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Abstract Feature selection is increasingly important in

data analysis and machine learning in big data era. How-

ever, how to use the data in feature selection, i.e. using

either ALL or PART of a dataset, has become a serious and

tricky issue. Whilst the conventional practice of using all

the data in feature selection may lead to selection bias,

using part of the data may, on the other hand, lead to

underestimating the relevant features under some condi-

tions. This paper investigates these two strategies system-

atically in terms of reliability and effectiveness, and then

determines their suitability for datasets with different

characteristics. The reliability is measured by the Average

Tanimoto Index and the Inter-method Average Tanimoto

Index, and the effectiveness is measured by the mean

generalisation accuracy of classification. The computa-

tional experiments are carried out on ten real-world

benchmark datasets and fourteen synthetic datasets. The

synthetic datasets are generated with a pre-set number of

relevant features and varied numbers of irrelevant features

and instances, and added with different levels of noise. The

results indicate that the PART approach is more effective

in reducing the bias when the size of a dataset is small but

starts to lose its advantage as the dataset size increases.

Keywords Features selection � Reliability �
Effectiveness � Cross-validation � Classification � Similarity

1 Introduction

Big data may contain a huge number (from hundreds to

millions) of features and often most of the features could be

unimportant, irrelevant or redundant, which can cause poor

efficiency and/or over-fitting in data analysis and machine

learning. Therefore, it is necessary to employ some feature

selection methods (FS) to remove irrelevant and redundant

features to reduce the complexity of analysis and the

generated models and also to improve the efficiency of the

whole modelling process [5, 6, 25].

There is, however, a long on-going argument in the field

of feature selection about how the data should be used

when carrying out feature selection [3, 17, 22, 27]. The

central issue is whether all the data, or just some parts of

the data should be used in FS before modelling. The ALL

approach has become almost a de-facto convention in FS

practice primarily because FS is viewed as a mere pre-

processing step before analysis, and the ALL approach

increases the chance of selecting all the relevant features

and then helps to build better models [22, 23]. However,

the ALL approach may produce overoptimistic results, as it

has used all the data, which means FS has seen the subsets

of the data used for later modelling and evaluation. This is

called feature subset selection bias. Some studies [3, 17,

22, 27] have discussed this issue and attempted to address it

by using the PART approach. Nevertheless, the PART

approach may lead to underestimating the relevant features

under some conditions [22]. Whilst these studies produced

some initial useful insights into the problems, their findings

are limited by the facts that these studies were mostly done

on rather specific problem domains, such as in genome-

wide analysis with wrapper-based feature selection algo-

rithms, on few real-world or artificial datasets with rela-

tively small number of features. Therefore, it is important
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to evaluate these two approaches systematically and

determine their reliability and effectiveness under various

circumstances.

The rest of this paper is organized as follows. Section 2

reviews related work. Section 3 describes the methods for

the intended research, including the ALL and PART

approaches, experiment design and the reliability and

effectiveness measures, as well as the selected filters.

Section 4 presents the experimental results on real-world

benchmark datasets. Section 5 presents the results on

synthetic datasets. Summary and Conclusions are presented

in Sect. 6.

2 Related work

In recent decades, a few studies [3, 17, 22, 24, 27] have

discussed the influence of using FS on the whole dataset and

have attempted to solve the selection bias problem by per-

forming FS inside the cross-validation (CV) loop; however,

these studies have certain limitations. Ambroise [3] diss-

cused how to correct the selection bias by performing either

CV or bootstrap on the selection process. This study used

both backward selection with Support Vector Machine

(SVM) and forward selection with Linear Discrimination

Analysis (LDA) wrapper approaches with only 2 datasets,

and did not use filter model. Also, it recommended using

tenfolds rather than leaving-one-out for cross-validation.

Reunanen [24] studied the FS evaluation method using

wrapper models only, but did not address issues specifically

relating to the pair-wise comparison of FS algorithms.

Lecocke andHess [17] presented an empirical study inwhich

the PART approach with tenfold CV was applied to filters

and wrappers based on genetic algorithms (GA). However,

the limitation of their study is that they used just binary

classification with microarray data and two FS methods.

Refaeilzadeh et al. [22] attempted to find out which

strategy, PART or ALL, is more reliable when conducting

pair-wise comparisons of FS algorithms by concentrating

on filter models and by using tenfold CV with paired t test.

They generated 5 synthetic datasets, but the largest number

of features was only 60 and the maximum number of

instances was 1000. They explained that there is the

potential for bias in both the PART and ALL approaches;

with ALL, the FS method has looked at the test set when

selecting features, so the accuracy estimate was inflated,

whereas with the PART approaches, the FS method uses

fewer data than would be available in a real-world exper-

imental setting, which may have led to an underestimated

accuracy. The results obtained from their study include: (1)

PART and ALL ‘‘have different biases, and bias is not a

major factor’’ in determining which one is more truthful in

pair-wise comparison; (2) in a greater majority of cases,

PART and ALL approaches are not significantly different;

(3) the PART approach tends to be more truthful if the two

FS methods are performed identically; (4) given two FS

methods A1 and A2, for two cases: ‘‘(a) A1 is better and

(b) A2 is better, if PART is better for case (a), then ALL is

better for case (b)’’ [22]. However, some of their conclu-

sions are not clear, such as they ‘‘recommend to run both

ALL and PART methods, trust the method indicating that

one algorithm is better than the other, and use that the

better algorithm to select features using the entire dataset.

In the worst case scenario, the selected features will be no

worse than the subset selected by the alternative algo-

rithm’’. In addition, their study is crucially limited by a fact

that they only used synthetic datasets with relatively low

dimensions and small number of samples.

3 Methods

3.1 The ALL and PART approaches

The ALL approach uses all the instances in a given dataset

in its feature selection step, while the PART approach only

uses training instances partitioned from the dataset in fea-

ture selection. With the ALL approach, all the data of a

dataset are used once in the FS stage, and then the selected

features are used as the input variables to generate models,

e.g. classifiers, with a common K-fold cross validation

procedure as illustrated in Fig. 1a. On the other hand, with

the PART approach, as illustrated in Fig. 1b, a dataset is

partitioned and some parts are used for FS and also used as

the training dataset when inducing classifiers.

This study employs the K-fold cross validation mecha-

nism in the PART approach. It works as follows: K-one-

folds are used as the training data for each filter; the

selected features are used as the inputs for the classification

base learner to build the classifier with the same K-one-

folds of the data; then, the remaining fold is used as a

validation set to test the classifier. This procedure is

repeated round-robin for K times.

3.2 Experiment design

In order to compare the ALL and PART approaches in

terms of reliability and effectiveness, several sets of

experiments are designed and conducted by using synthetic

datasets and real-world benchmark datasets, which exten-

ded to our early work [2].

Four common filters (ReliefF, Gain Ratio, CFS and

FCBF) are used in parallel as feature selection methods

with a hope of avoiding selection bias introduced by
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individual filters. The detail of these filters and justification

of their choice are given in Sect. 3.3

The reliability of these methods is evaluated through

measuring the similarity between the selected feature

subsets and the desired feature set in synthetic data, or

stability when the desired feature set is unknown in real-

world benchmark datasets. Average Tanimoto Index (ATI)

is used as a stability measure and the Intersystem Average

Tanimoto Index (IATI) is modified to measure the simi-

larity. Their details will be described in Sect. 3.4.

The effectiveness of the methods is estimated through

measuring the average classification accuracy of the clas-

sifiers that are trained with the selected features by the ALL

or PART methods. Naı̈ve Bayes classifier (NB) is chosen

as the base leaner for the experiments with the synthetic

datasets and two more types of classifiers, K-Nearest

Neighbours (KNN) and Support Vector Machine (SVM),

are used in the experiments on the real-world benchmark

datasets in order to evaluate the consistency of classifica-

tion accuracy, because there is no known answer for the

real world datasets.

In general, the main difference between the PART and

ALL approaches is in the FS step; The ALL uses all the

datasets while the PART uses the training dataset. The

experimental process of each approach will be described in

detail below.

Firstly, the ALL approach uses the entire dataset in each

FS method, and the subsets of the features selected by these

FS methods are used as inputs for the classifier. A K-fold

(K = 10) cross validation strategy is used when inducting

classifiers, and after that the average of the accuracies is

calculated as a representation of classification accuracy of

the classifiers trained with the features selected by each FS

method. Then, each experiment is repeated ten times with

different shuffling random seeds in order to assess the

consistency of the results. The PART approach uses the

training set only (ninefolds) in each FS method, and the

subsets produced by these FS methods in each fold are used

as the inputs for a base-learner (learning algorithm) to build

a classifier, which is then tested on the testing set (re-

maining fold). This procedure will be repeated 10 times by

running filters and the classifier on the training set in each

fold, and then testing it on the testing set. After that, we

will average the accuracy of ten folds as well as the sim-

ilarity. Then, each experiment is repeated ten times with

different shuffling random seeds in the same way as

described above in order to assess the consistency of the

results.

The reliability is calculated once for the ALL approach

and K times for the PART approach with K-fold cross-

validation. The effectiveness of the selected features is

measured by the average classification accuracy of the

classifier generated with the selected features by the ALL

or the PART approaches. The average accuracy as well as

the average similarity will be presented in the final results.

In total, 35,200 models were built in our experiments (4

filters 9 10 real data sets 9 3 classifiers 9 2 (PART and

ALL) 9 10 (runs) 9 10 (folds) = 24,000) ? (4 fil-

ters 9 14 synthetic data sets 9 (PART and ALL) 9 10

(runs) 9 10 (folds) = 11,200), which is more than any

other studies ever did before and therefore our results

should be more representative and convincing.

3.3 The filters used for feature selection

This work uses filters as feature selection methods for two

reasons: firstly filters are independent of any classifier and

generally faster, and secondly there is very limited study

found in the literature that has examined the reliability and

effectiveness of the PART approach using filter methods.

However, filters are designed with different evaluation

criteria, which may work well on some datasets but not on

others. Therefore, in order to cover a range of type of filters

and datasets as wide as possible and to make the investi-

gation more reliable, we follow the categorisation [18]

when we select the filters, broadly based on evaluation

criteria, e.g., Distance, Information and Correlation. We

have therefore chosen ReliefF (from distance measures),

Gain Ratio (from information measures), Correlation-based

Feature Selection (CFS), and Fast Correlation Based Filter

(FCBF). We briefly describe each filter used in this

research as follows:

(a) ALL approach (b) PART approach

Filter

Data

Features Selected

Training Classifiers

Testing

K-Fold 
Data Partition

Filter

Data

Features Selected

Training Classifiers

Testing

K-Fold 
Data Partition

Fig. 1 Procedures of the ALL and PART approaches for feature

selection and classifier induction
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3.3.1 FCBF

Fast correlation based filter [30] starts by sorting features

through their correlation with a response using symmetric

uncertainty, and optionally removing the bottom of the list

according to a pre-specified threshold. Then, the feature

that is mostly correlated with the response is selected to

add into the minimal subset. After that, all the features that

have correlations with the selected feature higher than its

correlation with the response are considered redundant and

removed. Then the search starts again with the next feature

within the remaining feature set.

3.3.2 CFS

Correlation-based feature selection [8] is a simple filtering

algorithm that ranks features according to a correlation-

based heuristic evaluation function. The key idea of this

algorithm is that it employs a heuristic evaluation that

assesses the efficacy of individual features in terms of their

predicting power for the chosen class. It also assesses how

strong the features are inter-correlated. In order to avoid

high computational cost, we use liner forward selection

(LSF) as a search method together with CSF instead of

using Best First Search strategy. LSF is a simple ‘com-

plexity optimization’ of sequential forward selection (SFS).

It entails firstly creating a ranking of features and selecting

the first K features; then, the SFS algorithm is run over the

selected features [7].

3.3.3 ReliefF

This was first proposed by Kira and Rendell [13] and then

improved by Kononenko [14] to handle noise and multi-

class datasets. The key idea of Relief is that it searches for

the nearest neighbours of a sample of each class label, and

then weighs the features in terms of how well they dif-

ferentiate samples for different class labels. This process is

repeated for a pre-specified number of instances.

3.3.4 Gain ratio

This is one of the simplest and fastest feature ranking

methods. It incorporates ‘split information’ of features into

an Information Gain statistic. The split information of a

feature is obtained by measuring how broadly and uni-

formly the data are split. Generally, Gain Ratio evaluates

the value of a feature by measuring the gain ratio with

respect to the class [21].

Another reason for selecting these four filters is based on

the formats of their outputs, which typically fall into two

categories: ranking filter (RF) and subset filter (SF). RF

evaluates one feature at a time and produces a ranking of

all the features in a dataset, whereas SF evaluates subsets

of features and outputs the best subset. In order to make our

investigation more general, we select two filters from each

category: ReliefF and Gain Ratio [ RF; FCBF and CFS [
SF.

However, when using RF, it is necessary to set a

threshold in order to cut off the features that are less rel-

evant from the ranking. Unfortunately, how to set the

threshold is a tricky task. Sánchez-Maroño et al. [26]

studied the whole ranking process, paying a particular

attention to the features that are ranked at top. On the other

hand, Belanche and González [4] chose to discard the

features that have ranking weights further than two vari-

ances from the mean. Others [19] use a threshold defined

by the largest gap between two consecutively ranked fea-

tures. However, in this work we devise a heuristic rule to

determine the threshold. After running RFs and SFs, a

larger consensus number of features selected by the SFs is

taken as a cut-off point for the rankings generated by the

RFs. By doing this, we can quickly select the number of

features from the rankings.

3.4 Measures of reliability

The reliability of an FS method in this context is measured

by computing the degree of similarity between sets of

features selected by the PART and ALL approaches, in the

case of using a real-world benchmark dataset. In the case of

using a synthetic dataset, the degree of similarity is mea-

sured between a set of selected features from the ALL or

PART approaches and a pre-defined set of desired features.

The similarity measure gives us some indication about how

far the features selected by the ALL approach are different

relatively to the PART approach in each fold and in each

run. In addition to the similarity, we measure the stability

between the selected features in each fold with the PART

approach in order to quantify that how different training

sets may affect the feature preference.

The stability of FS was defined by Han and Yu [9] as the

robustness of the result of an FS algorithm to variations in

the training set. The stability measure can be used in dif-

ferent situations; it is necessary for evaluating different FS

methods in performance comparison. Also, it can be used

for the internal validation of FS algorithms that take into

account stability [10]. Measuring reliability requires a

similarity measure for FS results. There are three types of

FS representation methods: subset of features, ranking

vector and weighting score vector. In this work, we focus

on subset of features because some of the filters used in this

study produce subsets of features.

There are quite a few similarity measures available for

comparison of sets, as reviewed by He and Yu [10]. The

measures presented in Křı́žek et al. [15] and Kuncheva [16]
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are both subset-based, but they can only be used on subsets

of equal cardinality. However, in our research, the subset

cardinality is not equal, so we use the Average Tanimoto

Index (ATI), which allows us to use subsets of unequal

size. It is defined below:

Average Tanimoto Index (ATI) [28] is computed over

all subset pairs, and then averaged. It is a continuous value

from [0, 1], with 0 representing an empty intersection

between subsets Xi, Xj and 1 representing that all subsets

obtained from n runs are identical:

ATI Xsð Þ ¼ 2

k k � 1ð Þ
Xk�1

i¼1

Xk

j¼iþ1

Sim Xi;Xj

� �
ð1Þ

where X is a set of all features, Xs is a set of k features

selected from k-fold runs. Xi and Xj 2 Xs, and k is the

number of folds. Similarity measures Sim between two sets

Xi, Xj [12] is defined as:

Sim Xi;Xj

� �
¼

Xi \ Xj

�� ��

Xi [ Xj

�� �� : ð2Þ

All the measures discussed above consider intra-measures,

which are used for evaluating the internal stability of one FS

process, as in the PART approach. We cannot use it for the

ALL approach because the entire dataset is used and there is

no change in the dataset during each run, so the same feature

subset is produced in each run when the set-ups for each filter

is fixed. Also, with intra-measures we cannot compare the

subsets produced by each filter with the optimal features

because there is no optimal answer (relevant features) in real-

world dataset, whichmotivated us for generating the synthetic

dataset. Therefore, we include a second measure in our

investigation, called inter-measures, in order to compare the

result of each approach (ALL, PART) with the relevant fea-

tures on synthetic data, and also compare the results of the

ALL and PART approaches on a real-world benchmark

dataset. The inter-measures should provide information that is

complementary to the intra-measures. Therefore, the follow-

ing inter-measure is defined as an equivalence to intra-mea-

sure, based on the same principle [28].

The original Inter-method Average Tanimoto Index

ðIATIRÞ between two methods X1
s and X2

s is defined as:

IATIR X1
s ;X

2
s

� �
¼ 1

k1:k2: Xj j
Xk1

i¼1

Xk2

j¼1

X1
i \

�� X2
j

���

X1
i [j X2

j

���
ð3Þ

where X1
s , X

2
s are the two sets of the feature subset selected

by the two methods respectively; which takes values from

[0, 1] with 0 indicating an empty intersection between any

pair of subsets, and 1 indicating that all subsets in both

methods X1
s and X2

s are identical. Also, k1 and k2 are the

number of folds used to generate X1
s , X

2
s [28].

However, we found that this definition is highly affected

by the size of X, which leads to decreasing the similarity

when the number of features increases. Therefore, we

modify it by removing |X| to avoid this drawback. It is now

defined as follows:

IATI X1
s ;X

2
s

� �
¼ 1

k1:k2

Xk1

i¼1

Xk2

j¼1

X1
i \ X2

j

���
���

X1
i [ X2

j

���
���
: ð4Þ

In fact, by using a real-world dataset, any similarity

measure including the ones described above can only

indicate the similarity degree between the ALL and PART

approaches, but cannot tell which one is better when they

are dissimilar. So, we need to evaluate how effective they

are by measuring the average classification accuracy as

described below.

3.5 Effectiveness measures of feature selection

The effectiveness of the selected features is measured by

the average classification accuracy of the classifiers that

are generated with the features selected by the ALL or the

PART approaches. Generally, classification performance

is dependent of the types of classifiers used, even under

the same conditions, with the same subset of features and

samples, and same training procedure. To avoid any bias

produced by classifiers of the same type when comparing

the effectiveness of both the ALL and PART approaches,

in our experiments, we use three types of classifier: NB

(Naı̈ve Bayesian) [11], KNN (k Nearest Neighbours) [1]

and SVM (Support Vector Machine) [20]. These three

algorithms have been chosen because they represent three

quite different approaches in machine learning, and they

do not contain any embedded feature selection mecha-

nism; also, they are commonly used in data mining

practice.

The statistical significance of the results of multiple runs

for each experiment is calculated and compared between

accuracies with Student’s t-test and Wilcoxon signed rank

test [29] at a significance level of 0.05.

4 Experiments with real-world benchmark data

4.1 The real-world benchmark datasets

Ten real-world benchmark datasets from different domains

are used in our experiments. Six of them (Zoo, Dermatol-

ogy, Promoters, Splice, Multi-feature-factors and

Arrhythmia) are from the UCI Machine Learning Reposi-

tory,1 two others (Colon and Leukaemia) are from the

1 http://repository.seasr.org/Datasets/UCI/arff/.
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Bioinformatics Research Group,2 and the final two

(SRBCT and Ovarian) are from the Microarray Datasets

website.3

Table 1 summarizes general information on these data-

sets. Note that these datasets differ greatly in sample size,

S, ranging from 62 to 3191 and number of features, NT,

ranging from 17 to 15,154. Also, they include binary-class

and multi-class classification problems; this should provide

a wider basis for testing and should be well suited to the FS

methods under differing conditions.

4.2 The results

This section presents the summarised results from the four

filters over ten real-world benchmark datasets. The beha-

viour of the FS method will be evaluated according to

similarity between the PART and ALL approaches, sta-

bility with the PART approach, and the classification

accuracy obtained by the NBC, KNN and SVM models.

4.2.1 Results of comparing reliability

The similarity measure will give us some indication about

how far the features selected by the ALL approach are

different from those by the PART approach in each fold

and in each run.

Figure 2 shows the similarity measures of IATI with the

features selected by the 4 filters, comparing the PART and

ALL approaches, which on average scored 0.60, 0.66, 0.58

and 0.76, respectively. In light of the results shown in

Fig. 2, the similarity between the PART and ALL

approaches is indeed affected by the type of filter. As we

can see, the Gain Ratio filter delivered higher similarities

between these two approaches, when compared with the

other filters, especially ReliefF.

Additionally, the similarity between the PART and ALL

approaches is affected by the type of dataset. As can be

seen, the last 6 datasets have less similarity between the

PART and ALL approaches than the first four datasets.

This is because they are microarray datasets with quite

large numbers of features and very small number of sam-

ples. Also, the M-feat-factor and Arrhythmia datasets have

less similarity than the first four datasets and this may be

because their numbers of class labels are large (10 with the

M-feat-factor and 13 with Arrhythmia).

However, the similarity measure with these real-world

benchmark datasets can only indicate the extent of simi-

larity between the ALL and PART approaches, it cannot

tell which one is better when they are dissimilar. Thus, it is

necessary to evaluate how effective they are by measuring

their average classification accuracy.

Figure 3 shows different stability values of each filter on

the same dataset when the PART approach is used in FS. It

is apparent that some filters are more stable than others as

we can see, ReliefF has a higher average stability for all the

datasets, scoring an average 0.78, and after that, Gain Ratio

scored 0.73, which indicates that ranking filters are more

stable when the PART approach is used in FS than the SF.

In contrast, SF (FCBF and CFS) is unstable as we can see

the scores on average of 0.55 and 0.60, respectively. Also,

the stability is affected by the different datasets; as we can

see, the first five datasets are more stable than the last five.

Similar to the similarity measures (IATI), stability

measures (ATI) can only indicate which filters are more

stable than others but they cannot tell which one is more

accurate in selecting the relevant features, until we evaluate

how effective they are by measuring the average classifi-

cation accuracy.

4.2.2 Results of comparing effectiveness

The figures given in this section show the average accuracy

of the NB, KNN and SVM models on the ten real-world

benchmark datasets; each value presented in the figures is

the average over ten runs of ten-fold cross-validation out-

comes using the ALL and PART approaches.

Figure 4 shows the results on the ten datasets with the

NB classifiers and the accuracy comparison between the

PART and ALL approaches trained with the features

selected by the four filters. The PART and ALL approaches

produce different results to some extent, affected by the

type of filter and the type of data. The accuracy by using

the PART approach decreases on average by -1.292,

-1.219, -0.689 and -0.731, respectively, relative to the

ALL approach. Figure 5 shows the difference between the

average accuracies of the NB classifiers trained by the ALL

Table 1 Description of ten real-world benchmark datasets

Dataset NT S #Classes

Zoo 17 101 7

Dermatology 34 366 6

Promoters 57 106 2

Splice 61 3191 3

M-feat-factors 216 2000 10

Arrhythmia 279 452 13

Colon 2000 62 2

SRBCT 2308 83 4

Leukaemia 7129 72 2

Ovarian 15,154 253 2

2 http://www.upo.es/eps/aguilar/datasets.html.
3 http://csse.szu.edu.cn/staff/zhuzx/Datasets.html.

920 Int. J. Mach. Learn. & Cyber. (2017) 8:915–928

123

http://www.upo.es/eps/aguilar/datasets.html
http://csse.szu.edu.cn/staff/zhuzx/Datasets.html


and PART approaches; if the difference is positive, it

means that ALL has a higher accuracy than PART, hence is

better; while if it is negative, it means that the PART

approach has a higher accuracy. As we can see, the ALL

approach has the higher accuracy in the majority, relative

to the PART approach. Furthermore, microarray datasets

(Colon to Leukaemia) in particular, exhibit a significant

decline with the PART approach in most of the filter

methods.

The results in Fig. 6 show the performance of the KNN

(k = 1) classifiers; the accuracy by using the PART

approach decreases on average by -1.007, -1.064,

-1.233 and ?0.196 respectively, relative to the ALL

method. Figure 7 shows the difference between the average

Fig. 2 The similarity measures

of IATI with the features

selected by the filters,

comparing the PART with the

ALL approaches

Fig. 3 The stability measures of ATI with the features selected by

filters over ten runs of ten-fold cross-validation by the PART

approach

Fig. 4 The average test

accuracy of NB classifiers

trained with the features

selected by the four filters using

the PART and ALL approaches

on the real-world benchmark

datasets

Fig. 5 The difference between

the average accuracies of the

NB classifiers trained by the

ALL and PART approaches

Int. J. Mach. Learn. & Cyber. (2017) 8:915–928 921
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accuracies of the KNN classifiers trained by the ALL and

PART approaches. ReliefF has the highest decline with the

PART approach, followed by the other FS models, while

Gain Ratio increases the accuracy by using the PART

approach. Moreover, the degree of significant change in the

accuracy between the PART and ALL approaches differs

from one classifier to another as well as from one filter to

another.

Figure 8 shows the accuracies of the SVM models and

the comparisons between the filers. It can be observed that

the accuracy by using the PART approach decreases on

average relative to the ALL approach by -0.94, -0.828,

-0.821 and -0.396, respectively. Figure 9 shows the dif-

ference between the average accuracies of the SVM clas-

sifiers trained by the ALL and PART approaches. As we

can see, the ALL approach has the highest accuracy in the

Fig. 6 The average test accuracy of KNN classifiers trained with the features selected by the four filters using the PART and ALL approaches on

the real-world benchmark datasets

Fig. 7 The difference between

the average accuracies of the

KNN classifiers trained by the

ALL and PART approaches

Fig. 8 The average test accuracy of SVM classifiers trained with the features selected by the four filters using the PART and ALL approaches on

the real-world benchmark datasets
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majority of situations. Furthermore, the classification

accuracy of SVM models on the microarray datasets

(Colon to Leukaemia) in particular exhibits significant

declines with the PART approach in most of the filter

methods.

Table 2 summarizes the wins/ties/losses in accuracy

comparing the PART approach with the ALL approach

over all the datasets on three classifiers by using the Stu-

dent’s paired two tailed t test (with a significance level of

0.05). The results shown in the table clearly reveal that the

PART approach has significantly more losses in the greater

majority of cases with FCBF, CFS and ReliefF, which

could be an indication that the ALL approach indeed pro-

duced some degree of the so-called selection bias. On the

other hand, with Gain Ratio, the PART and ALL approa-

ches are not significantly different in most cases.

The results in Table 3 summarize the wins/ties/losses in

accuracy comparing the PART approach with the ALL

approach over all the datasets on three classifiers. The

Wilcoxon signed ranks test (with a significance level of

0.05) is used to test the significance of the ranking differ-

ences among them. The similar patterns to the ones

appeared in Table 2 can also be observed, which clearly

reveal that the PART approach has significantly more

losses in the greater majority of cases with FCBF, CFS and

ReliefF. This may imply that the ALL approach indeed

produced some degree of the so-called selection bias. On

the other hand, with Gain Ratio, the PART and ALL

approaches are not significantly different in most cases.

Also, we are interested in this section in understanding

the relationship between the level of similarity vis-à-vis

PART and ALL and the level of change in classification

accuracy between them.

In light of the results shown in Fig. 10, the differences

between the ALL and PART approaches are affected by 3

factors: dataset, filter type and classifier types. Thus, by

changing one of these factors, the result between ALL and

PART will also change.

The similarity measure, IATI, can only indicate the

degree to which the ALL and PART approaches are sim-

ilar, but cannot tell which one is better when they are

dissimilar. The stability measure ATI can only indicate

with the PART approach how far each filter is stable by

using different datasets. Moreover, the accuracy of the

three classifiers provides different patterns when using the

Fig. 9 The difference between

the average accuracies of the

SVM classifiers trained by the

ALL and PART approaches

Table 2 Comparison of wins/ties/losses by the ALL approach rela-

tive to the PART approach using student’s paired two tailed test

Classifier FCBC CFS ReliefF Gain ratio

NB 2/3/5 1/2/7 2/3/5 1/5/4

KNN 0/4/6 0/7/3 2/2/6 3/4/3

SVM 1/3/6 0/4/6 1/3/6 1/6/3

Sum 3/10/17 1/13/16 5/8/17 5/15/10

Table 3 Comparison of wins/ties/losses by the ALL approach rela-

tive to the PART approach and the differences of rankings are tested

by Wilcoxon signed rank test

Classifier FCBC CFS ReliefF Gain ratio

NB 2/2/6 1/2/7 2/3/5 1/4/5

KNN 0/5/5 0/6/4 2/2/6 1/8/1

SVM 1/5/4 1/3/6 1/4/5 1/5/4

Sum 3/12/15 2/11/17 5/9/16 3/17/10

Fig. 10 The difference (Dacc) between the average accuracies of the

three classifiers trained by the ALL and PART approaches as well as

the averages for IATI and ATI. Dacc = acc (ALL) - acc (PART),

represents the difference between the average accuracies of the three

classifiers trained by the ALL and PART methods
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ALL and PART approaches. Although the above results

demonstrate that the accuracy through using the PART

approach is lower than through using the ALL approach in

most cases, and that the level of similarity between the

PART and ALL approaches differs from one FS method to

another, these results do not give us a clear picture to

determine which approach provides less bias and is more

reliable to use. Also, we do not know which approach helps

us in selecting the more relevant features, as we applied the

experiment on real-world benchmark data without knowing

the most relevant features. Therefore, in the next section,

we will use the generated synthetic data in order to apply

the experiment on a dataset in which we know the relevant

features in advance; this will help us to answer the above

questions.

5 Experiment with synthetic data

5.1 Synthetic datasets

In principle, generating and using synthetic data is con-

sidered to be a useful strategy for testing the effectiveness

of FS methods for the following reasons [4]:

1. Knowing the optimal features in synthetic data in

advance is the most important advantage. Then, the

performance of a FS algorithm can be easily evaluated

by computing the degree of matching between the

features selected by that algorithm and the known

optimal solution.

2. Being able to conduct the investigations in a system-

atic way, by systematically varying the experimental

conditions, such as changing the ratio between the

number of samples and number of features, or adding

more irrelevant features or noise to the data.

In practice, this strategy facilitates studying key under-

lying issues and quantitatively assessing the performance

of the existing algorithms.

The datasets generated for this study are intended to

represent different aspects, such as varying (a) the number

of irrelevant features, (b) the number of instances, and

(c) levels of noise in the data. These factors can make the

FS task very difficult.

The synthetic datasets are generated based on a linear

function defined by Eq. (5) and all features have continu-

ous values (even the response variable). However, in order

to use these datasets in the classification problem, the

response variable is converted to binary. The reason for

using liner synthetic datasets is just to simplify the problem

and to focus more precisely on our investigation.

The following steps were taken to generate these data-

sets, where NR represents the number of relevant features,

NI the number of irrelevant features, NT the number of total

features, S the number of instances, and yc the response

variable.

Step 1 Generate random matrix (NT, S) of S samples with

NT features, with a given mean l and a standard

deviation r. Then we expand this matrix by increasing

NT and S.

Step 2 Select NR as relevant features, and generate their

coefficient bi and multiply NR x1; . . .; xNR
ð Þ with the b

value.

b ¼fb1; b2; . . .; bNR
g; S:T :

XNR

i¼1

bi ¼ 1

Step 3 Compute the response variable yc by the

following equation:

yc ¼
XNR

i¼1

bixi þ
XNI

j¼1

cjxj ð5Þ

where, cjðj ¼ 1; . . .;NIÞ, are the coefficients of irrelevant
features and can be set to zero, so that NI features make

no contribution the response and thus become irrelevant.

Step 4 Convert the response variable yc from continuous

to binary by:

y ¼ 0; yc\�y
1; yc � �y

�
ð6Þ

where

�y ¼
P

yci

S
ð7Þ

In this study, NR is set to be 10 for all the synthetic

datasets, then the response values are computed by the

equations and conditions as follows:

yc ¼ b1x1 þ b2x2 þ � � � þ b10x10 ð8Þ

biþ1 ¼ bi þ Db; i = 1 to 10: where b1 ¼ 0:01 and

Db ¼ 0:02

In order to simulate a characteristic of real datasets,

which usually have different degrees of noise, we inject

class noise into 3 datasets (S2, S5 and S8) with differing

rates. The first parameter, denoted p (p = 5, 10 %), is

used to determine the number of samples injected by

noise. The second parameter, denoted e, which is a

random number varying between e ¼ �0:1 ! 0:1, rep-

resents the magnitude of noise level injected to response

variable.
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Table 4 lists the synthetic datasets generated for a

classification problem with a fixed number (10) of relevant

features, varied numbers of irrelevant features, the number

of instances, and levels (5, 10 %) of noise.

5.2 The results

This section presents the results generated after applying

four filters over fourteen synthetic datasets. The behaviour

of the FS methods will be evaluated in terms of the simi-

larity computed between the features selected with the

PART and ALL approaches and the optimal set of the

features, the stability with the PART method, and the

classification accuracy obtained by the NB classifier.

5.2.1 Results of comparing reliability

Figure 11 gives the summary of the results for reliability

measured by similarity measure IATI for all the synthetic

datasets. It shows that the PART and ALL approaches are

mostly similar with all the filters on almost all of the

datasets, except for a few cases, as shown in Fig. 12. One

case is S4-PART versus S4-ALL, where the number of

instances is small (100) and the number of the irrelevant

features is relatively very large (990), 99 times larger than

the number of the relevant features. Another case is when

the noise level is increased to 10 %; the PART approach

appeared to be slightly worse than the ALL approach.

In addition, in Fig. 12, it is worth noting how the sim-

ilarity in S2Noise5 and S2Noise10 datasets (with both the

PART and ALL approaches) decreases quite significantly

from 0.81 to 0.64, when the noise level increases from 5 to

10 %, while there is almost no difference between S5 and

S8 with 10 % noise relative to 5 % noise. Therefore, we

can say that datasets with small numbers of samples (as S2)

can be easily affected by noise, more so than data with

large numbers of samples. Accordingly, we can note that

the number of samples plays the most important role. As

we can observe, if the number of samples is small, it will

be hard for any of the filters to select a large number of

relevant features; moreover, we notice an increasing ten-

dency to select more irrelevant features. Additionally, the

results indicate that increasing the number of irrelevant

features in the dataset can have a quite strong adverse

Table 4 Description of 14

synthetic datasets with 10

relevant features at different

strengths

Dataset S NT NI Dataset S NT NI

S1 100 100 90 S2Noise5 1000 100 90

S2 1000 100 90 S2Noise10 1000 100 90

S3 10,000 100 90 S5Noise5 1000 1000 990

S4 100 1000 990 S5Noise10 1000 1000 990

S5 1000 1000 990 S8Noise5 1000 10,000 9990

S6 10,000 1000 990 S8Noise10 1000 10,000 9990

S7 100 10,000 9990 S8 10,000 10,000 9990

S is the number of instances, NT the total number of features, and NI the number of irrelevant features

Fig. 11 Similarity measured with IATI between the subset of the features selected by each filter and the pre-defined relevant features

Int. J. Mach. Learn. & Cyber. (2017) 8:915–928 925

123



effect on the performance of filters, as it also increases the

chance of choosing irrelevant features.

Figure 13 shows the results of ATI measures in the

PART approach. We clearly notice the big differences in

stability between the datasets, primarily due to the

increases in the number of samples and irrelevant features.

We observe a higher stability in S3 and S6 because of the

large number of samples (10,000). Besides, we can clearly

see (1) that increasing irrelevant features causes a decrease

in stability, as in datasets S4, S7 and S8; and (2) a greater

decrease in stability because of the increase in noise from 5

to 10 %.

5.2.2 Results of comparing effectiveness

Figure 14 shows the average test accuracy of the NB

classifiers trained with the features selected by both

approaches. The best classification accuracy was obtained

by S3-PART as well as S3-ALL (S = 10,000 and

NI = 90). The worst classification accuracy as well as the

Fig. 12 The differences in

similarity IATI between the

ALL and PART approaches

Fig. 13 The stability measured

by ATI between the features

selected by the four filters with

the PART approach over ten

runs of ten-fold cross-validation

and the pre-defined relevant

features

Fig. 14 The average test accuracy of NB classifiers trained with the features selected by the filters using the PART and ALL approaches on the

synthetic datasets
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lowest similarity were obtained by S7-PART (S = 100 and

NI = 9990). Within these two datasets, we can see various

classification accuracy results, varying based on two fac-

tors in general: the number of samples and the number of

irrelevant features. From Fig. 15 we can clearly observe

that the ALL approach has a higher accuracy than the

PART approach on the datasets with small numbers of

samples (as in S1, S4 and S7) and the difference between

the ALL and PART approaches increases as NI increases.

The NB classifiers trained with S7-ALL in particular

greatly outperformed those trained with S7-PART, by

about 47.2 % on average in terms of accuracy, while both

approaches give very low similarity, as seen in Fig. 11; this

case simulates the special characteristics of microarray

datasets, i.e. having a very large feature dimensionality and

a very small number of samples. On the other hand, the

PART and ALL approaches obtained similar accuracy on

the remaining datasets, which have medium or large

numbers of samples.

Further observations reveal that NB classifiers trained

with datasets S2, S5 and S8 (without any noise) achieved

higher accuracies than those of the classifiers for the

datasets with 5 and 10 % added noise. Moreover, Fig. 15

shows a little decrease in the accuracy by increasing the

noise rate. For example, S2Noise5-ALL scored 93.04 %

with most of the filters, while S2Noise10-ALL scored

91.19 % with all the filters.

6 Summary and conclusions

In this paper, the differences between the PART and ALL

approaches have been investigated in terms of similarity,

stability and classification accuracy on 10 real-world

benchmark datasets and 14 synthetic datasets generated.

The findings can be summarised as follows. Firstly, the

PART and ALL approaches produce no obvious difference

in terms of accuracy and similarity on the real-world

benchmark and synthetic datasets with large numbers of

samples, such as S3, S6 and Splice, and also have high

stability. Secondly, they also demonstrate no obvious dif-

ferences in terms of accuracy and similarity with the IATI

measure on those datasets with medium numbers of sam-

ples, such as S2, S5 (S = 1000) and Dermatology, unless

the datasets with a large number of irrelevant features, such

as S8 and M-feat-factors. Thirdly, these two approaches are

demonstrated to have only small differences in accuracy

and similarity, and also have high stability on those data-

sets with small numbers of samples and very small num-

bers of features, such as Zoo (NT = 17) and Promoters

(NT = 57). Finally, they show clear differences in accuracy

on the datasets with small numbers of samples, such as S1,

S4, S7 (S = 100), Colon and Leukaemia, which indicates

that the ALL approach achieves higher accuracy than the

PART approach, although the similarity and stability

results are still low in both the methods.

In addition, the experiment results lead to some more

general conclusions as follow:

1. The number of samples plays a major role in the

performance of FS. Whenever the number of samples

increases, this leads to the FS method selecting more

relevant features and discarding irrelevant ones. Also,

it leads to increasing the similarity and stability in

addition to the classification accuracy.

2. The number of irrelevant features is an important

factor in the performance of FS, as increasing the

number of irrelevant features in the dataset disrupts the

FS process and increases the possibility of choosing

irrelevant features; in addition, it reduces the similar-

ity, stability and classification accuracy.

3. Finally, the level of noise is another important factor

influencing the FS process in which increases the

chances of choosing irrelevant features as well as

decreasing the similarity, stability and classification

accuracy.

In conclusion, when the dataset contains a large number

of samples there is no noticeable difference between these

Fig. 15 The difference between

the average accuracies of the

NB classifiers trained by the

ALL and PART approaches on

the synthetic datasets
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two approaches in terms of reliability and effectiveness.

When the dataset is small, the ALL and PART approaches

have almost similar reliability. However, there is a clear

difference in terms of their effectiveness, that is, the ALL

approach achieves a higher accuracy than the PART

approach, which indicates that the accuracy estimate is

possibly overstated and that bias has occurred. Therefore,

the PART approach can prevent bias to some extent,

although its superiority decreases with increasing sample

sizes.
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