Skip to main content
Log in

A graph optimization method for dimensionality reduction with pairwise constraints

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Graph is at the heart of many dimensionality reduction (DR) methods. Despite its importance, how to establish a high-quality graph is currently a pursued problem. Recently, a new DR algorithm called graph-optimized locality preserving projections (GoLPP) was proposed to perform graph construction with DR simultaneously in a unified objective function, resulting in an automatically optimized graph rather than pre-specified one as involved in typical LPP. However, GoLPP is unsupervised and can not naturally incorporate supervised information due to a strong sum-to-one constraint of weights of graph in its model. To address this problem, in this paper we give an improved GoLPP model by relaxing the constraint, and then develop a semi-supervised GoLPP (S-GoLPP) algorithm by incorporating pairwise constraint information into its modeling. Interestingly, we obtain a semi-supervised closed-form graph-updating formulation with natural possibility explanation. The feasibility and effectiveness of the proposed method is verified on several publicly available UCI and face data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Here, “possibilistic” is used to distinguish from “probabilistic” for denoting the row sum is not always 1.

  2. In fact, such obtained solution is not exact, which is involved in the trace ratio and ratio trace problems and goes beyond our main focus. See [22] for more details.

References

  1. Yan SC, Xu D, Zhang BY, Zhang HJ, Yang Q, Lin S (2007) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51

    Article  Google Scholar 

  2. He XF, Niyogi P (2004) Locality preserving projections. Neural Inf Process Syst (NIPS) 16:153–160

    Google Scholar 

  3. Wang H, Zheng W (2014) Robust sparsity-preserved learning with application to image visualization. Knowl Inf Syst 39(2):287–304

    Article  Google Scholar 

  4. Matthias Dehmer FE-S (2007) Comparing large graphs efficiently by margins of feature vectors. Appl Math Comput 188(2):1699–1710

    MathSciNet  MATH  Google Scholar 

  5. Wan M, Lai Z, Jin Z (2011) Feature extraction using two-dimensional local graph embedding based on maximum margin criterion. Appl Math Comput 217(23):9659–9668

    MathSciNet  MATH  Google Scholar 

  6. Kim YG, Song YJ, Chang UD, Kim DW, Yun TS, Ahn JH (2008) Face recognition using a fusion method based on bidirectional 2DPCA. Appl Math Comput 205(2):601–607

    MathSciNet  MATH  Google Scholar 

  7. Musa AB (2014) A comparison of ℓ1-regularizion, PCA, KPCA and ICA for dimensionality reduction in logistic regression. Int J Mach Learn Cybern 5(6):861–873

    Article  Google Scholar 

  8. Hasan BAS, Gan JQ, Tsui CSL (2014) A filter-dominating hybrid sequential forward floating search method for feature subset selection in high-dimensional space. Int J Mach Learn Cybern 5(3):413–423

    Article  Google Scholar 

  9. Von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416

    Article  MathSciNet  Google Scholar 

  10. Fang Y, Wang R, Dai B (2012) Graph-oriented learning via automatic group sparsity for data analysis. In: IEEE 12th international conference on data mining (ICDM), pp 251–259

  11. Zhu X (2008) Semi-supervised learning literature survey. Technical report, University of Wisconsin, Madison

  12. Liu W, Chang S-F (2009) Robust multi-class transductive learning with graphs. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 381–388

  13. Maier M, Luxburg U (2008) Influence of graph construction on graph-based clustering measures. Neural Inf Process Syst (NIPS)

  14. Fadi Dornaika AA (2013) Enhanced and parameterless locality preserving projections for face recognition. Neurocomputing 99:448–457

    Article  Google Scholar 

  15. Zhao HT, Wong WK (2012) Supervised optimal locality preserving projection. Pattern Recognit 45:186–197

    Article  MATH  Google Scholar 

  16. Bo Yang SC (2010) Sample-dependent graph construction with application to dimensonality reduction. Neurocomputing 74(1–3):301–314

    Article  Google Scholar 

  17. Zhang L, Qiao L, Chen S (2010) Graph-optimized locality preserving projections Pattern Recognit 43(6):1993–2002

    Google Scholar 

  18. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning : data mining, inference, and prediction, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  19. Cai D, He XF, Han JW (2007) Semi-supervised discriminant analysis. In: IEEE 11th international conference on computer vision (ICCV), pp 1–7

  20. Mizutani K, Miyamoto S (2005) Possibilistic approach to kernel-based fuzzy c-means clustering with entropy regularization. In: Torra V, Narukawa Y, Miyamoto S (eds) Modeling decisions for artificial intelligence. Springer, Berlin, Heidelberg

    Google Scholar 

  21. Pal NR, Pal K, Keller JM, Bezdek JC (2005) A possibilistic fuzzy c-means clustering algorithm. IEEE Trans Fuzzy Syst 13(4):517–530

    Article  Google Scholar 

  22. Wang H, Yan SC, Xu D, Tang XO, Huang T (2007) Trace ratio vs. ratio trace for dimensionality reduction. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 1–8

  23. Lee KC, Ho J, Kriegman DJ (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 27(5):684–698

    Article  Google Scholar 

  24. Qiao L, Zhang L, Chen S (2013) Dimensionality reduction with adaptive graph. Front Comput Sci 7(5):745–753

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was partly supported by National Natural Science Foundations of China and Shandong under Grant Nos: 61300154, 11326182, 61402215 and ZR2012FQ005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lishan Qiao.

Appendix: How to solve the weight matrix S = (S ij ) n×n in problem (5)

Appendix: How to solve the weight matrix S = (S ij ) n×n in problem (5)

As seen from Step 2 in Sect. 3.3, given W, computing S = (S ij ) n×n in model (4) is equivalent to solving the following optimization problem:

$$\begin{aligned} & \mathop {\hbox{min} }\limits_{{S_{ij} }} \sum\nolimits_{i,j = 1}^{n} {||W^{T} x_{i} - W^{T} x_{j} ||^{2} S_{ij}^{{}} } + \eta \sum\nolimits_{i,j = 1}^{n} {S_{ij} \ln (S_{ij} /\alpha )} \\ & s.t. \, \sum\nolimits_{j = 1}^{n} {S_{ij} } > 0, \quad i = 1, \ldots ,n \\ &S_{ij} = 1, \quad if \, (x_{i} ,x_{j} ) \in M, \quad i,j = 1, \ldots ,n \\ & S_{ij} = 0, \quad if \, (x_{i} ,x_{j} ) \in C, \quad i,j = 1, \ldots ,n \\ & S_{ij} \ge 0, \quad otherwise \\ \end{aligned}$$
(5)

Obviously, from the constraints of (5) we can get that,

$$\begin{aligned} & S_{ij} = 1, \quad if \, (x_{i} ,x_{j} ) \in M, \quad i,j = 1, \ldots ,n; \\ & S_{ij} = 0, \quad if \, (x_{i} ,x_{j} ) \in C, \quad i,j = 1, \ldots ,n. \\ \end{aligned}$$

So, we only solve the weight value S ij corresponding to the samples without constraints. That is, we just consider the following problem:

$$\begin{aligned} & \mathop {\hbox{min} }\limits_{{S_{ij} }} \sum\nolimits_{i,j = 1}^{n} {||W^{T} x_{i} - W^{T} x_{j} ||^{2} S_{ij}^{{}} + \eta \sum\nolimits_{i,j = 1}^{n} {S_{ij} \ln (S_{ij} /\alpha )} } \\ & s.t. \, \sum\nolimits_{j = 1}^{n} {S_{ij} } > 0, \quad i = 1, \ldots ,n \\ & S_{ij} \ge 0, \quad i,j = 1, \ldots ,n \\ \end{aligned}$$
(6)

where \((x_{i} ,x_{j} ) \notin M\begin{array}{*{20}c} {} \\ \end{array} {\text{and}}\begin{array}{*{20}c} {} \\ \end{array} (x_{i} ,x_{j} ) \notin C\). To optimize S ij , we establish the lagrangian function as follows:

$$\begin{array}{*{20}c} {L(S_{ij} ,\lambda_{i} ,\mu_{ij} ) = \sum\nolimits_{i,j = 1}^{n} {||W^{T} x_{i} - W^{T} x_{j} ||^{2} S_{ij}^{{}} + \eta \sum\nolimits_{i,j = 1}^{n} {S_{ij} \ln (S_{ij} /\alpha )} } } \\ \end{array} - \sum\nolimits_{i = 1}^{n} {(\lambda_{i} \sum\nolimits_{j = 1}^{n} {S_{ij} ) - } } \sum\nolimits_{i,j = 1}^{n} {(\mu_{ij} S_{ij} )} .$$

By the KKT condition,

$$\lambda_{i} \sum\nolimits_{j = 1}^{n} {S_{ij} = 0,\mu_{ij} S_{ij} = 0} ,$$

so the lagrangian function is simplified as

$$\begin{array}{*{20}c} {L(S_{ij} ) = \sum\nolimits_{i,j = 1}^{n} {||W^{T} x_{i} - W^{T} x_{j} ||^{2} S_{ij}^{{}} + \eta \sum\nolimits_{i,j = 1}^{n} {S_{ij} \ln (S_{ij} /\alpha )} } } \\ \end{array} .$$

Let \(\frac{\partial L}{{\partial S_{ij} }} = ||W^{T} x_{i} - W^{T} x_{j} ||^{2} + \eta (\ln (S_{ij} /\alpha ) + 1) = 0\), then we have

$$\begin{array}{*{20}c} {S_{ij} = \alpha \;\exp ( - 1) \cdot \;\exp ( - ||W^{T} x_{i} - W^{T} x_{j} ||^{2} /\eta )} \\ \end{array}$$
(7)

where \((x_{i} ,x_{j} ) \notin M ,\begin{array}{*{20}c} {} \\ \end{array} (x_{i} ,x_{j} ) \notin C,\begin{array}{*{20}c} {} \\ \end{array} \alpha\) is a positive parameter. Intuitively, one expects the weight S ij approximates 1 when the distance of two samples tends to 0. With this intuition, we set α = e, and obtain

$$\begin{array}{*{20}c} {S_{ij} = \exp ( - ||W^{T} x_{i} - W^{T} x_{j} ||^{2} /\eta )} \\ \end{array} .$$

Lastly, we sum up the solution of problem (5) as follows:

$$\hat{S}_{ij} = \left\{ \begin{array}{ll} 1, & if \, (x_{i} ,x_{j} ) \in M \\ 0, & if \, (x_{i} ,x_{j} ) \in C \\ {\exp \left( - \tfrac{{||W^{T} x_{i} - W^{T} x_{j} ||^{2} }}{\eta }\right)}, & otherwise \\ \end{array} \right. .$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Qiao, L. A graph optimization method for dimensionality reduction with pairwise constraints. Int. J. Mach. Learn. & Cyber. 8, 275–281 (2017). https://doi.org/10.1007/s13042-014-0321-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-014-0321-6

Keywords

Navigation