Skip to main content
Log in

Unsupervised extreme learning machine with representational features

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Extreme learning machine (ELM) is not only an effective classifier but also a useful cluster. Unsupervised extreme learning machine (US-ELM) gives favorable performance compared to state-of-the-art clustering algorithms. Extreme learning machine as an auto encoder (ELM-AE) can obtain principal components which represent original samples. The proposed unsupervised extreme learning machine based on embedded features of ELM-AE (US-EF-ELM) algorithm applies ELM-AE to US-ELM. US-EF-ELM regards embedded features of ELM-AE as the outputs of US-ELM hidden layer, and uses US-ELM to obtain the embedded matrix of US-ELM. US-EF-ELM can handle the multi-cluster clustering. The learning capability and computational efficiency of US-EF-ELM are as same as US-ELM. By experiments on UCI data sets, we compared US-EF-ELM k-means algorithm with k-means algorithm, spectral clustering algorithm, and US-ELM k-means algorithm in accuracy and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Huang GB, Zhu QY, Siew CK (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. In: Proceedings of the international joint conference on neural networks (IJCNN’2004). IEEE Press, Budapest, pp 25–29

  2. Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501

    Article  Google Scholar 

  3. Huang GB, Wang DH, Lan Y (2011) Extreme learning machines: a survey. Int J Mach Learn Cybern 2(2):107–122

    Article  Google Scholar 

  4. Cambria E, Huang GB, Kasun LLC, Zhou HM, Vong CM, Lin J, Yin JP, Cai ZP, Liu Q, Li K, Leung VCM, Feng L, Ong YS, Lim MH, Akusok A, Lendasse A, Corona F, Nian R, Miche Y, Gastaldo P, Zunino R, Decherchi S, Yang XF, Mao KZ, Oh BS, Jeon J, Toh KA, Beng A, Teoh J, Kim J, Yu HC, Chen YQ, Liu JF (2013) Extreme learning machines [trends & controversies]. IEEE Intell Syst 28(6):30–59

    Article  Google Scholar 

  5. Huang GB (2014) An Insight into extreme learning machines: random neurons, random features and kernels. Cogn Comput 6(3):376–390

    Article  MathSciNet  Google Scholar 

  6. Ding SF, Xu XZ, Nie R (2014) Extreme learning machine and its applications. Neural Comput Appl 25(3):549–556

    Article  Google Scholar 

  7. Deng WY, Zheng QH, Chen L, Xu XB (2010) Research on extreme learning of neural networks. Chin J Comput 33(2):279–287

    Article  MathSciNet  Google Scholar 

  8. Zong WW, Huang GB, Chen YQ (2013) Weighted extreme learning machine for imbalance learning. Neurocomputing 101:229–242

    Article  Google Scholar 

  9. Bai Z, Huang GB, Wang D, Westover MB (2014) Sparse extreme learning machine for classification. IEEE Trans Cybern. doi:10.1109/TCYB.2014.2298235

    Google Scholar 

  10. Chen H, Peng JT, Zhou YC, Li LQ, Pan ZB (2014) Extreme learning machine for ranking: generalization analysis and applications. Neural Networks 53:119–126

    Article  MATH  Google Scholar 

  11. Lin SB, Liu X, Fang J, Xu ZB (2015) Is extreme learning machine feasible? A theoretical assessment (part II). IEEE Trans Neural Networks Learn Syst 26(1):21–34

    Article  MathSciNet  Google Scholar 

  12. He Q, Jin X, Du CY, Zhuang FZ, Shi ZZ (2014) Clustering in extreme learning machine feature space. Neurocomputing 128:88–95

    Article  Google Scholar 

  13. Huang G, Song SJ, Gupta JND, Wu C (2014) Semi-supervised and unsupervised extreme learning machines. IEEE Trans Cybern 44(12):2405–2417

    Article  Google Scholar 

  14. Lloyd S (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28(2):129–137

    Article  MathSciNet  MATH  Google Scholar 

  15. Defays D (1977) An efficient algorithm for a complete link method. Comput J 20(4):364–366

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang L, Zhang XH, Yang JW, Wang XQ, Li FZ (2012) Cascaded cluster ensembles. Int J Mach Learn Cybern 3(4):335–343

    Article  Google Scholar 

  17. Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of 2nd international conference on KDD. AAAI Press, Menlo Park, pp 226–231

  18. Xu X (2013) Enhancing gene expression clustering analysis using tangent transformation. Int J Mach Learn Cybern 4(1):75–83

    Article  Google Scholar 

  19. Von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416

    Article  MathSciNet  Google Scholar 

  20. Liu N, Chen F, Lu MY (2013) Spectral co-clustering documents and words using fuzzy K-harmonic means. Int J Mach Learn Cybern 4(1):31–40

    Article  Google Scholar 

  21. Kasun LLC, Zhou HM, Huang GB, Vong CM (2013) Representational learning with extreme learning machine for big data. IEEE Intell Syst 28(6):31–34

    Google Scholar 

  22. Ding SF, Jia HJ, Shi ZZ (2014) Spectral clustering algorithm based on adaptive Nyström sampling for big data analysis. J Softw 25(9):2037–2049

    MATH  Google Scholar 

  23. Papadimitriou CH, Steiglitz K (1998) Combinatorial optimization: algorithms and complexity. Courier Dover Publications, Mineola

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shifei Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, S., Zhang, N., Zhang, J. et al. Unsupervised extreme learning machine with representational features. Int. J. Mach. Learn. & Cyber. 8, 587–595 (2017). https://doi.org/10.1007/s13042-015-0351-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-015-0351-8

Keywords

Navigation