Skip to main content
Log in

Information-decomposition-model-based missing value estimation for not missing at random dataset

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Missing data estimation is an important strategy for improving learning performance in learning from incomplete data, especially, when there are non discardable records with missing values. However, most of the existing algorithms are focused on missing at random (MAR) or missing completely at random (MCAR), and less attention has been paid to data not missing at random (NMAR). In this paper, an information decomposition imputation (IDIM) algorithm using fuzzy membership function is proposed for addressing the missing value problem under NMAR. Firstly, the proposed IDIM algorithm is presented with detailed examples. Then, the proposed approach is evaluated with extensive experiments compared with some typical algorithms. The experimental results demonstrate that the proposed algorithm has higher accuracy than the exiting imputation approaches in terms of normal root mean square error (NRMSE) and TP+TN evaluation under different missing strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Qin Y, Zhang S et al (2009) POP algorithm: kernel-based imputation to treat missing values in knowledge discovery from databases. Expert syst Appl 36(2):2794–2804

    Article  Google Scholar 

  2. Vagin V, Fomina M (2011) Problem of knowledge discovery in noisy databases. Inter J Mach Learn Cybern 2(3):135–145

    Article  Google Scholar 

  3. Yu T, Peng H et al (2011) Incorporating nonlinear relationships in microarray missing value imputation. Comput Biol Bioinform IEEE/ACM Trans 8(3):723–731

    Article  Google Scholar 

  4. Rubin DB (1976) Inference and missing data. Biometrika 63(3):581–592

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhang S, Qin Z et al (2005) Missing is useful: missing values in cost-sensitive decision trees. Knowl Data Eng IEEE Trans 17(12):1689–1693

    Article  Google Scholar 

  6. Qin Y, Zhang S et al (2007) Semi-parametric optimization for missing data imputation. Appl Intell 27(1):79–88

    Article  MATH  Google Scholar 

  7. Saar-Tsechansky M, Provost F (2007) Handling missing values when applying classification models. J Mach Learn Res 8:1217–1250

    MathSciNet  MATH  Google Scholar 

  8. Zhu X, Zhang S et al (2011) Missing value estimation for mixed-attribute data sets. Knowl Data Eng IEEE Trans 23(1):110–121

    Article  MathSciNet  Google Scholar 

  9. Allison PD (2000) Missing data. Sage Thousand Oaks, USA

    MATH  Google Scholar 

  10. Little RJ, Rubin DB (2002) Statistical analysis with missing data

  11. Rubin DB (2004) Multiple imputation for nonresponse in surveys. John Wiley and Sons, New York

  12. Ramoni M, Sebastiani P (1997) Learning Bayesian networks from incomplete databases. In: Proceedings of the Thirteenth conference on Uncertainty in artificial intelligence, Morgan Kaufmann Publishers Inc., USA

  13. Ghahramani Z, Jordan MI (1997) Mixture models for learning from incomplete data. Comput Learn Theory Nat Learn Syst 4:67–85

    Google Scholar 

  14. Dick U, Haider P et al. (2008) Learning from incomplete data with infinite imputations. In: Proceedings of the 25th international conference on Machine learning, ACM

  15. Dai H, Ciesielski V (1994) Learning of inexact rules by the fish-net algorithm from low quality data. In: Proceedings of the Eigth Australian Joint Artificial Intelligence Conference, Citeseer

  16. Scheffer J (2002) Dealing with missing data

  17. Dempster AP, Laird NM et al. (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Series B 1–38

  18. Zhang S (2008) Parimputation: from imputation and null-imputation to partially imputation. IEEE Intell Inform Bull 9(1):32–38

    Google Scholar 

  19. Zhang C, Zhu X et al (2007) GBKII: an imputation method for missing values. Adv Knowl Discov Data Mining 1080–1087

  20. Wang Q, Rao J (2002) Empirical likelihood-based inference under imputation for missing response data. Annal Stat 30(3):896–924

    Article  MathSciNet  MATH  Google Scholar 

  21. Pérez A, Dennis RJ et al (2002) Use of the mean, hot deck and multiple imputation techniques to predict outcome in intensive care unit patients in Colombia. Stat Med 21(24):3885–3896

    Article  Google Scholar 

  22. Jerez JM, Molina I et al (2010) Missing data imputation using statistical and machine learning methods in a real breast cancer problem. Artif Intell Med 50(2):105–115

    Article  Google Scholar 

  23. Bø TH, Dysvik B et al (2004) LSimpute: accurate estimation of missing values in microarray data with least squares methods. Nucleic Acids Res 32(3):e34–e34

  24. Choong MK, Charbit M et al (2009) Autoregressive-model-based missing value estimation for DNA microarray time series data. Inform Technol Biomed IEEE Trans 13(1):131–137

    Article  Google Scholar 

  25. Kim H, Golub GH et al (2005) Missing value estimation for DNA microarray gene expression data: local least squares imputation. Bioinformatics 21(2):187–198

    Article  Google Scholar 

  26. Oba S, Sato M-A et al (2003) A Bayesian missing value estimation method for gene expression profile data. Bioinformatics 19(16):2088–2096

    Article  Google Scholar 

  27. Wang X, Li A et al (2006) Missing value estimation for DNA microarray gene expression data by support vector regression imputation and orthogonal coding scheme. BMC Bioinform 7(1):32

    Article  Google Scholar 

  28. Wong DS, Wong FK et al (2007) A multi-stage approach to clustering and imputation of gene expression profiles. Bioinformatics 23(8):998–1005

    Article  Google Scholar 

  29. Diggle P, Kenward MG (1994) Informative drop-out in longitudinal data analysis. Appl Stat 49–93

  30. Little RJ (1995) Modeling the drop-out mechanism in repeated-measures studies. J Am Stat Assoc 90(431):1112–1121

    Article  MathSciNet  MATH  Google Scholar 

  31. Little RJ (2008) Selection and pattern-mixture models. Longitud Data Anal 409–431

  32. Muthén B, Asparouhov T et al (2011) Growth modeling with nonignorable dropout: alternative analyses of the STAR* D antidepressant trial. Psychol Methods 16(1):17

    Article  Google Scholar 

  33. Albert PS, Follmann DA (2009) Shared-parameter models. Longitud Data Anal 433–452

  34. Beunckens C, Molenberghs G et al (2008) A latent class mixture model for incomplete longitudinal Gaussian data. Biometrics 64(1):96–105

    Article  MathSciNet  MATH  Google Scholar 

  35. Dantan E, Proust-Lima C et al (2008) Pattern mixture models and latent class models for the analysis of multivariate longitudinal data with informative dropouts. Inter J Biostat 4(1):1–26

    Article  MathSciNet  Google Scholar 

  36. Roy J, Daniels MJ (2008) A general class of pattern mixture models for nonignorable dropout with many possible dropout times. Biometrics 64(2):538–545

    Article  MathSciNet  MATH  Google Scholar 

  37. Jansen I, Hens N et al (2006) The nature of sensitivity in monotone missing not at random models. Comput Stat Data Anal 50(3):830–858

    Article  MathSciNet  MATH  Google Scholar 

  38. Hogan JW, Roy J et al (2004) Handling dropout in longitudinal studies. Stat Med 23(9):1455–1497

    Article  Google Scholar 

  39. Kenward MG (1998) Selection models for repeated measurements with nonandom dropout: an illustration of sensitivity. Stat Med 17(23):2723–2732

    Article  Google Scholar 

  40. Michiels B, Molenberghs G et al (2002) Selection models and patternmixture models to analyse longitudinal quality of life data subject to dropout. Stat Med 21(8):1023–1041

    Article  Google Scholar 

  41. Ma J et al (2014) Fuzzy clustering with non-local information for image segmentation. Inter J Mach Learn Cybern 5(6):845–859

    Article  Google Scholar 

  42. Vishwakarma VP (2013) Illumination normalization using fuzzy filter in DCT domain for face recognition. Inter J Mach Learn Cybern 6(1):17–34

    Article  Google Scholar 

  43. Zadeh LA (1965) Fuzzy sets. Inform control 8(3):338–353

    Article  MATH  Google Scholar 

  44. Chongfu H (2000) Demonstration of benefit of information distribution for probability estimation. Signal Process 80(6):1037–1048

    Article  MATH  Google Scholar 

  45. Lakshminarayan K, Harp SA et al (1999) Imputation of missing data in industrial databases. Appl Intell 11(3):259–275

    Article  Google Scholar 

  46. Merz CJ, Murphy PM (1998) UCI Repository of machine learning databases

  47. Schneider T (2001) Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values. J Climate 14(5):853–871

    Article  Google Scholar 

  48. Troyanskaya O, Cantor M et al (2001) Missing value estimation methods for DNA microarrays. Bioinformatics 17(6):520–525

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Dai, H. & Gan, M. Information-decomposition-model-based missing value estimation for not missing at random dataset. Int. J. Mach. Learn. & Cyber. 9, 85–95 (2018). https://doi.org/10.1007/s13042-015-0354-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-015-0354-5

Keywords

Navigation