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Abstract. Knowledge reduction of dynamic covering information systems involves with the

time in practical situations. In this paper, we provide incremental approaches to computing

the type-1 and type-2 characteristic matrices of dynamic coverings because of varying at-

tribute values. Then we present incremental algorithms of constructing the second and sixth

approximations of sets by using characteristic matrices. We employ experimental results to

illustrate that the incremental approaches are effective to calculate approximations of sets in

dynamic covering information systems. Finally, we performknowledge reduction of dynamic

covering information systems with the incremental approaches.

Keywords: Boolean matrice; Characteristic matrice; Dynamic covering approximation space;

Dynamic covering information system; Rough set

1 Introduction

Covering approximation spaces, as generalizations of classical approximation spaces based on equiv-

alence relations, have attracted more attentions, and a great deal of approximation operators have been

proposed for knowledge reduction of covering approximation spaces. Nowadays, covering-based rough

set theory [20–23, 27, 29, 30, 34–37] are being enriched withthe development of computer sciences and

related theories.

To our best knowledge, there exist many lower and upper approximation operators for covering ap-

proximation spaces, and their basic properties are investigated concretely by researchers. Especially,

Wang et al. [26] studied the second and sixth lower and upper approximation operators of covering ap-

proximation spaces and proposed effective approaches to computing the second and sixth lower and upper

approximations of sets by using characteristic matrices. In practice, dynamic covering approximation

spaces are variations of the time. For example, two specialists A and B decided the quality of five cars

U = {A, B,C,D,E} as follows: good= {A,C},middle= {C,E}, bad = {B,D,E}, and (U,C ) is a cover-

ing approximation space, whereC = {good,middle, bad}. With the variation of the time, the specialists

find that the quality ofC is very bad, and (U,C ) is revised into dynamic covering approximation space
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(U,C ∗), whereC ∗ = {good∗,middle∗, bad∗}, good∗ = {A},middle∗ = {E} andbad∗ = {B,C,D,E}. Ac-

cordingly, the characteristic matrice ofC changes into that ofC ∗. Since it is time-consuming to compute

the characteristic matrice in large-scale covering approximation space, it costs more time to construct

the characteristic matrice of large-scale dynamic coverings for computing approximations of sets. Until

now, Lang et al. [4,5] presented incremental approaches to computing approximations of sets in dynamic

covering approximation spaces, in which object sets are variations of the time. But little attention has

been paid to dynamic covering approximation spaces, in which elements of coverings are variations of

the time. Therefore, it is of interest to study how to computeapproximations of sets in dynamic covering

approximation spaces when varying attribute values.

Many researchers [1–3,6–19,24,25,28,29,31–33] have investigated knowledge reduction of dynamic

information systems with incremental approaches. For example, when coarsening and refining attribute

values and varying attribute sets, Chen et al. [1–3] constructed approximations of sets which provides an

effective approach to knowledge reduction of dynamic information systems. Based on characteristic rela-

tions, Li, Ruan and Song [9] extended rough sets for incrementally updating decision rules which handles

dynamic maintenance of decision rules in data mining. Liu etal. [11–13] presented incremental ap-

proaches for knowledge reduction of dynamic information systems and dynamic incomplete information

systems. From the perspective of knowledge engineering andneighborhood systems-based rough sets,

Yang, Zhang, Dou and Yang [28] studied the neighborhood system for knowledge reduction of incom-

plete information systems. Zhang, Li and Chen [33] presented matrice-based approaches for computing

the approximations, positive, boundary and negative regions in composite information systems. Illus-

trated by existing researches, the incremental approachesare effective to conduct knowledge reduction of

dynamic information systems, which reduces the computation times greatly. It motivates us to compute

approximations of sets in dynamic covering approximation spaces and knowledge reduction of dynamic

covering information systems by using incremental approaches.

The purpose of this paper is to further study knowledge reduction of dynamic covering information

systems when varying attribute values. First, we investigate structures of the characteristic matrices of dy-

namic covering approximation spaces when varying attribute values and present incremental approaches

to computing characteristic matrices of dynamic coverings. We employ several examples to illustrate that

the process of calculating the characteristic matrices is simplified greatly by utilizing the incremental ap-

proaches. Second, we provide incremental algorithms for constructing the characteristic matrices-based

approximations of sets in dynamic covering approximation spaces when varying attribute values. We also

compare the time complexities of the incremental algorithms with those of non-incremental algorithms.

Third, we perform experiments on ten dynamic covering approximation spaces generated randomly. The

experimental results illustrate that the proposed approached are effective to calculate approximations of

sets with respect to the variation of attribute values. We also employ examples to show that how to conduct

knowledge reduction of dynamic covering information systems with the incremental approaches.
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The rest of this paper is organized as follows: Section 2 briefly reviews the basic concepts of covering-

based rough set theory. In Section 3, we introduce incremental approaches to computing the characteristic

matrices of dynamic coverings when varying attribute values. Section 4 presents non-incremental and in-

cremental algorithms of calculating the second and fifth lower and upper approximations of sets by using

the characteristic matrices. Section 5 performs experiments to show that the incremental approaches are

effective to compute approximations of sets in dynamic covering approximation spaces. Section 6 is de-

voted to knowledge reduction of dynamic covering information systems with the incremental approaches.

We conclude the paper in Section 7.

2 Preliminaries

A brief summary of related concepts in covering-based roughsets is given in this section.

Let U be a finite universe of discourse, andC is a family of subsets ofU. If none of elements ofC

is empty and
⋃

{C|C ∈ C } = U, thenC is referred to as a covering ofU. In addition, (U,C ) is called a

covering approximation space ifC is a covering ofU.

Definition 2.1 [26] Let U = {x1, x2, ..., xn} be a finite universe, andC = {C1,C2, ...,Cm} a covering of

U. For any X⊆ U, the second, fifth and sixth upper and lower approximationsof X with respect toC ,

respectively, are defined as follows:

(1) The second upper and lower approximations of X:

S HC (X) =
⋃

{C ∈ C | C ∩ X , ∅}, S LC (X) = [S HC (Xc)]c;

(2) The fifth upper and lower approximations of X:

IHC (X) = {x ∈ U | N(x) ∩ X , ∅}, ILC (X) = {x ∈ U | N(x) ⊆ X};

(3) The sixth upper and lower approximations of X:

XHC (X) =
⋃

{N(x) | N(x) ∩ X , ∅}, XLC (X) =
⋃

{N(x) | N(x) ⊆ X}.

Definition 2.2 [26] Let C={C1, ...,Cm} be a family of subsets of a finite set U={x1, ..., xn}. We define

MC = (ai j )n×m, where ai j =
{

1, xi ∈ C j ,
0, xi < C j .

Definition 2.3 [26] Let U = {x1, ..., xn}, A ⊆ U. We define the characteristic function asXA =
[

a1 a2 . . . an
]T , where ai =

{

1, xi ∈ A,
0, xi < A. i = 1, · · · , n.

Definition 2.4 [26] Let U = {x1, x2, ..., xn} be a finite universe,C = {C1,C2, ...,Cm} a covering of U, and

MC = (ai j )n×m the matrice representation ofC . ThenΓ(C ) = MC · MT
C
= (bi j )n×n is called the type-1

characteristic matrix ofC , where ai j =
{

1, xi ∈ C j ;
0, xi < C j .

and bi j =
∨m

k=1(aik · a jk).
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Definition 2.5 [26] Let U = {x1, x2, ..., xn} be a finite universe,C = {C1,C2, ...,Cm} a covering of U, and

MC = (ai j )n×m the matrice representation ofC . Then
∏

(C ) = MC ⊙ MT
C
= (ci j )n×n is called the type-2

characteristic matrice ofC , where ci j =
∧m

k=1(a jk − aik + 1).

By Definitions 2.4 and 2.5, the second and fifth lower and upperapproximation operators are axiom-

atized equivalently as follows.

Definition 2.6 [26] Let U = {x1, x2, ..., xn} be a finite universe,C = {C1,C2, ...,Cm} a covering of U, and

XX the characteristic function of X in U. Then

XS H(X) = Γ(C ) · XX,XS L(X) = Γ(C ) ⊙ XX;XIH (X) =
∏

(C ) · XX, XIL(X) =
∏

(C ) ⊙ XX.

Definition 2.7 [4] Let (U,D ∪ U/d) be a covering decision information system, whereD = {Ci |i ∈ I },

U/d = {Di |i ∈ J}, I and J are indexed sets. We defineP ⊆ D as the type-1 reduct of(U,D ∪ U/d) if it

satisfies

(1) Γ(D) · XDi = Γ(P) · XDi , Γ(D) ⊙ XDi = Γ(P) ⊙ XDi ,∀i ∈ J;

(2) Γ(D) · XDi , Γ(P
′

) · XDi , Γ(D) ⊙ XDi , Γ(P
′

) ⊙ XDi ,∀P
′

⊂P .

Definition 2.8 [4] Let (U,D ∪ U/d) be a covering decision information system, whereD = {Ci |i ∈ I },

U/d = {Di |i ∈ J}, I and J are indexed sets. We defineP ⊆ D as the type-2 reduct of(U,D ∪ U/d) if it

satisfies

(1)
∏

(D) · XDi =
∏

(P) · XDi ,
∏

(D) ⊙ XDi =
∏

(P) ⊙ XDi ,∀i ∈ J;

(2)
∏

(D) · XDi ,
∏

(P
′

) · XDi ,
∏

(D) ⊙ XDi ,
∏

(P
′

) ⊙ XDi ,∀P
′

⊂P .

Definition 2.9 [26] Let A = (ai j )n×m and B= (bi j )n×m be two matrices. We define A+ B = (ai j + bi j )n×m

for 1 ≤ i ≤ n, 1 ≤ j ≤ m.

3 Incremental approaches to computing approximations of sets

In this section, we present incremental approaches to computing the second and fifth lower and upper

approximations of sets when revising attribute values.

Definition 3.1 (Dynamic covering approximation space) Let(U,C ) and (U,C ∗) be covering approxi-

mation spaces, where U={x1, x2, ..., xn}, C={C1,C2, ...,Cm}, C ∗={C∗1,C∗2, ...,C
∗
m}, and C∗i =Ci − {xk} or

C∗i =Ci ∪ {xk} when revising the attribute value of xk ∈ U. Then(U,C ∗) is called a dynamic covering

approximation space. In addition,C ∗ is called a dynamic covering.

In practice, revising attribute values will result in|C ∗| < |C |, |C ∗| = |C | and|C ∗| > |C |. In this work,

we only discuss the situation that|C ∗| = |C | when revising attribute values of an object.
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Below, we discuss the relationship betweenΓ(C ) andΓ(C ∗). For convenience, we denoteMC =

(ai j )n×m, MC ∗ = (bi j )n×m, Γ(C ) = (ci j )n×n andΓ(C ∗) = (di j )n×n.

Theorem 3.2 Let (U,C ∗) be a dynamic covering approximation space of(U,C ), Γ(C ) and Γ(C ∗) the

type-1 characteristic matrices ofC andC ∗, respectively. Then

Γ(C ∗) = Γ(C ) + ∆Γ(C )

where

∆Γ(C ) =











































0 0 · · · d∗1k ... 0
0 0 · · · d∗2k ... 0
· · · · · · · · · · · · · · · · · ·
d∗k1 d∗k2 · · · d∗kk · · · d∗kn
· · · · · · · · · · · · · · · · · ·
0 0 · · · d∗nk · · · 0











































;

d∗k j = d∗jk =
[

bk1 bk2 · · · bkm
]

·
[

b1 j b2 j · · · bm j
]T
− ck j.

Proof. By Definition 2.4,Γ(C ) andΓ(C ∗) are presented as follows:

Γ(C ) = MC · M
T
C

=























a11 a12 · · · a1m
a21 a22 · · · a2m
· · · · · · · · · · · ·
an1 an2 · · · anm























·























a11 a12 · · · a1m
a21 a22 · · · a2m
· · · · · · · · · · · ·
an1 an2 · · · anm























T

=























c11 c12 · · · c1n
c21 c22 · · · c2n
· · · · · · · · · · · ·
cn1 cn2 · · · cnn























;

Γ(C ∗) = MC ∗ · M
T
C ∗

=























b11 b12 · · · b1m
b21 b22 · · · b2m
· · · · · · · · · · · ·
bn1 bn2 · · · bnm























·























b11 b12 · · · b1m
b21 b22 · · · b2m
· · · · · · · · · · · ·
bn1 bn2 · · · bnm























T

=























d11 d12 · · · d1n
d21 d22 · · · d2n
· · · · · · · · · · · ·
dn1 dn2 · · · dnn























.

By Definition 2.4, we haveci j = di j for i , k, j , k sinceai j = bi j for i , k. To computeΓ(C ∗) on the

basis ofΓ(C ), we only need to compute (di j )(i=k,1≤ j≤n) and (di j )(1≤i≤n, j=k). SinceΓ(C ∗) is symmetric, we

only need to compute (di j )(i=k,1≤ j≤n). In other words, we need to compute∆Γ(C ), where

∆Γ(C ) =











































0 0 · · · d∗1k ... 0
0 0 · · · d∗2k ... 0
· · · · · · · · · · · · · · · · · ·
d∗k1 d∗k2 · · · d∗kk · · · d∗kn
· · · · · · · · · · · · · · · · · ·
0 0 · · · d∗nk · · · 0











































;

d∗k j = d∗jk =
[

bk1 bk2 · · · bkm
]

·
[

b1 j b2 j · · · bm j
]T
− ck j.
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Therefore, we have that

Γ(C ∗) = Γ(C ) + ∆Γ(C ).�

The following example is employed to show the process of constructing approximations of sets by

Theorem 3.2.

Example 3.3 Let U = {x1, x2, x3, x4}, C = {C1,C2,C3} and C ∗ = {C∗1,C
∗
2,C

∗
3}, where C1 = {x1, x4},

C2 = {x1, x2, x4}, C3 = {x3, x4}, C∗1 = {x1, x3, x4}, C∗2 = {x1, x2, x3, x4}, C∗3 = {x4}, and X= {x3, x4}. By

Definition 2.4, we first have that

Γ(C ) = MC · M
T
C

= (ci j )4×4

=























1 1 0
0 1 0
0 0 1
1 1 1























·























1 1 0
0 1 0
0 0 1
1 1 1























T

=























1 1 0 1
1 1 0 1
0 0 1 1
1 1 1 1























.

Second, we denoteΓ(C ∗) = (di j )4×4. By Theorem 3.2, we get that

[

d∗31 d∗32 d∗33 d∗34
]

=
[

1 1 0
]

· MT
C ∗
−
[

c31 c32 c33 c34
]

=
[

1 1 0
]

·















1 0 1 1
1 1 1 1
0 0 0 1















−
[

0 0 1 1
]

=
[

1 1 1 1
]

−
[

0 0 1 1
]

=
[

1 1 0 0
]

;
[

d∗13 d∗23 d∗33 d∗43
]

=
[

d∗31 d∗32 d∗33 d∗34
]

.

By Theorem 3.2, we have that

∆Γ(C ) =

























0 0 d∗13 0
0 0 d∗23 0

d∗31 d∗32 d∗33 d∗34
0 0 d∗43 0

























=























0 0 1 0
0 0 1 0
1 1 0 0
0 0 0 0























.
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Thus, we obtain that

Γ(C ∗) = Γ(C ) + ∆Γ(C )

=























1 1 0 1
1 1 0 1
0 0 1 1
1 1 1 1























+























0 0 1 0
0 0 1 0
1 1 0 0
0 0 0 0























=























1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1























.

By Definition 2.6, we have that

XS H(X) = Γ(C ∗) · XX;

=























1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1























·























0
0
1
1























=
[

1 1 1 1
]T ;

XS L(X) = Γ(C ∗) ⊙ XX

=























1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1























⊙























0
0
1
1























=
[

0 0 0 0
]T
.

Therefore, S H(X) = {x1, x2, x3, x4} and S L(X) = ∅.

In Example 3.3, we only need to compute∆Γ(C ) by Theorem 3.2. But there is a need to compute all

elements inΓ(C ∗) by Definition 2.4. Therefore, the computing time of the incremental algorithm is less

than the non-incremental algorithm.

Subsequently, we discuss the construction of
∏

(C ∗) based on
∏

(C ). For convenience, we denote
∏

(C ) = (ei j )n×n and
∏

(C ∗) = ( fi j )n×n.

Theorem 3.4 Let (U,C ∗) be a dynamic covering approximation space of(U,C ),
∏

(C ) and
∏

(C ∗) the

type-2 characteristic matrice ofC andC ∗, respectively. Then

∏

(C ∗) =
∏

(C ) + ∆
∏

(C )
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where

∆
∏

(C ) =











































0 0 · · · f ∗1k · · · 0
0 0 · · · f ∗2k · · · 0
· · · · · · · · · · · · · · · · · ·
f ∗k1 f ∗k2 · · · f ∗kk · · · f ∗kn
· · · · · · · · · · · · · · · · · ·
0 0 · · · f ∗nk · · · 0











































;

[

f ∗k1 f ∗k2 · · · f ∗kn
]

=
[

bk1 bk2 · · · bkm
]

⊙ MT
C ∗
−
[

ek1 ek2 · · · ekn
]

;
[

f ∗1k f ∗2k · · · f ∗nk
]T
= MC ∗ ⊙

[

b1k b2k · · · bmk
]T
−
[

e1k e2k · · · enk
]

.

Proof. By Definition 2.5,
∏

(C ) and
∏

(C ∗) are presented as follows:
∏

(C ) = MC ⊙ MT
C

=























a11 a12 · · · a1m
a21 a22 · · · a2m
· · · · · · · · · · · ·
an1 an2 · · · anm























⊙























a11 a12 · · · a1m
a21 a22 · · · a2m
· · · · · · · · · · · ·
an1 an2 · · · anm























T

=























e11 e12 · · · e1n
e21 e22 · · · e2n
· · · · · · · · · · · ·
en1 en2 · · · enn























;

∏

(C ∗) = MC ∗ ⊙ MT
C ∗

=























b11 b12 · · · b1m
b21 b22 · · · b2m
· · · · · · · · · · · ·
bn1 bn2 · · · bnm























⊙























b11 b12 · · · b1m
b21 b22 · · · b2m
· · · · · · · · · · · ·
bn1 bn2 · · · bnm























T

=























f11 f12 · · · f1n
f21 f22 · · · f2n
· · · · · · · · · · · ·
fn1 fn2 · · · fnn























.

By Definition 2.5, we haveei j = fi j for i , k, j , k sinceai j = bi j for i , k. To compute
∏

(C ∗) on

the basis of
∏

(C ), we only need to compute (fi j )(i=k,1≤ j≤n) and (fi j )(1≤i≤n, j=k). In other words, we need to

compute∆
∏

(C ), where

∆
∏

(C ) =











































0 0 · · · f ∗1k · · · 0
0 0 · · · f ∗2k · · · 0
· · · · · · · · · · · · · · · · · ·
f ∗k1 fk2 · · · f ∗kk · · · f ∗kn
· · · · · · · · · · · · · · · · · ·
0 0 · · · f ∗nk · · · 0











































;

[

f ∗k1 f ∗k2 · · · f ∗kn
]

=
[

bk1 bk2 · · · bkm
]

⊙ MT
C ∗
−
[

ek1 ek2 · · · ekn
]

;
[

f ∗1k f ∗2k · · · f ∗nk
]T
= MC ∗ ⊙

[

b1k b2k · · · bmk
]T
−
[

e1k e2k · · · enk
]

.

Therefore, we have that
∏

(C ∗) =
∏

(C ) + ∆
∏

(C ).�
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The following example is employed to show the process of constructing approximations of sets by

Theorem 3.4.

Example 3.5 Let U = {x1, x2, x3, x4}, C = {C1,C2,C3} and C ∗ = {C∗1,C
∗
2,C

∗
3}, where C1 = {x1, x4},

C2 = {x1, x2, x4}, C3 = {x3, x4}, C∗1 = {x1, x3, x4}, C∗2 = {x1, x2, x3, x4}, C∗3 = {x4}, and X= {x3, x4}. By

Definition 2.5, we first have that

∏

(C ) = MC ⊙ MT
C

= (ei j )4×4

=























1 1 0
0 1 0
0 0 1
1 1 1























⊙























1 1 0
0 1 0
0 0 1
1 1 1























T

=























1 0 0 1
1 1 0 1
0 0 1 1
0 0 0 1























.

Second, we denote
∏

(C ∗) = ( fi j )4×4. By Theorem 3.4, we get that

[

f ∗31 f ∗32 f ∗33 f ∗34
]

=
[

1 1 0
]

⊙ MT
C ∗
−
[

e31 e32 e33 e34
]

=
[

1 1 0
]

⊙























1 1 0
0 1 0
1 1 0
1 1 1























T

−
[

0 0 1 1
]

=
[

1 0 1 1
]

−
[

0 0 1 1
]

=
[

1 0 0 0
]

;

[

f ∗13 f ∗23 f ∗33 f ∗43
]

=























1 1 0
0 1 0
1 1 0
1 1 1























⊙
[

1 1 0
]T
−
[

e13 e23 e33 e43
]

=
[

1 1 1 0
]T
−
[

0 0 1 0
]

=
[

1 1 0 0
]T
.

By Theorem 3.4, we have that

∆
∏

(C ) =

























0 0 f ∗13 0
0 0 f ∗23 0
f ∗31 f ∗32 f ∗33 f ∗34
0 0 f ∗43 .0

























=























0 0 1 0
0 0 1 0
1 0 0 0
0 0 0 0























.
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Therefore, we obtain that
∏

(C ∗) =
∏

(C ) + ∆
∏

(C )

=























1 0 0 1
1 1 0 1
0 0 1 1
0 0 0 1























+























0 0 1 0
0 0 1 0
1 0 0 0
0 0 0 0























=























1 0 1 1
1 1 1 1
1 0 1 1
0 0 0 1























.

By Definition 2.6, we have that

XS H(X) =
∏

(C ∗) · XX;

=























1 0 1 1
1 1 1 1
1 0 1 1
0 0 0 1























·























0
0
1
1























=
[

1 1 1 1
]T ;

XS L(X) =
∏

(C ∗) ⊙ XX

=























1 0 1 1
1 1 1 1
1 0 1 1
0 0 0 1























⊙























0
0
1
1























=
[

0 0 0 1
]T
.

Therefore, S H(X) = {x1, x2, x3, x4} and S L(X) = {x4}.

In Example 3.5, we only need to∆
∏

(C ) by Theorem 3.4. But there is a need to compute all elements

in
∏

(C ∗) by Definition 2.5. Therefore, the computing time of the incremental algorithm is less than the

non-incremental algorithm.

4 Non-incremental and incremental algorithms of computingapproxima-
tions of sets with varying attribute values

In this section, we present non-incremental and incremental algorithms of computing the second and

sixth lower and upper approximations of sets with varying attribute values.

In Algorithm 4.1, the time complexity of Step 3 isO(mn2); the time complexity of step 4 isO(2n2).

The total time complexity isO((m+ 2)n2). In Algorithm 4.2, the time complexity of Step 4 isO(nm);

the time complexity of Step 6 isO(n); the time complexity of Step 7 isO(n); the time complexity of

Step 8 isO(2n2). The total time complexity isO(2n2 + nm+ 2n). Furthermore,O((m+ 2)n2) is the time

complexity of the non-incremental algorithm. Thus the incremental algorithm is more effective than the

non-incremental algorithm.
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Algorithm 4.1: Non-incremental algorithm of computing the second lower and upper approxima-
tions of sets(NIS)

Input : (U,C ∗) andX ⊆ U.
Output : XS H(X) andXS L(X).

1 begin
2 ConstructMC ∗ based onC ∗;
3 ComputeΓ(C ∗) = MC · MT

C ∗
;

4 ObtainXS H(X) = Γ(C ∗) · XX andXS L(X) = Γ(C ∗) ⊙ XX.

5 end

Algorithm 4.2: Incremental algorithm of computing the second lower and upper approximations of
sets(IS)

Input : 1. (U,C ), Γ(C ), (U,C ∗), X ⊆ U.
Output : XS H(X) andXS L(X).

1 begin
2 ConstructM∗

C
=(bi j )n×m based onC ∗;

3 Denoterowk=[bk1, bk2, ..., bkm];
4 Compute∆rowk=rowk · MT

C ∗
;

5 Let Γ(C ∗)=Γ(C );
6 Setkth row ofΓ(C ∗) as∆rowk;
7 Setkth col ofΓ(C ∗) as (∆rowk)T ;
8 ObtainXS H(X)=Γ(C ∗) · XX andXS L(X)=Γ(C ∗) ⊙ XX.
9 end

Algorithm 4.3: Non-incremental algorithm of computing the sixth lower andupper approximations
of sets(NIX)

Input : (U,C ∗) andX ⊆ U.
Output : XXH(X) andXXL(X).

1 begin
2 ConstructMC ∗ based onC ∗;
3 Compute

∏

(C ∗) = MC ∗ ⊙ MT
C ∗

;
4 ObtainXXH(X) =

∏

(C ∗) · XX andXXL(X) =
∏

(C ∗) ⊙ XX.

5 end

In Algorithm 4.3, the time complexity of Step 3 isO(mn2), the time complexity of Step 4 isO(n2).

The total time complexity isO((m+ 2)n2). In Algorithm 4.4, the time complexity of Step 4 isO(nm); the

time complexity of Step 6 isO(nm); the time complexity of Step 8 isO(n); the time complexity of Step

9 is O(n); the time complexity of Step 10 isO(2n2). The total time complexity isO(2n2 + 2nm+ 2n).

Furthermore,O((m+2)n2) is the time complexity of the non-incremental algorithm. Thus the incremental

algorithm is more effective than the non-incremental algorithm.
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Algorithm 4.4: Incremental algorithm of computing the sixth lower and upper approximations of
sets(IX)

Input : (U,C ),
∏

(C ), (U,C ∗) andX ⊆ U.
Output : XXH(X) andXXL(X).

1 begin
2 ConstructM∗

C
=(bi j )n×m based onC ∗;

3 Denoterowk=[bk1, bk2, ..., bkm];
4 Compute∆rowk=rowk ⊙ MT

C ∗
;

5 Denotecolk=[b1k, b2k, ..., bmk]T ;
6 Compute∆colk=MC ∗ ⊙ colk;
7 Let

∏

(C ∗)=
∏

(C );
8 Setkth row of

∏

(C ∗) as∆rowk;
9 Setkth col of

∏

(C ∗) as∆colk;
10 ObtainXXH(X)=

∏

(C ∗) · XX andXXL(X)=
∏

(C ∗) ⊙ XX.
11 end

5 Experimental analysis

In this section, we perform the series of experiments to validate the effectiveness of Algorithms 4.2

and 4.4 for computing approximations in dynamic covering approximation spaces when varying attribute

values.

5.1 Experimental environment

Since transforming information systems into covering approximation spaces takes a great deal of time,

and the main objective of this work is to illustrate the efficiency of the Algorithms 4.2 and 4.4 in computing

approximations of sets. To evaluate the performance of Algorithms 4.2 and 4.4, we generated ten covering

approximation spaces (Ui ,Ci) for the experiment, wherei, j = 1, 2, 3, ..., 10.We outline all these covering

approximation spaces in Table 1, where|Ui | denotes the number of objects inUi and|Ci | is the cardinality

of Ci .

All computations were conducted on a PC with a Inter(R) Core(TM) i5-4200M CPU @ 2.50 GHZ and

4 GB memory, running 64-bit Windows 7 Service Pack 1. The software used was 64-bit Matlab R2013b.

Details of the hardware and software are given in Table 2.

5.2 Experimental results

5.2.1 Computational times in dynamic covering approximation spaces

In this subsection, we apply Algorithms 4.1-4.4 to the covering approximation space (Ui ,Ci), where

i = 1, 2, 3, ..., 10, and compare the computing times by using Algorithms 4.1 and 4.3 with those of Algo-

rithms 4.2 and 4.4, respectively.

First, we calculateΓ(Ci) and
∏

(Ci) by Definitions 2.4 and 2.5, respectively. We also obtain the

dynamic covering approximation space (Ui ,C
∗
i ) when revising attribute values ofxk, where andC∗j =

12



Table 1: Covering approximation spaces.
No. Name |Ui | |Ci |

1 (U1,C1) 2000 100

2 (U2,C2) 4000 200

3 (U3,C3) 6000 300

4 (U4,C4) 8000 400

5 (U5,C5) 10000 500

6 (U6,C6) 12000 600

7 (U7,C7) 14000 700

8 (U8,C8) 16000 800

9 (U9,C9) 18000 900

10 (U10,C10) 20000 1000

Table 2: The experimental environment.

No. Name Model Parameters

1 CPU Inter(R) Core(TM) i5-4200M 2.50 GHZ

2 Memory ADAT DDR3 4G

3 Hard disk SATA 1T

4 System Windows 7 64bit

5 Platform Matlab R2013b 64bit
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C j ∪ {xk} or C j, whereC∗j ∈ C ∗i andC j ∈ Ci . Subsequently, we getΓ(C ∗i ) and
∏

(C ∗i ) by Algorithms 4.1

and 4.3, respectively.

Second, we calculateS H(X), S L(X), XH(X) andXL(X) based onΓ(C ∗i ) and
∏

(C ∗i ) for X ⊆ Ui , re-

spectively. The time of computingS H(X), S L(X), XH(X) andXL(X) is shown in Tables 3-12. Concretely,

NIS andNIX stands for the time of constructing the second and sixth lower and upper approximations of

sets by Algorithms 4.1 and 4.3 in Tables 3-12. Additionally,we obtainΓ(C ∗i ) and
∏

(C ∗i ) by Algorithms

4.2 and 4.4, respectively. Then the time of computingS H(X), S L(X), XH(X) andXL(X) for X ⊆ Ui is

shown in Tables 3-12. Concretely,IS andIX stands for the time of computing the second and sixth lower

and upper approximations of sets by Algorithms 4.2 and 4.4 inTables 3-12.

Third, we conduct all experiments ten times and show the results in Tables 3-12 and Figures 1-10. We

see all algorithms are stable to compute approximations of sets in all experiments. Concretely, we observe

that the computing times by using the same algorithm are almost the same in Tables 3-12. Consequently,

we see that the times of computing approximations of sets by using incremental algorithms are much

smaller than those of the non-incremental algorithms. In Figures 1-10, we also observe that the computing

times of Algorithms 4.2 and 4.4 are far less than those of Algorithms 4.1 and 4.3, respectively. Therefore,

the incremental algorithms are more effective to construct approximations of sets in the dynamic covering

approximation space (Ui ,C
∗
i ), wherei = 1, 2, ..., 10.

Remark: In Tables 3-12, the measure of time is in seconds;t indicates the average time of ten experi-

ments; In Figures 1-10,i stands for the experimental number inX Axis; In Figure 11,i refers to as the

covering approximation space (Ui ,Ci) in X Axis; In Figures 1-11,i is the computing time inY Axis.

Table 3: Computational times using Algorithms 4.1-4.4 in (U1,C1).

Algorithm 1 2 3 4 5 6 7 8 9 10 t

NIS 0.4578 0.4213 0.4279 0.4223 0.4271 0.4236 0.4235 0.42630.4236 0.4273 0.4281

NIX 0.4681 0.4671 0.4636 0.4646 0.4668 0.4651 0.4651 0.46810.4668 0.4720 0.4667

IS 0.0044 0.0026 0.0033 0.0040 0.0029 0.0028 0.0031 0.0030 0.0028 0.0028 0.0032

IX 0.0351 0.0339 0.0333 0.0339 0.0340 0.0334 0.0340 0.0335 0.0338 0.0333 0.0338
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Figure 1: Computational times using Algorithms 4.1-4.4 in (U1,C1).

Table 4: Computational times using Algorithms 4.1-4.4 in (U2,C2).
Algorithm 1 2 3 4 5 6 7 8 9 10 t

NIS 1.8902 1.8452 1.8610 1.8203 1.8179 1.8257 1.8223 1.82241.8294 1.8189 1.8353

NIX 2.0389 2.0437 2.0314 2.0237 2.0378 2.0331 2.0531 2.05652.0583 2.0641 2.0440

IS 0.0091 0.0118 0.0102 0.0100 0.0098 0.0127 0.0110 0.0099 0.0099 0.0096 0.0104

IX 0.2035 0.2018 0.2013 0.2018 0.2034 0.1992 0.2018 0.2006 0.1987 0.2035 0.2016
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Figure 2: Computational times using Algorithms 4.1-4.4 in (U2,C2).
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Table 5: Computational times using Algorithms 4.1-4.4 in (U3,C3).
Algorithm 1 2 3 4 5 6 7 8 9 10 t

NIS 4.2030 4.1889 4.1905 4.1457 4.1446 4.1681 4.1518 4.17654.2310 4.1604 4.1760

NIX 4.6993 4.7126 4.6838 4.6895 4.6941 4.7000 4.7025 4.67114.7039 4.6939 4.6951

IS 0.0177 0.0210 0.0211 0.0199 0.0199 0.0199 0.0199 0.0205 0.0200 0.0197 0.0200

IX 0.5259 0.5059 0.5076 0.5056 0.5089 0.5055 0.5106 0.5080 0.5059 0.5078 0.5092
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Figure 3: Computational times using Algorithms 4.1-4.4 in (U3,C3).

Table 6: Computational times using Algorithms 4.1-4.4 in (U4,C4).
Algorithm 1 2 3 4 5 6 7 8 9 10 t

NIS 7.5968 7.5550 7.7428 7.6536 7.6756 7.7031 7.6304 7.60517.6118 7.7013 7.6475

NIX 8.6892 8.7967 8.8918 9.0384 8.7810 8.7764 8.6300 9.28218.6324 8.6121 8.8130

IS 0.0428 0.0338 0.0350 0.0394 0.0378 0.0386 0.0345 0.0345 0.0346 0.0348 0.0366

IX 0.9813 0.9681 0.9694 0.9677 0.9669 0.9731 0.9654 0.9683 0.9648 0.9685 0.9694

Table 7: Computational times using Algorithms 4.1-4.4 in (U5,C5).

Algorithm 1 2 3 4 5 6 7 8 9 10 t

NIS 12.0856 11.9662 11.9944 11.9200 11.9992 11.9683 11.9321 11.9008 11.8811 11.8839 11.9532

NIX 13.8290 13.6560 13.7430 13.7308 13.6831 13.6816 13.7970 13.6794 13.8141 13.7338 13.7348

IS 0.0675 0.0530 0.0549 0.0537 0.0551 0.0537 0.0536 0.0523 0.0535 0.0540 0.0551

IX 1.6266 1.6193 1.6163 1.6138 1.6189 1.6057 1.6230 1.6213 1.6172 1.6211 1.6183
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Figure 4: Computational times using Algorithms 4.1-4.4 in (U4,C4).
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Figure 5: Computational times using Algorithms 4.1-4.4 in (U5,C5).

Table 8: Computational times using Algorithms 4.1-4.4 in (U6,C6).
Algorithm 1 2 3 4 5 6 7 8 9 10 t

NIS 17.8842 17.8858 18.0800 17.6753 17.5945 17.5710 17.7019 18.2036 17.5415 17.9582 17.8096

NIX 20.1684 20.1404 20.0242 20.0022 20.0277 20.0598 20.0897 20.2560 21.6223 22.1194 20.4510

IS 0.0977 0.0748 0.0746 0.0744 0.0803 0.0727 0.0753 0.0735 0.0738 0.0723 0.0770

IX 2.4011 2.3671 2.4204 2.3771 2.3679 2.3662 2.3737 2.3644 2.3614 2.3692 2.3769
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Figure 6: Computational times using Algorithms 4.1-4.4 in (U6,C6).

Table 9: Computational times using Algorithms 4.1-4.4 in (U7,C7).
Algorithm 1 2 3 4 5 6 7 8 9 10 t

NIS 24.2936 24.3201 24.4603 25.2946 24.4922 24.5153 24.3296 25.0792 24.6210 24.2059 24.5612

NIX 27.9154 28.2049 28.2523 28.2664 28.7698 28.2559 28.1121 28.4234 28.6467 29.2779 28.4125

IS 0.1071 0.1014 0.1017 0.0996 0.1015 0.1018 0.1025 0.1007 0.1020 0.1009 0.1019

IX 3.4572 3.3194 3.3070 3.3030 3.2899 3.3109 3.2777 3.2753 3.2790 3.2758 3.3095
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Figure 7: Computational times using Algorithms 4.1-4.4 in (U7,C7).
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5.2.2 The relationship between computational times and thecardinalities of object sets and cover-
ings

In Figure 11, the average times of the incremental and non-incremental algorithms rise monotonically

with the increase of the cardinalities of object sets and coverings. We also see that the incremental al-

gorithms perform always faster than the non-incremental algorithms in all experiments, and the average

times of the incremental algorithms are much smaller than those of the non-incremental algorithms. More-

over, the speed-up ratios of times by using the non-incremental algorithms are higher than the incremental

algorithms with the increasing cardinalities of object sets and coverings. Especially, we observe that there

exists little influence of the cardinalities of object sets and coverings on computing the second lower and

upper approximations of sets by using Algorithm 4.2.

All experimental results demonstrate that Algorithms 4.2 and 4.4 are more effective to computing

the second and sixth lower and upper approximations of sets in dynamic covering approximation spaces.

In the future, we will improve the effectiveness of Algorithms 4.2 and 4.4 and test them on large-scale

dynamic covering approximation spaces.

6 Attribute reduction of dynamic covering decision information systems

In this section, we employ examples to illustrate that how tocompute type-1 and type-2 reducts of

covering decision information systems.

Example 6.1 Let (U,D ∪ U/d) be a covering decision information system, whereD = {C1,C2,C3,C4},

C1 = {{x1, x2, x3, x4}, {x5}}, C2 = {{x1, x2}, {x3, x4, x5}}, C3 = {{x1, x2, x5}, {x3, x4}}, C4 = {{x1, x2}, {x3, x4},

{x5}}, U/d = {{x1, x2}, {x3, x4, x5}}. By Definitions 2.4 and 2.5, we obtain
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∏
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Table 10: Computational times using Algorithms 4.1-4.4 in (U8,C8).
Algorithm 1 2 3 4 5 6 7 8 9 10 t

NIS 33.2714 33.3024 33.2390 33.2370 33.3127 33.3602 33.3527 33.2599 33.4496 33.3485 33.3133

NIX 39.0763 39.0729 39.1256 39.1677 39.1382 39.5114 39.2732 38.9632 39.1487 38.8493 39.1327

IS 0.1267 0.1243 0.1293 0.1242 0.1248 0.1239 0.1259 0.1234 0.1226 0.1284 0.1254

IX 6.1013 5.3888 5.3412 5.3710 5.2641 5.3158 5.3229 5.3422 5.2858 5.4398 5.4173
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Figure 8: Computational times using Algorithms 4.1-4.4 in (U8,C8).

Table 11: Computational times using Algorithms 4.1-4.4 in (U9,C9).
Algorithm 1 2 3 4 5 6 7 8 9 10 t

NIS 44.2060 43.5990 43.2590 44.3375 43.9165 43.6185 44.3864 44.4667 44.2301 45.2159 44.1236

NIX 50.1711 50.8559 50.4446 49.7286 50.6871 50.3282 50.5291 49.5770 50.0544 50.3550 50.2731

IS 0.2048 0.1611 0.1628 0.1620 0.1607 0.1607 0.1605 0.1612 0.1615 0.1615 0.1657

IX 6.1794 5.8323 5.8586 5.7428 5.8902 5.8318 5.8949 5.7688 5.7606 5.8051 5.8564
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Figure 9: Computational times using Algorithms 4.1-4.4 in (U9,C9).
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Table 12: Computational times using Algorithms 5.1-5.8 in (U∗1,C
∗
1 ), where|U∗1| = 625 and|C ∗1 | = 20.

Algorithm 1 2 3 4 5 6 7 8 9 10 t

NIS 55.6793 55.8107 55.6728 55.9174 55.5917 58.1981 59.1824 56.0537 55.7757 55.5664 56.3448

NIX 64.8043 65.7104 65.2075 64.5169 64.7856 64.7118 65.0349 64.4148 64.7802 64.3155 64.8282

IS 0.2716 0.1941 0.1944 0.1924 0.1938 0.1956 0.1936 0.1917 0.1947 0.1948 0.2017

IX 8.3148 7.6287 7.3082 7.9581 7.2058 7.4084 7.1585 7.2874 7.1620 7.2413 7.4673
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Figure 10: Computational times using Algorithms 4.1-4.4 in(U10,C10).
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Figure 11: Computation times using Algorithms 4.1-4.4.
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By Definition 2.6, we have the second and sixth lower and upperapproximations of decision classes

as follows:

XS H(D1) = Γ(D) · XD1

=
[

1 1 1 1 1
]

;

XS L(D1) = Γ(D) ⊙ XD1

=
[

0 0 0 0 0
]

;

XS H(D2) = Γ(D) · XD2

=
[

1 1 1 1 1
]

;

XS L(D2) = Γ(D) ⊙ XD2

=
[

0 0 0 0 0
]

;

XXH(D1) = Γ(D) · XD1

=
[

1 1 0 0 0
]

;

XXL(D1) = Γ(D) ⊙ XD1

=
[

1 1 0 0 0
]

;

XXH(D2) = Γ(D) · XD2

=
[

0 0 1 1 1
]

;

XXL(D2) = Γ(D) ⊙ XD2

=
[

0 0 1 1 1
]

.

To construct type-1 and type-2 reducts, we have that

Γ(D/C4) · XD1 = XS H(D1);

Γ(D/C4) ⊙ XD1 = XS L(D1);

Γ(D/C4) · XD2 = XS H(D2);

Γ(D/C4) ⊙ XD2 = XS L(D2);
∏

(D/C4) · XD1 = XXH(D1);
∏

(D/C4) ⊙ XD1 = XXL(D1);
∏

(D/C4) · XD2 = XXH(D2);
∏

(D/C4) ⊙ XD2 = XXL(D2);

To perform the above process continuously, we have that{C1,C3} is type-1 and type-2 reducts of

(U,D ∪ U/d).

We employ an example to illustrate that how to construct type-1 and type-2 reducts of dynamic cov-

ering decision information systems as follows.
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Example 6.2 (Continuation of Example 6.1) Let(U,D∗ ∪ U/d) be a covering decision information sys-

tem, whereD∗ = {C ∗1 ,C
∗
2 ,C

∗
3 ,C

∗
4 }, C ∗1 = {{x1, x2, x3, x4}, {x5}}, C ∗2 = {{x1, x2}, {x3, x4, x5}}, C ∗3 =

{{x1, x2, x3, x5}, {x4}}, C ∗4 = {{x1, x2}, {x3, x4}, {x5}}, U/d = {{x1, x2}, {x3, x4, x5}}. By Theorems 3.2 and

3.4, we obtain

Γ(D∗) =
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∏
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.

By Definition 2.6, we have the second and sixth lower and upperapproximations of decision classes

as follows:

XS H(D1) = Γ(D∗) · XD1

=
[

1 1 1 1 1
]

;

XS L(D1) = Γ(D∗) ⊙ XD1

=
[

0 0 0 0 0
]

;

XS H(D2) = Γ(D∗) · XD2

=
[

1 1 1 1 1
]

;

XS L(D2) = Γ(D∗) ⊙ XD2

=
[

0 0 0 0 0
]

;

XXH(D1) = Γ(D∗) · XD1

=
[

1 1 0 0 0
]

;

XXL(D1) = Γ(D∗) ⊙ XD1

=
[

1 1 0 0 0
]

;

XXH(D2) = Γ(D∗) · XD2

=
[

0 0 1 1 1
]

;

XXL(D2) = Γ(D∗) ⊙ XD2

=
[

0 0 1 1 1
]

.
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To construct type-1 and type-2 reducts, we have that

Γ(D∗/C ∗4 ) · XD1 = XS H(D1);

Γ(D∗/C ∗4 ) ⊙ XD1 = XS L(D1);

Γ(D∗/C ∗4 ) · XD2 = XS H(D2);

Γ(D∗/C ∗4 ) ⊙ XD2 = XS L(D2);
∏

(D∗/C ∗4 ) · XD1 = XXH(D1);
∏

(D∗/C ∗4 ) ⊙ XD1 = XXL(D1);
∏

(D∗/C ∗4 ) · XD2 = XXH(D2);
∏

(D∗/C ∗4 ) ⊙ XD2 = XXL(D2);

To perform the above process continuously, we have that{C ∗1 ,C
∗
3 } is a type-1 reduct of(U,D∗∪U/d),

and{C ∗1 ,C
∗
2 ,C

∗
3 } is a type-2 reduct of(U,D∗ ∪ U/d).

7 Conclusions

Knowledge reduction of covering information systems have attracted more attention of researchers.

In this paper, we have introduced incremental approaches tocomputing the characteristic matrices of dy-

namic coverings when revising attribute values. We have presented the non-incremental and incremental

algorithms for computing the second and sixth lower and upper approximations of sets and compared the

computational complexities of the non-incremental algorithms with those of incremental algorithms. We

have tested the incremental algorithms on dynamic coveringapproximation spaces. Experimental results

have been employed to illustrate that the incremental approaches are effective to compute approximations

of sets in dynamic covering approximation spaces. We have demonstrated that how to conduct knowledge

reduction of dynamic covering information systems with theincremental approaches.

In practical situations, there exist many types of dynamic covering information systems and dynamic

covering approximation spaces. In the future, we will introduce more effective approaches to constructing

the characteristic matrices of these types of dynamic coverings and perform knowledge reduction of these

types of dynamic covering information systems.
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