the character by using dependency relationships between the segmented components
i.e., strokes, for instance. In other words, relative positioning between the strokes provides a
key element to exploit the structure of the complete character. As an example, in [Cho and
Kim, 2003], for Korean Hangul characters, a hierarchy of components is proposed for character
modelling where a syllable model, grapheme models, stroke models and point models are
comprehensively studied. Each model is constructed with sub-components and their relations
i.e., local dependencies. In [Verron et al., 2007], authors proposed similar system for on-line
isolated character recognition, where any character is modelled based on stroke models and
their spatial relations. A dynamic BN (DBN) (DBNs are the extension of 1D hidden Markov
models (HMMs) which can handle several observations and state sequences) is used to exploit
dependencies between strokes. One of the major advantages of the system lies in that they are
against geometric variations and are having sufficient information to distinguish characters. It is
mainly because of the fact that the set of spatial relations do not change as long as we have set of
strokes since relations are relative in nature. Concerning importance and effectiveness of spatial
relations between the strokes, we refer to the very recent study presented in [Santosh et al., 2012].
A more refined model can be achieved by exploiting the correlations between variables. In this
context, we find the work of Hallouli et al. [Hallouli et al., 2002] where probabilistic models
based on dynamic BNs are developed for off-line handwritten character recognition. It uses 2D
models by integrating two HMMs to develop a BN. The first HMM model is obtained from pixel
observation in columns (i.e., vertical-HMM), the second observation from lines (i.e., horizontal-
HMM). This model overcomes the limitations of HMMs with an optimised model by integrating
pixel’s information and line-based observations. However, the choice of coupling links must be
studied via structure learning, for example. Likforman-Sulem and Sigelle in [Likforman-Sulem
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and Sigelle, 2008, 2009] proposed another approach called auto-regressive HMMs (AR-HMMs)
that provides better performance.

Another domain where BNs have been investigated is natural language processing (NLP). As
an example, in [Piwowarski et al., 0002], the authors combine text and document structure for
document categorisation. Based on this, a document is sub-divided into three main levels: the
document in total, pages and sections. As a consequence, BN can now represent the hierarchy in a
single frame. In [Weissenbacher, 2006; Weissenbacher and Nazarenko, 2011], the focusing point
is to identify anaphoric pronouns in heterogeneous data. According to them, in the domain
of automatic language processing, knowledge can be based on either a linguistic or surface
showings. BNs allow them to merge these two data types, in terms of surface indices and
linguistic elements. In this study, BN holds better performance in comparison to the basic
conventional approaches.

Another research domain where BNs have been increasingly used is document structure
indexing i.e., document navigation on the Web and in large databases of historical documents.
A document image is represented using areas of interest such as titles, sections and paragraphs.
These components are linked together in a structure where the relationships can be described by
conditional dependencies and therefore formalised via BNs. The major approaches describing
the spatial relations, are symbolic projection (2D String), graph-based representation such as
trees and attributed relational graphs (ARG). BNs as a directed acyclic graphs (DAG) is used
to represent relations and conditional probability to express uncertainty on the relationships. In
this framework, the task is to realise how BNs can be adapted in accordance with the problem
of classification or indexing.

In document classification, the complexity of the physical layouts makes the analysis complex,
both for text block extraction and logical component identification. The feature labelling that
depends on inherent instability of the physical structures can directly affect the logical level. A
typical example of such documents are table of contents in periodicals or magazines [Belaı̈d,
2001]. In [Souafi-Bensafi et al., 2002], a generic probabilistic model is used for logical labelling
of text blocks in documents, using BN classifiers where a prototype has been implemented and
applied to periodical magazines. In their comparative study, it is found that the learnt BNs do
not make any significant difference over naive BN. It is because of the nature of their data
which is particularly well represented by naive structures. For documents containing both text
and graphics, we refer to work [Mahjoub and Jayech, 2010] where it uses variants of BN such
as: naive (NN), naive augmented by a tree (TAN) [Friedman et al., 1997] and naive augmented
by a forest (FAN) [Jiang et al., 2005]. A TAN is a tree where all leaves are connected. This is
due to the conditional independence assumption in naive Bayes. It however, produces poor
probability estimation [Friedman and Goldszmidt, 1996]. One way to alleviate this assumption
is to extend the structure to explicitly represent variable dependencies by adding arcs between
them. These additional arcs are now useful to maximise the weights via MWST algorithm. The
FAN tree is obtained from the TAN tree by removing arcs whose mutual information is below
a certain threshold. This is done to remove the conditional dependencies which are not enough
representative.
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Document indexing where BNs are employed, is certainly an interesting domain. It is mainly
focused on searching and analysing semi-structured and XML-like documents. Here, the task
is related to handle both content and structure that helps to localise the specific information
embedded in the document. Unlike the past studies operated in plain document without con-
sidering its structure, document content structure has been changed including the vision. In
addition to XML representation, document structure is enriched by meta-data that provides
the description of heterogeneous information. In [Sebastiani, 2002], an example of is illustrated
by using different aspects, but research is still on-going. L. Denoyer and P. Gallinari [Denoyer
and Gallinari, 2004] proposed a generative MN model for document structure. The model is
able to take structure into account and the information content about its type. To optimise the
computational complexity and to allow robust parameter estimation, they are restricted to simple
models via local structural dependencies exploitation.

Besides, very recently, authors highlight feature selection issues and performance of the Bayesian
classifiers. In [Subrahmanya and Shin, 2013], authors focus on grouping of features during model
development and the selection of a small number of relevant groups. They aim to improve the
interpret-ability of the learnt parameters and to avoid parameters which are basically manually
tuned. Multi-instance (MI) learning is another interesting work, where learning examples are
represented by a bag-of-instances instead of a single instance [Jiang et al., 2013]. In this work,
authors propose Bayesian-KNN (BKNN) and Citation-KNN (CKNN) to solve multi-instance
classification problems, where voting is based on the weighted distance. In [Wang et al., 2014],
a non-naive Bayesian classifier (NNBC) is proposed in which the independence assumption
is removed and the marginal probability density function estimation is replaced by the joint
probability density function estimation, in order to achieve satisfactory performance of the
classifiers. It includes a new technique to estimate the class-conditional probability density
function based on the optimal bandwidth selection. In that framework, an interesting application
i.e., simultaneous fault diagnosis is proposed [He et al., 2014], where authors propose a new
model of Bayesian classifier that is able to remove the independence among the features. As
said before, it basically uses an optimal bandwidth selection to estimate the class-conditional
probability density function.

3 MATERIALS

3.1 Basics on BN

We repeat that the BNs have been increasingly used in the community of document analysis and
data mining [Kebairi et al., 1998]. BNs, also known as belief networks (or Bayes nets for short),
belong to the family of probabilistic graphical models (PGMs). These graphical structures are
used to depict conditional independence among random variables in the domain and encodes
the joint probability distribution [Pearl, 1988; Wong and Leung, 2004]. In other words, BN is the
intersection between graph theory and probability [Jensen, 1996; Naı̈m et al., 2007]. Basically,
there are three types of graphical probabilistic models based on their structure:

1) the directed acyclic graph (DAG) with oriented arcs;
2) the Markov random field (MRF) with undirected arcs; and
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3) the chains of graphs that are composed at the same time of directed and undirected arcs.

A BN is defined by a directed acyclic graph G = (V,E), where V is the set of nodes and E

the set of arcs. In particular, each node in the graph represents a random variable, while the
edges between the nodes represent probabilistic dependencies among the corresponding random
variables.

Let X is a Bayesian network with respect to G if its joint probability density function (with
respect to a product measure) can be written as a product of the individual density functions,
conditional on their parent variables [Russell and Norvig, 2003]:

p(x) =
∏
v∈V

p
(
xv|xpa(v)

)
, (1)

where pa(v) is the set of parents of v (i.e,. those vertices pointing directly to v via a single
edge), and X = (Xv)v∈V be a set of random variables indexed by V . Therefore, for any set of
random variables, the probability of any member of a joint distribution can be calculated from
conditional probabilities using the chain rule (given a topological ordering of X) as follows:

P (X1 = x1, . . . , Xn = xn) =
n∏

v=1

P (Xv = xv|Xv+1 = xv+1, . . . , Xn = xn) , (2)

It can then be compared with Eq. (1),

P (X1 = x1, . . . , Xn = xn) =
n∏

v=1

P (Xv = xv|Xj = xj for each xj which is a parent of Xv) , (3)

To develop a BN, we basically first create a graph G. We then ascertain the conditional
probability distributions of each variable given its parents in G. In many cases, in particular in
the case where the variables are discrete, if we define the joint distribution of X to be the product
of these conditional distributions, then X is a Bayesian network with respect to G [Neapolitan,
2004]. Consider x1, x2 and x3 be three variables, representing for example the fields: “Country”,
“Zip code” and “Town” respectively in the address area of the provided form. There are three
types of possible relations between them viz. serial, convergent and divergent.

1) In a serial connection, x1 is connected to x2 via x3 i.e., x1 → x2 → x3.
2) In a divergent connection, x1 and x2 are dependent i.e., x1 ← x3 → x3.
3) In a convergent connection, x1 and x2 are independent, and x3 is dependent on them i.e.,

x1 → x3 ← x3.

Therefore, two nodes x1 and x2 are d-separated if, for any path (undirected) between them,
there is an intermediate variable x3 which is in the form of

• either serial or divergent connection, and x3 is known
• or convergent connection, and neither x3 nor any of x3’s descendants are known.

If nodes x1 and x2 are d-separated by x3, then x1 and x2 are conditionally independent given x3.
Likewise, nodes x1 and x2 are said to be d-connected if they are not d-separated. For example,
X is a BN with respect to G if, for any two nodes x1 and x2: Xx1 ⊥⊥ Xx2 |Xz, where z is a set
which d-separates x1 and x2.
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3.2 BN learning and classification

In this section, we provide an idea about how we perform learning and classification. Learning
basically provides how we find the graph structure that best represents the problem based
on the parameters computation via estimated conditional probabilities. In the literature, three
commonly used algorithms are Naive, PC and MWST. In what follows, we first discuss Naive
Bayes algorithm and classification in detail, which is then followed by a quick functioning
principle of remaining algorithms.

1) Naive. In short, the probability model for a classifier is a conditional model, p (C|F1, . . . , Fn)

over a dependent class variable C with a small number of outcomes or classes, conditional
on several feature variables F1 through Fn. In case, the number of features is large, we
then reformulate the model to make it more tractable. Using Bayes’ theorem, this can be
written

p (C|F1, . . . , Fn) =
p(C)p(F1, . . . , Fn|C)

p(F1, . . . , Fn)
. (4)

In practice, since the denominator does not depend on feature values (thus effectively con-
stant) the numerator part is of interest. The numerator is equivalent to the joint probability
model, p(C,F1, . . . , Fn). This can be expressed by using the chain rule,

p (C,F1, . . . , Fn) = p(C)p(F1, . . . , Fn|C),
= p(C)p(F1|C)p(F2, . . . , Fn|C,F1),

= p(C)p(F1|C)p(F2|C,F1)p(F3, . . . , Fn|C,F1, F2),

= p(C)p(F1|C)p(F2|C,F1) . . . p(Fn|C,F1, F2, F3, . . . , Fn−1). (5)

Now the “naive” conditional independence assumptions come into play: assume that each
feature Fi is conditionally independent of every other feature Fj for j 6= i given the category
C. This means that p(Fi|C,Fj) = p(Fi|C), p(Fi|C,Fj, Fk) = p(Fi|C), and so on, for i 6= j, k, l

and so the joint model can be expressed as

p(C|F1, . . . , Fn) ∝ p(C,F1, . . . , Fn)

∝ p(C)p(F1|C)p(F2|C)p(F3|C) . . .

∝ p(C)
n∏

i=1

p(Fi|C).

This means that under the above independence assumptions, the conditional distribution
over the class variable is

p (C|F1, . . . , Fn) =
1

K
p(C)

n∏
i=1

p (Fi|C) , (6)

where K (the evidence) is a scaling factor dependent only on F1, . . . , Fn i.e., a constant if
the values of the feature variables are known.
For any training data containing a continuous attribute x, we basically segment the data
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by the class and compute the mean and variance of x in each class. Then, the probability
density of some value given a class,

P (x = v|c) = 1

2πσ2
c

exp

(
−(v − µc)

2

2σ2
c

)
, (7)

where µc and σ2
c respectively be the mean and the variance of the values in x associated

with class c.
Based on the independent feature model i.e., the naive Bayes probability, the naive Bayes
classifier combines this model with a decision rule. One basic rule is to take the hypothesis
which is the most probable based on the maximum a posteriori or MAP decision rule. A
Bayes classifier is the function defined as follows,

classify(f1, . . . , fn) = argmax
c
p(C = c)

n∏
i=1

p (Fi = fi|C = c) . (8)

Basically, the variables are conditionally independent to the class. In this network, the
classification is done using the Bayesian rule. Many studies [Langley et al., 1992; François
and Leray, 2006]) have demonstrated the effectiveness of this classifier compared to other
structures of BNs. However, this efficiency is highly related to the conditional independence
between variables and the simplicity of the problem.

2) PC. Peter & Clark (PC) is a search algorithm of conditional independence [Spirtes et al.,
2001]. We basically start with a completely connected graph. For each pair of random vari-
ables connected by an arc, the algorithm examines the existing conditional independence
using the χ2. Based on it, we remove the corresponding arc. It then checks the conditional
independence for the remaining variables in a set until all the conditional independences
are removed. Once all the conditional independences detected, it looks for V -Structures to
direct arcs.

3) MWST. The algorithm maximum weight spanning tree (MWST) is a part of the family of
algorithms based on a score [Chow and Liu, 1968]. The goal is to find the tree that goes
through all nodes: x1, . . . , xn in the network by maximizing a score defined for all possible
arcs. The starting point of the algorithm is a set of n trees, each node representing each
variable. Then the trees are merged according to the arc weights.

Generally speaking, in order to fully specify the BN and thus fully represent the joint prob-
ability distribution, it is necessary to specify for each node xi the probability distribution for
x1 conditionally upon pa(x1) parents. Often, these conditional distributions include parameters
which are unknown and must be estimated from data, sometimes using the maximum likelihood
approach,

p (xi = stk|pa(xi) = stj) =
Ni,j,k∑
kNi,j,k

, (9)

where Ni,j,k is the number of events in the database where the random variable xi is in the
state stk and its parents are in the configuration stj . In case we have very small (or limited)
training data, direct probability computation may provide probabilities of 0 or 1. These extreme
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probabilities are “very strong” and may affect the decision process. In such a case, one can use
Laplace estimator [Jiang et al., 2007]. In this paper, we use maximum likelihood estimator.

To use the BN on new data for its classification, the inference mechanism is employed.
It computes the probability of a non-instantiated variable (such as a new completed form)
depending on other variables instantiated for a BN. One of the main inference algorithms is
that the junction tree, has been developed by [Jensen, 1996; Jensen et al., 1990]. It uses the
obtained graph in the learning phase and breaks down into several steps:

1) moralisation,
2) triangulation and
3) search for a maximum spanning tree, which we refer to as junction tree.

Until now, we have discussed the principle of BN. In what follows, we will discuss how we are
employing it for form analysis problem.

4 FORM PROCESSING USING BN
4.1 Outline

Developing a template-free form recognition while considering noisy images by recognising
target characters is not an easy task in addition to the ambiguous alignment layout [Hirayama
et al., 2011a]. This concludes that it does not offer deployment, commercially speaking. Instead,
use of handwritten digital ink for form processing is interesting [Tran et al., 2010]. Under this
purview, globally speaking, our proposed concept uses ink-tracing files via electronic pen from
the professionals. These ink-tracing files do not itself provide any knowledge about the form
structure. Therefore, they are now integrated with the given form format as an input to the
system. Forms are then decomposed into three major areas of interest i.e., header, body and
footer. As soon as we have specified areas of interest, the corresponding BN is built which
are then integrated into a single global network. In order to represent the whole form, arcs
are inserted between the areas of interest. In Fig. 2, an overall idea of the learning concept is
depicted.

Each area has its own significance and allows dynamic reduction in computational complexity
of the system since number of fields in each area can be varied. In other words, it simplifies
the networks but requires an intelligent data discretisation to optimise the performance. For
recognition, the extracted fields are basically served to feed the BN and to allow the inference.

In the following, we will explain the major elements that are used to represent form via BN.
We start with highlighting why electronic pen is employed. We then provide details about how
global BN for a single form is built. It mainly concerns three areas of interest, including the form
structure.

4.2 Electronic pen

Without a surprise, several devices exist for note-taking on screens or tablets. Therefore, instead
of relying on this type of touch screen technology, investigating the use of electronic ink on the
paper will be accepted for commercial purpose since it offers natural usability.
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Fields extraction

fields . . . ← representing nodes
of Bayesian network

Electronic ink

Form
formats

BodyHeaderAreas of interest

{
Footer ← learning Bayesian sub-network

Global Bayesian Network

inferenceinference inference

integrating them together

Fig. 2. A quick screen-shot of the learning concept in our proposed method.

Among several types of electronic pens, currently, we use the ANOTO concept. In this concept,
the pen equipped with a camera, films the route of the pen where it is possible to accurately
detect the writing coordinates and then rebroadcasts the tracings. This technology offers a high
reliability as the frame of the paper can provide all the information needed for further processing.

4.3 Form description and its format

As said before, forms are provided by the Actimage company. In Fig. 1 in pp. 2, a sample is
provided. Forms contain check boxes, text boxes and free text boxes. All forms are in A4 (21cm×
29.7 cm), in portrait orientation. In average, the number of fields are ranging from 100 and 360
fields in a single form. A field is an elementary area for data input (i.e., ink-tracing files). It will
represent a variable vi as discussed in Section 3.

For each form class, XML representation of its format is provided. Each area of the form is
described with its fields. As an example, XML representation of the field � Account is,

<Fields>

<X>21.5 24.5</X>

<Y>148.5 151.5</Y>

<Type>Case_A_Checkmark</Type>

<Label>Account</Label>

</Fields>.

For each field, we consider the following elements:

1) bounding box – a margin of a few pixels is included in order to absorb overlapping fields
due to font variations in handwriting;

2) type – it can be either check box, text box or drawing figures;
3) label – the predefined labels such as “Mr.” “Mrs.”, “Address”, “Order Number”, for exam-

ple; and
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(a) A sample image showing three areas
of interest.

Address— —
�— —

Menu

Data1 – –
Data2 —
Data3 —

valid — —
— — •

Header Body Footer

⇓
Header

BsNheader

Body

BsNbody

Footer

BsNfooter

��� . . . � ��� . . . �

��

��� . . . �

� �

(b) Bayesian sub-network (BsN) for different areas
of interest. Each � represents field of the
corresponding area.

Fig. 3. Overall Bayesian network structure for a single form having three different areas with their
Bayesian sub-network. To be more illustrative, BNform = {BsNheader,BsNbody,BsNfooter}.

4) areas of interest – it can be either header, body or footer.

The form format is used to validate the class by checking the consistency between the field
types and the data entered. For example, we can check whether an area is actually composed
of digits.

4.4 Areas of interest and Bayesian network representation

As said before, to simplify the complexity of the problem, the form is divided into three areas of
interest: header, body, and footer. As an example, customer identity, order and its validation
represent header, body and footer respectively. Following Fig. 3, since we have three sub-
divisions, there exists three Bayesian sub-networks (BsNs) representing header, body and footer
separately. In this illustration, we have shown a single arc that connects from one BsN to another
in order just to provide an intuitive idea on it. But practically, nodes from every BsNs are
connected to each other. In other words, intra-node connections are computed first that exist
within the BsNs and then inter-node connections in between the BsNs.

During training, all BsNs of the corresponding forms are integrated into a single BN named
a global BN (GBN) where the arcs give the conditional dependence between the BsNs. It is
important to notice that the BsN integration is made by taking several forms, not just limited to
a single form. As a reminder, the random variables of BsN represent the form fields (denoting
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Fig. 4. An overall concept showing note-taking for form classification. In this illustration, the
fundamental idea is to select the corresponding form format via ink-tracing files, where four different
classes are shown.

by xv in Eq. (1)) of the corresponding area of interest. To represent it, we simply use value ‘1’
for filled node and ‘0’ , otherwise i.e., empty. The arcs represent the dependencies between the
fields. We refer to Section 3 about the way we build BsN. Consider we have a finite set of M
forms, in each class ck, {fm},m = [1, . . . ,M ]. All classes of the training dataset are represented
by a global BN called GBN i.e.,

GBN = {BNk}k=1...,K, and BNk = {BsNka}a=1,...,3, (10)

where ck is composed of three sub-forms (i.e., areas of interest) representing the corresponding
BsN.

In what follows, we explain about how training has been made. The training takes place in two
stages. Firstly, the main areas corresponding to the most important sub-structures of the form are
identified manually and fed into the system to initialise BsN. Secondly, the training is continued
for the entire form that connects those variables in BsN. This means that for any field flkaq,
we perform the marginal probability of p(flkaq) from any sub-form BsNka which is composed
of flkaq, q = [1, . . . , Q] fields. The nodes of the graph represent the form fields as well as its
class. Within each node, there is a probability distribution which shows the interaction between
the nodes. The arcs represent the dependencies between the fields. Once the BsN is trained
for all areas of the form with particular distribution probabilities, the training is extended to
the entire BN (i.e., GBN) by integrating them. GBN summarises the relationships between the
areas representing all form classes. For this, we employ three different algorithms for structure
learning: Naive, PC and MWST network, as discussed in Section 3.2.

5 ELECTRONIC NOTE-TAKING – IMPLEMENTATION

We remind that the purpose of this study is to classify on-line handwritten forms which are par-
tially filled and the section corresponds to the thorough extension of the previous work [Philippot
et al., 2010]. A similar work has been presented [Tran et al., 2010; Hirayama et al., 2011b], from
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which the current work has been inspired. Very quickly, overall understanding of the problem
is graphically illustrated in Fig. 4. In this illustration, the ink-tracing files from professionals for
each sample are used to classify form using the list of provided form formats. The form format
is said to be matched with ink-tracing files, if it produces highest similarity (i.e., probability)
using BN. The matched format corresponds to the particular class i.e., the form samples are
classified.

Our learning is based on what we have extracted as fields and thus field extraction has a direct
impact on overall system performance. Therefore, we start with explaining field extraction and
then learning. After that we explicitly explain how GBN is learnt from all BsNs. As a reminder,
the global concept is of course, based on what we have mentioned in Section 4.

5.1 Field extraction

As said before, field extraction is related to ink-tracing file i.e., a string of coordinates along the
pen trajectory from pen-down to pen-up events. This means that we employ matching between
the electronic ink-tracing files and the form formats. Our matching is simple and immediate. It
is based on whether ink-tracing is found to be in the corresponding box i.e., the proportion of
coordinates appeared to be in the corresponding box (cb) with respect to the total number of
coordinates in the ink-tracing file (if) i.e.,

matching (if, cb) =

{
1 if inside (if,cb) or overlapping (if,cb), and
0 if outside (if,cb)

(11)

We accept the field if the proportion is greater than empirically designed value 0.85% and
reject, otherwise. Matching, as a consequence, yields a list of potential filled fields that are then
presented in the form of a matrix. In what follows, we will discuss in more detail.

5.2 Learning matrix

As said before, matrix as a result of matching between ink-tracing files and boxes in form format,
are used for learning the BsN. Such a matrix is referred to as learning matrix.

A single matching does not provide sufficient information for learning, however. Therefore, it
uses all forms including their format. As a consequence, a learning matrix is obtained for each
form format of the particular class. Fig. 5 shows an example of how the matrix is computed. In
this table, for each class, three areas of interest are provided including their associated fields.
The value ‘1’ in a cell indicates that a single ink-trace (or more) is (are) appeared in the field
and hence the field is accepted. The blank cell refers to empty field where not a single trace
is matched. From these matrices, we aer able to learn form structure and BsN parameters (cf.
Section 3.2).

Following Fig. 5, learning matrices (corresponding to three different areas of interest) belonging
to any particular class are collectively used for BsN learning. These BsNs are then integrated
to build a complete GBN. While discussing BsN and GBN, we put focusing on implmentation
issue which is followed by a discussion including illustrations.
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Fields class 1 class 2 class 3 class 4
Datum TT 1 1 1

Datum MM 1 1
Datum JJ 1 1

Kunderbetereuer 1 1
Frau
Herr 1 1

Leig-Nr 1 1 1
Key 1

Name 1 1 1 1 1 1 1 1
Srasse 1 1 1 1 1 1 1 1

Hausnr 1 1 1
PLZ 1 1 1 1 1 1 1
Ort 1 1 1 1

Fig. 5. An example of a learning matrix where three different areas per form class are considered.

Class

NameMr. Address

Madam

Daughter’s Name

First Name Zip Code

City

Telephone

E-mail

Mr.
O N

Madam O 0.02 0.88
N 0.98 0.12

Fig. 6. An example showing a BsN for an address.

5.3 BsN Learning

While implementing, we consider the following.

1) We have {ck}Kk=1 classes.
2) Each class ck is provided with e samples of filled forms and therefore the learning matrix

is now composed of K× e columns.
3) In each area of interest, we have BsNma containing Q fields. Now there are qm,a + 1 nodes

per network, where qm,a is the number of fields in the area a of each class.

To illustrate it, Fig. 6 is an example of the “identification” area i.e., address. The fields are as
follows: 1) “Mr.”, 2) “Madam”, 3) “Daughter’s Name”, 4) “Name”, 5) “First Name”, 6) “Address”,
7) “Zip Code”, 8) “City”, 9) “Telephone” and 10) “E-Mail”. The BsN is composed of 11 nodes
(i.e., 10 + the field class). Concerning the arcs, there is one between “Mr.” and “Madam” relating
the existence of conditional dependence between them. By observing the probabilities associated
with the node “Madam”, one can see that the presence of the field “Mr.” almost always excludes
the presence of the field “Madam”. Both the fields can be seen at the same time in the situation
where user fills “Mr.”, then erases it, and finally checks the field “Madam”. In our ink-tracing
files, both are considered to be filled. Similarly, both can be absent.
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Class

Kd.Nr.

Datum Strasse

TelefonVornameKategorie

Nachname E-mail PLZ

Geb. Datum

Fax Titel NewsletterStadt

Kd.Nr.\Strasse true false
true 0.01 0.99
false 0.70 0.30

true 0.93
false 0.07

Kd.Nr.\Datum true false
true 0.99 0.01
false 0.72 0.28

Strasse\Telefon true false
true 0.36 0.64
false 0.01 0.99

Strasse\Vorname true false
true 0.94 0.06
false 0.02 0.98

Strasse\Kategorie true false
true 0.84 0.16
false 0.48 0.52

Telefon\PLZ true false
true 0.58 0.42
false 0.01 0.99

Telefon\E-mail true false
true 0.18 0.82
false 0.01 0.99

E-mail\Geb. Datum true false
true 0.20 0.80
false 0.01 0.99

Geb. Datum\Stadt true false
true 0.83 0.17
false 0.01 0.99

Geb. Datum\Titel true false
true 0.83 0.17
false 0.01 0.99

Geb. Datum\Newsletter true false
true 0.83 0.17
false 0.01 0.99

Geb. Datum\Fax true false
true 0.83 0.17
false 0.01 0.99

Vorname\Nachname true false
true 0.99 0.01
false 0.06 0.94

Fig. 7. An example of BsN for form header belonging to class 3, depicted in Fig. 4. It uses PC
algorithm.

For further clarity, Fig. 7 shows an example of BsN structure for class 3 (from Table 5) using
PC algorithm. There is a link between the filling of “GebDatum” (date of birth) and the “fax
number”. We will have, for example, a probability of 0.99 having no filled field. In contrast,
there is a dependence between “Vorname” and “Nachname” (respectively first and last name)
that seems more logical and intuitive. We will find a probability of 0.99 that both fields are
filled simultaneously. Besides, we have received similar behaviour while using the remaining
two algorithms: Naive and MWST. However, their structures are different from each other. In
all three algorithms, we compute the maximum likelihood estimation to estimate parameter.

5.4 GBN learning

We repeat that three different BsNs are now used to build a GBN. This means that it is required
to create new learning matrix from BsNs. To efficiently handle it, we consider mainly two steps:
data creation and its discretisation.

Data creation.
From each BsN, we compute the marginal probabilities of each area using local networks of
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Fig. 8. Probability distribution using form class 1: (a) for form headers when all three learning
algorithms are used and (b) for three different areas of interest when Naive BN is used.

the defined area (i.e., header, body and footer) via inference. Since we have several classes and
forms (due to similar structure, for instance), we receive sveral different probabilities.

1) For m forms of three different areas distributed in K classes, there are m×3×K probabilities
distributed in a learning matrix having 3×K+ 1 columns in m lines.

2) Now, the number of columns this new matrix will correspond to the number of computed
probabilities for a single form plus its class.

Discretisation.
The obtained matrix is composed of probabilities in the interval [0, 1]. To make possible BsNs
integration into a GBN, we discretise them in the interval [0, 1] in two different ways.

1) Equal intervals.
An equal interval of 0.1, for instance can be used i.e., [0, 0.1], ]0.2, 0.3], . . . , ]0.9, 1].

2) Unequal intervals.
One can, for example use the following five intervals: [0, 0.05], ]0.05, 0.1], ]0.1, 0.9[, [0.9, 0.95[
and [0.95, 1].

In each case of discretisation, several tests have been made. In the following, to provide an
intuitive feelings about data creation and discretisation, we attempt to guide readers with a
couple of illustrations, from a single class (class 1).

1) Probability distribution using all learning algorithms.

To be more specific, we take form header belonging a single class. It is shown in Fig. 8(a).
In this illustration, it is found that the distribution is fairly uniform from all learning
algorithms. There exists, however a peak of 20% for the PC algorithm for probabilities
belonging to the interval ]0.4, 0.5]. This means that 20% of forms, the algorithm PC generates
ambiguity during the classification. While, more than 65% of the forms are lying in the
probability range of 0 and 0.1, according to the MWST and Naive. Knowing that 75% of
the forms do not belong to class 1, which indicates that for less than 10%, there remains a
confusion since we assume that there exists no classification error.

2) Probability distribution in three different areas of the form using the Naive BN.
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For more deeper analysis, the graph in Fig. 8(b) gives the probability distribution for the
three areas of the form class using the Naive BN. As before, we observe two peaks on
the intervals [0, 0.1[ and [0.9, 1]. However, the classification of the footer does not provide
significant separation. It happens because there exists always a freedom of writing.

Based on the observation from two different cases presented in Fig. 8, one can notice that
similar behaviour will be shown for all other remaining classes. This will be evaluated using
precision and recall, while doing recognition (cf. Section 5.5). Similarly, unequal discretisation
can affect the performance of the proposed approach. In Section 6, we will provide recognition
performance of the proposed approach. While reporting recognition performance, based on our
experience, we will use equal interval discretisation because of the better efficacy.

5.5 Form recognition

As in learning phase, recognition is done in two steps:

1) the recognition of areas and
2) global recognition.

In order to speed up the process, we first check whether separate BsN (from each area) is
matched. This goes to all areas one by one. If they are matched, we go for complete GBN
matching. Bullet-wise summary can be explained as follows.

1) We first, use BsNs for areas using probability inference i.e., for a form fm having three
areas of interest in K classes, we calculate the probabilities.

2) For each area of interest, we then have a column matrix of K×K probabilities.
3) For the recognition of the entire form, we discretise this matrix as in learning.
4) From the discretised matrix and the GBN, we then seek the most similar class via inference.

The most similar class is said to be recognised if it matches the ground-truths.

6 EXPERIMENTS

6.1 Dataset and evaluation protocol

To validate our approach, we conducted a series of tests over four different classes, each con-
sisting of 800 forms. These samples were filled for commercial and administrative purposes.

For recognition performance evaluation, we are based on the following standard metrics:

1) precision and recall, and
2) F-score.

Formally, precision is the fraction of retrieved documents that are relevant to the search i.e.,

precision =
relevant documents

⋂
retrieved documents

retrieved documents
. (12)

Precision takes all retrieved documents into account, but it can also be evaluated at a given
cut-off rank, considering only the top-most results returned by our system. This means that
precision is the ratio of number of correct documents divided by the number of all returned
documents for a given short-list. Note that precision is also used with recall, the percent of all
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relevant documents that is returned by the search. Recall is the fraction of the documents that
are relevant to the query that are successfully retrieved i.e.,

recall =
relevant documents

⋂
retrieved documents

relevant documents
. (13)

The traditional F-measure or balanced F-score (i.e., F1-score) is the harmonic mean of precision
and recall,

F1-score = 2 · precision · recall
precision + recall

. (14)

The F1-score is the interpreted result of the weighted average of the precision and recall. F1-score
reaches its best value at 1 and worst score at 0.

Besides, computing ROC curve is still interesting. For any dataset, since the ROC curve and
the precision-recall (PR) curve for a given algorithm contain the same points, we do not need
to include ROC curve in our test. In other words, the idea leads to the theorem that a curve
dominates in ROC space if and only if it dominates in PR space [Davis and Goadrich, 2006].

Unlike traditional dichotomous classification of database, K-fold cross validation (CV) has
been implemented. In K-fold CV, the original database for every class is randomly partitioned
into K sub-database. Of the K sub-database, a single sub-database is used for validation, and
the remaining K − 1 sub-databases are used for learning. This process is then repeated for K
folds, with each of the K sub-databases used exactly once. Eventually, a single value results from
averaging all. In our case, K = 4, where we have 600 samples for learning and the remaining
200 samples for testing from each class.

6.2 Results and analysis

We perform a series of tests to validate the proposed approach. As said before (cf. Section 5.4
in pp. 15), the results will be reported by using equal interval of discretisation.

In the very beginning, the test has been made for different learning sizes of the datasets. This
means that, to validate learning, it makes sense to evaluate the outputs where we aim to see
whether size of the learning dataset affects the performance of the approach. As said before,
we have 600 learning samples from each class. Rather than using all samples for learning, our
learning has been started from 50 samples per class. Fig. 9 shows results precision and recall from
three different learning algorithms over different dataset sizes. In Fig. 9, MWST, provides better
performance in comparison to others. Naive and PC show almost similar behaviour. Without
a surprise, the larger the dataset, the higher the recognition performance. This is one of the
common characterisation of all three algorithms. This means that as soon as learning dataset
size increases, structure of the BsN is updated with additional relevant fields associated with it.
Fig. 10 shows an example of it.

For the remaining tests, we provide algorithm-wise results. To simplify it, we first compute
separate recognition performance using precision and recall, from each area of interest on a
one-to-one basis. These performances are then averaged. Finally, we analyse the performances
from one learning algorithm to another.
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Fig. 9. Precision and recall from three different learning algorithms over different dataset sizes.

Naive.
To provide clarity about the tests, we provide area-wise performance using Naive BN.

1) Form headers
In Table 1, precision and recall using Naive BN is provided for form headers. It uses four
different learning datasets. The results show a correlation between the training set and the
results, and thus the network parameters differ from one dataset to another.

2) Form bodies
Table 2 gives the results for form bodies. Compared to the performance for headers (cf.
Table 1), it provides less recognition scores. This is primarily due to the large number of
fields, overlapping (sometimes) with the fields belonging to headers.

3) Form footers
Table 3 gives the results for form footers. It shows quite less test scores in comparison to



20

DatumTT DatumMM Frau Strasse Leig NR Hausnr Kundenbetreuer

DatumJJ Herr Leig NR suite Name PLZ Ort

(a) BsN structure using 50 samples.

DatumTT DatumMM DatumJJ Frau Strasse Leig NR Hausnr Kundenbetreuer

Herr Leig NR suite Name PLZ

Ort
(b) BsN structure using 100 samples.

DatumMM DatumTT Frau Strasse Hausnr Kundenbetreuer

DatumJJ Herr Name PLZ

Leig NR suiteLeig NR ORT

(c) BsN structure using 400 samples.

Fig. 10. An example of showing BsN structure update, for the header of the class 4, in particular,
starting from 50 to 400 samples with the PC algorithm.

TABLE 1
Precision, recall and F1-score (in %) for the form headers using Naive BN.

Precision Recall F1-score
Dataset⇒ 1 2 3 4 1 2 3 4 1 2 3 4

class 1 86.40 83.19 87.95 88.34 98.50 99.00 98.50 98.50 92.05 90.41 92.92 93.14
class 2 82.30 93.90 83.33 82.84 98.80 98.70 99.60 99.66 89.79 96.24 90.74 90.47
class 3 98.80 98.64 98.60 99.80 61.50 76.14 64.40 64.50 75.81 85.94 77.91 78.35
class 4 96.35 99.50 97.07 95.15 99.20 98.16 99.50 98.34 97.75 98.82 98.27 96.71

Average 90.96 93.81 91.74 91.53 89.50 93.00 90.50 90.25 90.22 93.40 91.11 90.88

headers and bodies, because the footers are composed of a few fields. For example, class
4 comprises of only three fields that are free enough at making-notes. As a consequence,
classification is not guaranteed.

4) Global form
Table 4 shows the results for the whole forms. It provides satisfactory results, in overall.
Unlike the previous results (cf. Table 3) for footers, global form classification receives better
results. This means that global form recognition does not show trade-off behaviour of
the recognition performance even when form footers are not clearly separated during
classification.

PC and MWST.
Previously, we have provided area-wise recognition performance. This is aimed to provide
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TABLE 2
Precision, recall and F1-score (in %) for the form bodies using Naive BN.

Precision Recall F1-score
Dataset⇒ 1 2 3 4 1 2 3 4 1 2 3 4

class 1 97.03 99.00 98.01 98.01 98.00 99.00 98.50 98.50 97.51 99.00 98.25 98.25
class 2 67.82 74.33 63.23 66.11 98.00 97.00 98.00 99.50 80.16 84.17 76.87 79.44
class 3 96.04 93.89 94.81 98.81 48.50 62.80 36.50 41.84 64.45 75.26 52.71 58.79
class 4 95.19 96.63 93.87 93.46 99.00 99.20 99.50 99.66 97.06 97.90 96.60 96.46

Average 89.02 90.96 87.48 89.10 85.88 89.50 83.13 84.88 87.42 90.22 85.25 86.94

TABLE 3
Precision, recall and F1-score (in %) for the form footers using Naive BN.

Precision Recall F1-score
Dataset⇒ 1 2 3 4 1 2 3 4 1 2 3 4

class 1 96.43 89.64 95.65 91.52 78.00 79.00 77.00 81.00 86.24 83.98 85.32 85.94
class 2 34.21 39.29 31.85 32.68 98.43 99.75 99.67 99.87 50.77 56.37 48.27 49.25
class 3 23.34 23.48 98.77 98.80 02.55 13.50 00.50 00.50 04.60 17.14 00.99 00.99
class 4 04.54 00.13 01.23 02.25 04.50 00.25 00.33 00.13 04.52 00.17 00.52 00.25

Average 57.13 38.14 56.87 56.31 45.87 48.13 44.38 45.38 50.88 42.56 49.85 50.26

deeper analysis of the results. For PC and MWST, unlike before, we provide precision and recall
for global forms. Table 5 and 6 provide results respectively from PC and MWST. Any of the
two performs better than Naive BN, presented before. In overall comparison, MWST performs
better than PC, showing marginal difference of not more than 1% recognition rate.

On the whole, our results provide the fact that local areas do not really affect the global form
recognition. Such a behaviour has been received from all learning algorithms.

7 DISCUSSIONS

We have addressed the problem of recognising handwritten forms from incomplete and uncertain
electronic ink-tracing files. It is therefore necessary to rely on the presence or absence of ink files
in the fields so that we are able to relocate the position whether the physical structure of the form
recognition is possible. In this framework, we take advantage of BNs to handle such incomplete

TABLE 4
Precision, recall and F1-score (in %) for the global forms using Naive BN.

Precision Recall F1-score
Dataset⇒ 1 2 3 4 1 2 3 4 1 2 3 4

class 1 90.91 91.19 92.95 98.18 99.02 99.25 99.33 99.00 94.79 95.05 96.03 98.59
class 2 90.98 92.02 90.63 84.88 99.75 99.96 99.60 99.67 95.16 95.83 94.90 91.68
class 3 99.25 98.99 99.50 99.75 80.23 82.79 82.74 81.50 88.73 90.17 90.35 89.71
class 4 99.50 99.49 99.67 99.50 99.67 98.33 99.50 99.33 99.58 98.91 99.58 99.41

Average 95.16 95.42 95.69 95.58 94.67 95.08 95.29 94.88 94.91 95.25 95.49 95.23
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TABLE 5
Precision, recall and F1-score (in %) for the global forms using PC BN.

Precision Recall F1-score
Dataset⇒ 1 2 3 4 1 2 3 4 1 2 3 4

class 1 95.24 57.14 68.72 99.70 99.50 99.75 97.50 90.75 97.32 72.66 80.62 95.01
class 2 99.60 99.90 99.50 99.40 99.67 87.83 80.00 99.70 99.63 93.48 88.69 99.55
class 3 99.75 99.67 90.91 93.60 97.09 99.67 99.25 99.00 98.40 99.67 94.90 96.22
class 4 97.50 99.99 99.67 97.90 97.50 37.50 67.60 99.90 97.50 54.54 80.56 98.89

Average 98.02 89.18 89.70 97.65 98.44 81.19 86.09 97.34 98.23 85.00 87.86 97.49

TABLE 6
Precision, recall and F1-score (in %) for global forms using MWST BN.

Precision Recall F1-score
Dataset⇒ 1 2 3 4 1 2 3 4 1 2 3 4

class 1 98.83 98.50 98.67 98.67 98.02 97.95 96.42 96.42 98.42 98.22 97.53 97.53
class 2 99.88 99.77 97.60 98.50 99.67 99.80 99.01 98.36 99.77 99.78 98.30 98.43
class 3 97.45 97.90 87.77 95.00 97.99 97.44 99.61 97.91 97.72 97.67 93.32 96.43
class 4 99.17 98.33 99.80 99.33 99.66 99.33 89.96 98.84 99.41 98.83 94.62 99.08

Average 98.83 98.63 95.96 97.88 98.83 98.63 96.25 97.88 98.83 98.63 96.10 97.88

data where the use of conditional probabilities can highlight the relationships between random
variables and inference can deal with unobserved data. In our case, the random variables refer
to fields and parts of forms and the unobserved data refer to form class in addition to fields
and parts. For validation, we have studied three fundamental types of BNs: Naive, PC and
MWST where each learning structure uses different assumptions of independence. Besides, we
also reported the better discretisation, by considering the efficacy of the system.

We have observed that the conditional probabilities of BNs provide the contextual relationships
and circumstances. To limit the context and enhancing their impact, three different areas of
interests i.e., header, body and footer have been employed. Based on the reported results, we
found that whatever the algorithm used, the body is the best recognised area since it contains
sufficient fields and thus more contextual relationships between them. Basically, this happens
due to the presence of tables which are interconnected with a very high chance of filling fields.
Among them, MWST provides an accuracy up to 92.47%. In contrast, the worst results have
found in the footer area. This is primarily because of the presence of some fields that tend to
overlap from one form to another.

Overall, our system shows satisfactory performance in the real-world industrial problem,
where separate (areas of interest wise) information are exploited via BsNs based on uncertain
and incomplete data.

8 CONCLUSION AND FUTURE PERSPECTIVES

In this paper, we have used Bayesian networks for form recognition where fields are partially
filled using electronic ink. BN exploits the possible relationships between corresponding fields
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in conditional probabilities. For simplicity, forms are first split into specific areas and built
Bayesian sub-network (BsN) per area. These BsNs are then integrated to construct a global BN,
representing whole form. For learning, we have studied three major algorithms: Naive, PC and
MWST. For validation, we have taken a real-world electronic note-taking application. Among
the three learning algorithms and considering our application, we have found that the MWST
provides better performance.

Based on the classical learning algorithms, we have established the interests of the technique. In
this framework, use of advanced and optimized learning algorithms like super parent TAN (SP-
TAN) algorithm [Keogh and Pazzani, 1999], Averaged one-dependence estimators (AODE) [Webb
et al., 2005], hidden Naive Bayes (HNB) [Jiang et al., 2009], and discriminatively weighted Naive
Bayes (DWNB) [Jiang et al., 2012] would improve the results. Combining these different structures
of BNs would be another interesting plan to go further since not a single algorithm can overcome
for all local areas when recognition performance is taken into account. Within this framework,
one could imagine a system that automatically choose the network that gives the best results
based on data to be processed.
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