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Abstract: Nonnegative Matrix Factorization (NMF) has been successfully used in different application areas including 

computer vision, pattern recognition and text mining. Unlike the ordinary NMF, we propose a novel NMF, denoted as 

MMNMF, which considers both geometrical information and discriminative information hidden in the data. The 

geometrical information is discovered by minimizing the distance among the representations of the data, while the 

discriminative information is uncovered by maximizing the distance among base vectors. Clustering experiments are 

performed on the real-world data sets of faces, images, and documents to demonstrate the effectiveness of the proposed 

algorithm.  

  

Index Terms—Nonnegative matrix factorization, manifold regularization, maximum information, clustering.  

 

1 INTRODUCTION  

Nonnegative Matrix Factorization (NMF) [1], [2] is a popular matrix factorization technique, which decomposes a data 

matrix into the product of two matrices whose entries is constrained to be nonnegative. With this nonnegative constraint, 

NMF can be interpreted as a parts-based representation of the data that only allows additive combination but not 

subtractive, which makes it distinct from other matrix factorization methods, such as Singular Value Decomposition 

(SVD), Principal Component Analysis (PCA) and Independent Component Analysis (ICA) [3], [4]. A number of studies 

have shown that the success of NMF in various application fields, including computer vision, pattern recognition [7], 

text mining [5], [6]. The performance of NMF is especially remarkable in applications concerning face recognition, 

document representation and brain electromagnetic tomography [8], [9], [10], [11].  

  Research effort has been devoted to further improve NMF. Ding et al. proposed semi-NMF and convex-NMF to 

extend the applicability of NMF [11]. The semi-NMF also strengthens the connections between NMF and K-means 

clustering. More recently, Cai et al. proposed a graph regularized NMF (GNMF) by combining the manifold structure 
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with NMF [10]. In GNMF, among the two matrices obtained by NMF decomposition, one is regarded as a basis while 

the other as the new representation of the data matrix. To preserve the low-dimension manifold structure, the new 

representation is required to keep the local structure invariant. Previous studies have shown that that the resulting basis 

vectors from NMF can be simply considered as the clustering centroids [11]. It is natural to keep the centroids far away 

in order to yield more discriminant information.  

  Motivated by manifold learning, the NMF and the semi-NMF techniques [1], [11], we propose a novel NMF algorithm 

called the NMF with Manifold regularization and Maximum discriminant information (MMNMF) which takes both the 

geometrical structure and discriminant information of the data into account, thereby exhibiting the best discriminative 

power among other algorithms. The rest of the paper is organized as follows. Section 2 provides a brief description of the 

work related to the proposed algorithm. Section 3 introduces the proposed MMNMF algorithm and discusses the solving 

scheme. Section 4 presents the clustering experiments used to evaluate the proposed algorithm and the results. Finally, a 

conclusion is given in Section 5.  

2 RELATED WORK  

This section gives a brief review of NMF [1], [2], K-Means Clustering Method [12] and GNMF [10] which are related to 

the proposed MMNMF algorithm.  

2.1 NMF  

NMF is a matrix factorization technique in numerical linear algebra It decomposes a data matrix into a product of two 

matrices whose elements are nonnegative. Let ][ 1 N,, xxX   be the data matrix with the column vector 
D

i x . 

Then, NMF can be formally described by  

T
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where 
KD

iku  ][U  and 
KN

jkv  ][V  are two matrices with nonnegative entries, and the columns of U  

are called the basic vectors. To measure the quality of NMF in (1), Paatero et al. designed two mechanisms based on 

Euclidean and Divergence distance measurement respectively [1]. In this paper, we focus on the former and the objective 

function can be expressed as  
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where   denotes the Frobenius norm of a matrix. To minimize the objective function in (2), Lee and Seung [13] 

proposed a multiplicative update algorithm which is formulated as follows  
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2.2 K-means Clustering  

K-means clustering [12] aims to partition the data set into K  clusters. The objective function is given by  
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where kc  is the class centroid of the kth cluster, }1,0{ikv  denotes the cluster indicator (i.e., 1ikv  if the data ix  

belongs to the kth cluster; 0ikv  otherwise), 
KD

K

 ],,[ 1 ccC   and 
KN

iku  ][V . Following some 

simple algebraic steps, the objective function of K-means clustering can be rewritten as  
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  From the description of K-means clustering above, the following observations can be made.  

1) K-means clustering has the same objective function as NMF. However, it is noteworthy that C  is not 

constrained to be nonnegative in K-means clustering.  

2) From the perspective of K-means clustering, it implies that the column vectors of U  in NMF are the class 

centroids.  

2.3 Graph Regularized NMF  

The GNMF technique is developed by integrating the geometrically-based regularized term with NMF [10]. Its 

applications in image and document data sets have yielded good performance. In fact, the approximation of NMF in (1) 

can be considered on per-column basis as follows,  
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where ku  is the kth column vector of U . Clearly, the linear combination of the basis vectors and the entries of V  

can be used to approximate each data 
jx . This implies that 

jKjk vv ,,  are the coordinates with respect to the U , i.e., 

the vector 
T

jKjkj vv ],,[ z  can represent the original data 
jx  under the basis U . Thus, by introducing a 

regularized term in performing the learning of NMF, for inheriting and preserving the underlying manifold structure of 

the data space where X  is sampled, the objective of GNMF [10] can be expressed as  
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where 
ijW  is the ijth entry of the weight matrix W  on the adjacent graph [10], [17], and λ  is a tradeoff parameter. 

There are many possible definitions for W . Let )( iN x  denote a set of p  nearest neighbors of ix . We give two 

common definitions of W . One is called the 0-1 weights, which is given by  
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The other is called the heat kernel weights, which is expressed as  
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where   is the heat kernel parameter with a suitable constant. In (6), the first term on the right-hand side is to decrease 

the approximated tolerance between X  and 
T

UV . The second term requires that the coordinates with respect to the 

basis U  try to preserve the manifold structure of the data space. That is to say, if ix  and 
jx  are close to each other, 

so are iz  and 
jz . Further details of GNMF can be found in [10].  

3 MANIFOLD REGULARIZED AND DISCRIMINANT INFORMATION MAXIMIZED NMF  

While GNMP’s performance is remarkably improved by incorporating the geometrically-based regularized term to NMF, 

it does not take into account the class centroids which are represented to some extent by the column vectors of U . In 

this section, the MMNMF algorithm is proposed by applying the information between the basis vectors to maximize the 

discriminant information in the data.  

3.1 NMF with Manifold Regularization and Maximum Discriminant Information  

Denote the regularized term of GNMF with )(1 VR . Then, we have  
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where )Tr(  denotes the trace of a matrix, WDL   is the Laplacian matrix [10], [14], [15], [16], [17], and D  is 

a diagonal matrix whose entries along the diagonal are the column sum of W , i.e. 
j

ijii WD . To obtain the 

maximum geometrical information in the data, it is necessary to minimize the regularized term )(1 VR , as in GNMF. 



However, the discriminative information in the data is yet ignored to some extent. To capitalize this information, we 

exploit the data belonging to different classes far away, which can be evaluated by maximizing the following objective 

function  
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where E  is a KK  matrix of all 1s, and EIEIEIM
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is called the discriminative information term. By integrating both the regularized term )(1 VR  and the discriminative 

information term )(2 UR  with the original NMF, we obtain the proposed MMNMF. That is, the objective function in 

MMNMF, which is to be minimized, is given by 
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where 1λ  and 2λ  control the tradeoff between three terms on the right-hand side, the first term is the approximated 

tolerance of X  with 
T

UV , the second and the third terms are to exploit the geometrical information and the  

discriminative information respectively. An iterative algorithm is presented in the next section to solve (9).  

3.2 Solution to MMNMF  

To solve the objective function of MMNMF, we substitute the equations (7) and (8) into (9) to obtain  

 

)(Trλ)(Trλ  

)Tr()2Tr()Tr(

)(λ)(λ))((Tr),(

21

22114

TT

TTTT

TTT RRO

UMULVV

VUUVXVUXX

UVUVXUVXVU







.                (10) 

Since all entries of U  and V  are nonnegative, we define the Lagrangian multipliers U  and V  with ][ ikΘ  

and ][ jkΦ  respectively. Then, the Lagrangian function is given by 
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Setting the partial derivatives of ),( VUL  with respect to the primal variables U  and V  to zero will lead to the 

following formulae  
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According to the Karush–Kuhn–Tucker (KKT) conditions, i.e. 0ikiku  and 0jkjkv , the formulae in (12) and 

(13) become  
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Finally, the equations in (14) and (15) yield the following iterative rules  

ik

T

ik
ikik

K

uu

)
λ

(

)λ(

2

2

UEVUV

UXV




 ,                                 (16) 

jk

T

jk

T

jkjk vv
)λ(

)λ(

1

1

DVUVU

WVUX




 .                                 (17) 

The iterative rules can be implement by using the multiplicative algorithm in [13], [18].  

 

4 EXPERIMENTS 

Several experiments are carried out to investigate the effectiveness of the proposed MMNMF algorithm in clustering. We 

employ the K-means clustering method to evaluate the clustering performance of five algorithms, including K-means 

clustering in original space [12], normalized cut [19], NMF-based clustering [1], [2], GNMF-based clustering [10] and 

MMNMF-based clustering.  

4.1 Data Preparation  

NMF is a powerful technique especially for image clustering and document clustering. Two image data sets and one 

document data set are therefore used for the clustering experiments. The first data set is obtained from the PIE face 

database of the Carnegie Mellon University (CMU) (downloadable from http://www.zjucadcg.cn/dengcai). The face 

images are created under different poses, illuminations and expressions. The database contains 41,368 images of 68 

subjects. The image size is 3232 pixels, with 256 grey levels. From the database, 1428 images under different 

illumination conditions are selected for the clustering experiment. In the following sections, the classification experiment 

is first discussed, followed by the clustering experiment.  

http://www.zjucadcg.cn/dengcai


The second data set, the COIL20 image library1 from the Columbia University, is used in the classification 

experiment. It contains 1440 images generated from 20 objects. Each image is represented by a 1024-dimensional vector, 

and the size is 32  32 pixels with 256 grey levels per pixel.  

The third data set is the NIST Topic Detection and Tracking (TDT2) Corpus, which contains the corpus of text and 

transcribed speech and is originated from 6 sources, including 2 newswires, 2 radio programs and 2 television programs. 

It consists of 11,201 documents. In this experiment, we select part categories for comparison, which contain the 9,394 

documents and can be downloaded from http://www.zjucadcg.cn/dengcai. Further details about the data set can be 

obtained from http://www.itl.nist.gov/iad/mig/tests/tdt/.  

 

4.2 Clustering Experiment  

For each data set, the experimental results are conducted repeatedly with different number of clusters K . For the PIE 

data set, 68 ,60 , ,20 ,10 K ; for the COIL20 data set, 02 , ,4 ,2 K ; and for TDT2 data set, 

30 ,  ,10,5 K . For a given value of K , the experiment process is described as follows:  

1) Randomly select K  classes from the data set;  

2) Running the corresponding algorithm (except for K-means clustering in original space);  

3) Execute K-means clustering method for 20 times with different initialization settings by random and record the best 

results;  

4) Repeat steps 1), 2) and 3) for 20 times (except when K  is the maximum value, i.e. 68K  for PIE data set);  

5) Conduct the mean and standard error of performance for the given value of K ;  

6) Change the number of clusters K  and repeat steps 1) to 5) until all the values of K  have been selected.  

 

Table 1 Clustering Results on PIE  

K 
Accuracy (%) Normalized Mutual Information (%) 

KM NCut NMF GNMF MMNMF KM NCut NMF GNMF MMNMF 

5 38.38±7.31 97.74±6.07 54.43±7.11 86.31±10.11 90.21±13.07 28.46±11.82 97.03±3.66 48.66±7.25 85.07±8.03 88.97±9.04 

10 34.05±3.95 91.29±7.85 49.17±4.91 85.95±8.11 85.11±8.28 40.04±4.23 93.74±3.97 58.37±4.47 89.72±4.49 89.17±3.61 

20 28.01±2.40 80.28±3.89 45.16±3.75 81.24±4.77 81.44±5.10 44.27±2.70 88.19±2.14 63.81±2.60 89.14±2.14 89.35±2.15 

30 26.08±1.99 74.29±3.53 42.41±2.33 78.97±4.64 79.23±3.89 47.65±2.72 85.11±1.93 66.03±2.11 88.97±1.81 89.52±1.79 

40 25.79±1.52 70.75±2.38 41.23±2.12 76.69±3.93 78.29±2.83 50.48±1.32 84.09±1.42 67.55±1.17 88.61±1.50 89.65±1.16 

50 25.14±1.28 69.08±2.15 39.95±2.08 74.97±2.52 76.22±2.93 51.95±1.21 84.11±1.45 68.22±1.56 88.46±0.97 88.84±1.03 

60 24.56±0.99 67.12±2.37 39.83±1.75 74.57±3.74 75.87±2.02 52.62±0.87 82.46±1.29 69.12±1.09 88.23±1.12 88.63±0.85 

68 24.30 67.05 40.62 76.12 79.62 54.01 82.46 68.77 88.95 89.42 

                                                        
1 http://www1.cs.columbia.edu/CAVE/software/softlib/coil-20.php.  

http://www.zjucadcg.cn/dengcai
http://www.itl.nist.gov/iad/mig/tests/tdt/
http://www1.cs.columbia.edu/CAVE/software/softlib/coil-20.php


Av. 28.29 77.20 44.10 79.35 80.75 46.19 87.15 63.82 88.40 89.19 

 

Table 2 Clustering Results on COIL20  

K 
Accuracy (%) Normalized Mutual Information (%) 

KM NCut NMF GNMF MMNMF KM NCut NMF GNMF MMNMF 

2 
88.47±16.8

7 

97.19±10.5

1 

87.95±16.7

1 

95.73±11.9

8 

93.51±14.7

1 

70.52±36.6

9 

93.28±22.6

5 

68.29±35.6

6 

89.55±26.6

1 

84.54±32.8

4 

4 
82.36±17.3

5 

90.07±14.1

2 

79.01±16.9

0 

93.14±10.6

7 
93.80±9.83 

75.60±20.2

5 

89.85±12.9

9 

72.10±19.5

2 

91.25±11.1

6 

91.53±12.3

2 

6 
78.61±10.4

1 

84.53±12.2

2 

76.33±10.4

7 
90.79±8.84 94.63±5.03 

75.04±11.0

2 
88.77±7.75 

72.06±10.9

0 
89.34±9.25 92.66±5.79 

8 71.57±9.63 83.71±8.76 70.51±7.76 87.60±9.06 88.95±9.27 72.67±8.53 88.85±6.11 71.82±8.15 89.67±7.05 90.25±7.14 

10 72.08±7.14 75.74±5.60 69.84±7.12 85.87±5.95 86.87±6.33 74.43±6.40 86.08±3.29 72.38±6.75 89.94±4.20 90.04±4.09 

12 66.10±6.38 72.42±6.64 66.60±5.53 79.76±5.53 80.16±5.77 72.07±4.82 83.83±3.40 71.71±4.07 87.42±3.47 87.56±3.44 

14 65.98±4.76 74.30±7.24 67.42±6.42 83.17±5.06 82.97±5.11 73.46±3.65 85.77±4.16 73.92±4.80 89.66±3.37 89.56±3.71 

16 65.67±4.69 71.32±5.82 64.31±5.37 78.62±4.55 79.24±5.56 73.68±3.97 84.34±3.19 72.97±3.82 87.29±2.79 88.04±2.95 

18 63.65±4.04 70.55±4.90 65.00±4.44 79.60±4.90 79.46±4.02 73.84±2.60 84.45±2.43 73.69±2.43 88.78±2.47 88.54±1.94 

20 67.78 65.83 70.28 79.79 82.36 77.45 82.28 77.51 90.32 90.05 

Av

. 
72.23 78.57 71.73 85.41 86.19 73.88 86.75 72.64 89.32 89.28 

 

Table 3 Clustering Results on TDT2  

K 
Accuracy (%) Normalized Mutual Information (%) 

KM NCut NMF GNMF MMNMF KM NCut NMF GNMF MMNMF 

5 84.36±14.68 98.77±1.92 83.79±15.64 96.80±6.40 98.23±1.87 76.52±20.50 94.51±5.11 75.60±23.34 89.83±13.15 91.86±6.84 

10 74.84±13.78 86.56±6.58 73.26±12.47 92.74±5.66 93.16±5.89 76.69±12.91 83.50±8.23 73.17±13.00 86.63±9.14 87.38±7.45 

15 64.98±5.82 82.92±6.87 58.90±6.28 90.26±4.46 90.43±3.85 71.87±4.72 81.68±5.39 65.21±4.65 85.52±4.91 85.72±4.17 

20 66.13±8.89 77.76±9.35 58.57±6.90 87.70±3.34 87.90±3.94 74.07±7.10 80.99±6.74 68.63±6.61 85.42±4.25 85.67±4.00 

25 63.27±4.00 72.32±4.90 53.43±3.09 87.13±3.80 86.91±3.60 72.49±1.65 78.10±2.77 66.68±2.49 84.73±2.80 84.46±2.79 

30 60.52 78.66 52.18 81.59 86.24 71.80 81.43 66.88 82.28 83.35 

Av. 69.02 82.83 63.35 89.37 90.48 73.91 83.37 69.36 85.73 86.41 

 

The clustering performance on the data sets of PIE, COIL20 and TDT2 are reported in Tables 1, 2 and 3 respectively. 

In these tables, KM and NCut denote respectively the algorithm of K-means clustering in original space and the 

normalized cut algorithm. The findings of the experiments are highlighted as follows:  

1) Among the three NMF-based methods, i.e. NMF, GNMF and MMNMF, GNMF and MMNMF outperform NMF, 

which suggests the importance of geometrical structure in discovering the hidden information. Besides, MMNMF 

achieves better performance than GNMF, as evident from almost all clustering results and the average results. This 

demonstrates that it is also important to exploit the discriminative information of the base vector in the NMF 



techniques.  

2) The NCut algorithm, which uses the geometrical structure to reveal the hidden information, achieves better results 

than the original NMF and KM. The result once again demonstrates the importance of the geometrical structure in 

the clustering process.  

 

4.3 Parameters Selection  

In the proposed MMNMF algorithm, the construction of the weight matrix W  of the adjacent graph requires the 

setting of three parameters: the control parameters 1λ  and 2λ , and the number of nearest neighbors p . In our 

experiments, we adopt the 0-1 weights and set 5p , 100λ1   and 500λ2   (the values of p  and 1λ  are the 

same as that used in GNMF and MMNMF). To study the effect of each individual parameter on the clustering accuracy, 

the MMNMF algorithm is performed on the entire PIE data set. Here, we keep tow of the three parameters fixed and 

vary the third parameters within a certain range. Fig 1 shows how the performance of MMNMF varies with the 

parameters 1λ , 2λ  and p . In Fig 1(a), we set 5p  and 100λ1  , while 2λ  varies within the grid {5e+0, 1e+1, 

5e+1, 1e+2, 5e+2, 1e+3, 2e+3, 5e+3, 1e+4}. In Fig 1(b), 5p , 500λ2  , and 1λ  varies with the same grid as in 

Fig1(a). In Fig 1(c), 100λ1  , 500λ2   and p  varies within the grid {1, 3, …, 25}. It can been seen that 

MMNMF is able to achieve good performance over a wide range of 1λ  and 2λ , but the number of nearest neighbors 

has to be in the range between 3 and 10 in order to achieve an accuracy of 60% or above.  
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Fig. 1 The impact of three parameters 1λ , 2λ  and p  on the clustering performance.  

 

5 CONCLUSION AND FUTURE WORK  

This paper proposes a novel NMF algorithm called Manifold Regularization and Maximum Discriminant Information 

NMF (MMNMF), which is motivated by the notion that the geometrical structure and discriminant information are 

important for data clustering. The MMNMF algorithm exploits both geometrical and discriminative information in order 

to obtain better clustering performance than the ordinary NMF and GNMF. Experiments performed on the PIE, COIL20 

and TDT2 data sets have demonstrated the advantage of MMNMF in data clustering. 

  Like GNMF, the proposed MMNMF also takes the geometric structure into account. They require the construction of 

an adjacent graph to discover the intrinsic structure information. However, theoretical selection of the suitable size of the 

k-nearest neighbors to match the local structure remains an issue for both algorithms, which affects their clustering 

performance. As discussed in Section 4.3, the number of nearest neighbors is required to be within 3 to 10, otherwise the 

performance decreases considerably. The theoretical selection of the two parameters 1λ  and 2λ  in MMNMF, which 

control the tradeoff between the geometric structure information and the discriminant information, is also an issue, 

although we have demonstrated experimentally that the performance of MMNMF is not sensitive to the two parameters. 

Further research effort will therefore be dedicated to the establishment of theoretical base for the selection of the 

MMNMF parameters. 
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