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Abstract. Knowledge reduction of dynamic covering information syssanvolves with the
time in practical situations. In this paper, we provide @mental approaches to computing
the type-1 and type-2 characteristic matrices of dynami@igogs because of varying at-
tribute values. Then we present incremental algorithmsogtructing the second and sixth
approximations of sets by using characteristic matrices.eviiploy experimental results to
illustrate that the incremental approaches dfective to calculate approximations of sets in
dynamic covering information systems. Finally, we perfdamowledge reduction of dynamic
covering information systems with the incremental appneac
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1 Introduction

Covering approximation spaces, as generalizations adiclsapproximation spaces based on equiv-
alence relations, have attracted more attentions, andaa deal of approximation operators have been
proposed for knowledge reduction of covering approximmatpaces. Nowadays, covering-based rough
set theory[[20—-23, 217, 29,130,/134-+-37] are being enriched thighdevelopment of computer sciences and
related theories.

To our best knowledge, there exist many lower and upper appetion operators for covering ap-
proximation spaces, and their basic properties are imadsi concretely by researchers. Especially,
Wang et al.[[26] studied the second and sixth lower and uppgroaimation operators of covering ap-
proximation spaces and proposedtketive approaches to computing the second and sixth lovaengper
approximations of sets by using characteristic matricespractice, dynamic covering approximation
spaces are variations of the time. For example, two spstsial and B decided the quality of five cars
U = {A B,C, D, E} as follows: good = {A,C}, middle = {C,E},bad = {B, D, E}, and (U, ¥) is a cover-
ing approximation space, whe# = {good middle bad}. With the variation of the time, the specialists
find that the quality ofC is very bad, andl, ¥) is revised into dynamic covering approximation space
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(U, €"), where®™ = {good, middle, bad'}, good = {A}, middle = {E} andbad" = {B,C,D, E}. Ac-
cordingly, the characteristic matrice ®f changes into that 6. Since it is time-consuming to compute
the characteristic matrice in large-scale covering agpraton space, it costs more time to construct
the characteristic matrice of large-scale dynamic cogsriior computing approximations of sets. Until
now, Lang et al.[[4,55] presented incremental approachesrtgpating approximations of sets in dynamic
covering approximation spaces, in which object sets aratians of the time. But little attention has
been paid to dynamic covering approximation spaces, inhwbiements of coverings are variations of
the time. Therefore, it is of interest to study how to compagproximations of sets in dynamic covering
approximation spaces when varying attribute values.

Many researchers[[1+3,6=419]24,25( 28, 29, 31-33] havetigaded knowledge reduction of dynamic
information systems with incremental approaches. For gkanwhen coarsening and refining attribute
values and varying attribute sets, Chen etlal. [1-3] cootduapproximations of sets which provides an
effective approach to knowledge reduction of dynamic inforomasystems. Based on characteristic rela-
tions, Li, Ruan and Song[9] extended rough sets for incréatigrupdating decision rules which handles
dynamic maintenance of decision rules in data mining. Lialef11-t13] presented incremental ap-
proaches for knowledge reduction of dynamic informatiostegms and dynamic incomplete information
systems. From the perspective of knowledge engineeringhaighborhood systems-based rough sets,
Yang, Zhang, Dou and Yang [28] studied the neighborhoodesydbr knowledge reduction of incom-
plete information systems. Zhang, Li and Chenl [33] preskmatrice-based approaches for computing
the approximations, positive, boundary and negative reggin composite information systems. lllus-
trated by existing researches, the incremental approarkeffective to conduct knowledge reduction of
dynamic information systems, which reduces the computdiines greatly. It motivates us to compute
approximations of sets in dynamic covering approximatipacgs and knowledge reduction of dynamic
covering information systems by using incremental apgreac

The purpose of this paper is to further study knowledge réoluof dynamic covering information
systems when varying attribute values. First, we invesigiuctures of the characteristic matrices of dy-
namic covering approximation spaces when varying atgilvalues and present incremental approaches
to computing characteristic matrices of dynamic coverinfe employ several examples to illustrate that
the process of calculating the characteristic matricesriplfied greatly by utilizing the incremental ap-
proaches. Second, we provide incremental algorithms fosteacting the characteristic matrices-based
approximations of sets in dynamic covering approximatjosices when varying attribute values. We also
compare the time complexities of the incremental algorghwmith those of non-incremental algorithms.
Third, we perform experiments on ten dynamic covering agipration spaces generated randomly. The
experimental results illustrate that the proposed aphedare &ective to calculate approximations of
sets with respect to the variation of attribute values. \We amploy examples to show that how to conduct
knowledge reduction of dynamic covering information sgsevith the incremental approaches.



The rest of this paper is organized as follows: Section Zlignieviews the basic concepts of covering-
based rough set theory. In Section 3, we introduce increshapproaches to computing the characteristic
matrices of dynamic coverings when varying attribute velugection 4 presents non-incremental and in-
cremental algorithms of calculating the second and fiftheloand upper approximations of sets by using
the characteristic matrices. Section 5 performs expeftisnenshow that the incremental approaches are
effective to compute approximations of sets in dynamic cogegipproximation spaces. Section 6 is de-
voted to knowledge reduction of dynamic covering informatsystems with the incremental approaches.
We conclude the paper in Section 7.

2 Preliminaries

A brief summary of related concepts in covering-based raah is given in this section.

Let U be a finite universe of discourse, ardis a family of subsets df). If none of elements o¥
is empty and J{CIC € ¥} = U, then¥ is referred to as a covering &f. In addition, U, %) is called a
covering approximation space%f is a covering olU.

Definition 2.1 [26] Let U = {X1, Xo, ..., Xa} be a finite universe, and = {C1,C,, ..., Cy} a covering of
U. For any XC U, the second, fifth and sixth upper and lower approximatiohX with respect t¢&’,
respectively, are defined as follows:

(1) The second upper and lower approximations of X:
SHyX)=| JiICe®1CnX#0}, SLe(X) = [SH/(XI
(2) The fifth upper and lower approximations of X:
IHg(X) = (xe U INOX) N X #0}, ILg(X)={xeU]|NX CX};
(3) The sixth upper and lower approximations of X:
XHy(X) = U{N(x) IN(X) N X #0}, XLg(X)= U{N(x) I N(X) € X}

Definition 2.2 [26] Let ¥={C;,...,Cn} be a family of subsets of a finite setlk, ..., Xn}. We define
1, i € Cj,
Mg = (&j)nxm, Where & = { 0, Q Z C}.

Definition 2.3 [26] Let U = {x1,.... X}, A € U. We define the characteristic function & =
1, X €A, .

T — —_—
[aa & . . . & ] ,Wherea—{ 0 xéA i=1,---,n
Definition 2.4 [26] Let U = {xq, Xo, ..., Xn} be a finite universeg’ = {C4, C, ..., Ci} a covering of U, and
Mg = (&j)nxm the matrice representation &f. ThenI'(¢) = Mg - M; = (bjj)nxn is called the type-1

characteristic matrix of¢’, where & = { (1) Q ;8; and by = /i, (ai - aj).
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Definition 2.5 [26] Let U = {x1, Xo, ..., Xy} be a finite universeg’ = {C4, Cy, ..., C;n} a covering of U, and
My = (aij)nxm the matrice representation &f. Then[](%) = My © M. = (Gij)nxn is called the type-2
characteristic matrice of’, where ¢ = AL, (aj — aik + 1).

By Definitions 2.4 and 2.5, the second and fifth lower and upp@roximation operators are axiom-
atized equivalently as follows.

Definition 2.6 [26] Let U = {x1, Xo, ..., Xy} be a finite universeg’ = {C4, Cy, ..., C;n} a covering of U, and
Xx the characteristic function of X in U. Then

Xshx) =T(%) - Xx, Xsx) =T(€) © Xx; Xinp = 1—[(%) “Xx, XL = n(%) O Xx.

Definition 2.7 [4] Let (U, 2 U U/d) be a covering decision information system, where= {%i|i € I},
U/d = {Djli € J}, 1 and J are indexed sets. We defifile C & as the type-1 reduct ¢fJ, 2 U U/d) if it
satisfies

1 I(2) - Xp, =T(2) - Xp,,T(2) © Xp, =T(Z) © Xp,, Vi € J;

@QTI(2) Xp, #T(Z) - Xp,,[(2) 0 Xp, # [(#') 0 Xp,,VZ c 2.

Definition 2.8 [4] Let (U, Z U U/d) be a covering decision information system, where= {%i|i € I},
U/d = {Djli € J}, 1 and J are indexed sets. We defitgé C & as the type-2 reduct ¢fJ, 2 U U/d) if it
satisfies

D) T1(2) - Xp, = [I(2) - Xp,, [1(Z) © Xp, = [[(¥) © Xp,, Vi € J;

@ T1(2) - Xp, # [I(Z) - Xp,, [1(2) © Xp, # [I(Z¥) 0 Xp, VP c 2.

Definition 2.9 [26] Let A = (aj)nxm and B= (bjj)nxm be two matrices. We define+AB = (aij + bij)nxm
forl<i<nl<j<m.

3 Incremental approaches to computing approximations of g8

In this section, we present incremental approaches to ctingpiiie second and fifth lower and upper
approximations of sets when revising attribute values.

Definition 3.1 (Dynamic covering approximation space) L&t ¥) and (U, €*) be covering approxi-
mation spaces, where £{Xy, X, ..., Xa}, €'={C1,Co, ...,Cn}, €*={C;,C;,...,Cp}, and G=Cj — {x} or
Cr=Ci U {x} when revising the attribute value of x U. Then(U,¢™) is called a dynamic covering
approximation space. In additiorg™ is called a dynamic covering.

In practice, revising attribute values will result|i#i*| < |, |€*| = || and|€ ™| > |%]. In this work,
we only discuss the situation th&t*| = |¢’| when revising attribute values of an object.



Below, we discuss the relationship betwdé(f¥’) andI'(¥*). For convenience, we denoM, =
(aij)nxm, Mg = (bij)nxm [(%) = (Cij)n><n andI'(¢*) = (dij)nxn-

Theorem 3.2 Let (U, ) be a dynamic covering approximation space(df%), I'(¥) andT'(¢*) the
type-1 characteristic matrices & and %™, respectively. Then

[(¢") = [(%) + AT (%)

where
0 o & T g
AT(%) = dkl dk2 . dkk . dkn ;
0 o ... dnk 0
dj = di=[ba be - bam]-[by by -+ bmj]"-cy.

Proof. By Definition 2.4,I'(¥") andI'(¢™*) are presented as follows:

[(®) = Mg M

a1 a2 - am a1 2 - Qm T
_ | @1 @2 -+ @m | | @1 a2 - &m
L @n1 @2 -+ 8mm anl @2 °° @mm
[ C11 Ci2 -+ Cip
_ | Ca C2 - Con
l Ch1 C2 -+ Chn
[(€") = Mg ML
by b2 - bim b1 bz -+ bim |’
_ | P2r bz e bom | | P21 b2 - bom
L bnl bn2 bnm bnl bn2 bnm
[ dig dip oo+ dig
_ | G dp - dp
L dnl dn2 dnn

By Definition 2.4, we have;j = d;j fori # k, j # k sincea;; = byj; fori # k. To computd’(¢™*) on the
basis ofl'(¢), we only need to computeli{ )=k 1<j<n) and €hj)(i<i<n j=k. Sincel(¢™*) is symmetric, we
only need to compute(j) -k 1<j<n). In other words, we need to comput&(%’), where

o 0 a0
ACE) = g oy oo e |
0 0 - d - 0
d = di=[ba be -+ b ][ by by - bmj ] —cg
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Therefore, we have that
I[(€¢*) =T(¥) + AI'(¥).0

The following example is employed to show the process of ttonasng approximations of sets by

Theorem 3.2.

Example 3.3 Let U = {x1, X2, X3, X4}, € = {C1,C,C3} and €™ = {C},C5,C3}, where G = {Xg, X4},
Ca = {X1, %2, Xa}, C3 = {X3, Xa}, C] = {X1, X3, Xa}, C; = {X1, X2, X3, Xa}, C3 = {xq}, and X = {x3, X4}. By
Definition 2.4, we first have that

(%) = Mg Mg

= (Cij)axa

RPORRFR RPOOR
S —
’%
ROOR
RPORR
PR, OO

RPORR RPORR
PRPOO RPROO

RPRRR
| S —

Second, we denofg¢™) = (dij)axs. By Theorem 3.2, we get that

[dy dip d33 d3] = [1 1 O]-Mg.—[Car Ca2 Caz Caa |
1 011
- [1 1 0]-[1 11 11_[0 01 1]
0 0 0 1
- [1 11 1]-[00 1 1]
—[110 0]

[dis d§3 d§3 df13] = [d§1 d§2 d§3 d§4 ]-

By Theorem 3.2, we have that

0 0 d O
0 0 d 0
MO =y o
L d43
0 0 1 0
~loo1o
- 11 0 0}
|0 0 0O




Thus, we obtain that

NG

(%) + AT(¥)
1

(o) ol
(o) el

OOkrF
[eeolole)
—_—

RPRRR RPORR
RPRRR PROO

RPRRR RRRR

RPRRR RPOR

By Definition 2.6, we have that

XsHx) [(¢") - Xx;

x

RPFRLOO
[ —

P RPRRR
P RPRRR
_—
= ;
I

Il
-
—

Xsyx) =

O]
PR OO

O RrrRRQR P RPRERR
*

O RrRRR T
©

o I—‘I—‘HH>2< P RPRRPR

O RRRR

I
—
—

—

Therefore, S KIX) = {X1, X2, X3, X4} and S I(X) = 0.

In Example 3.3, we only need to compWt€(%’) by Theorem 3.2. But there is a need to compute all
elements iM'(%¢*) by Definition 2.4. Therefore, the computing time of the smental algorithm is less
than the non-incremental algorithm.

Subsequently, we discuss the constructior] df6*) based on[(¥). For convenience, we denote
[1(%) = (&))nxn @NdTT(€™) = (fij)nxn-

Theorem 3.4 Let (U, €*) be a dynamic covering approximation spacgWf%), [1(¥) and [1(¢*) the
type-2 characteristic matrice &f and ¢™*, respectively. Then

[l&)=]]@ +a]]®



where

O 0 --- f~ ... 0
[ @ e fe o Tk o T
0 0 £ 0
[fa fo - Tl = [ba be - bim]oMg. -[@a @ = @& l;
[ fi f3 - f ]’ = Mg o[ b ba -+ bmc]"—[ex ex -+ el

Proof. By Definition 2.5,[](%) and[](¢*) are presented as follows:

[[#) = MgoMm]
[ a11 @12 - Am a; A2 - Qm T
- | G @2 - &m || %1 2 - dm
[l @1 A2 -+ Anm a1 @n2 - @nm
[ €11 €12 -+ €1
_ e e o em
L €1 €2 - €
[]&) = Meom
F by b2 oo bim by bz -+ bim 1"
_ | ber P22 e bom | Jf b21 D22 oo bom
L bnl bn2 bnm bnl bn2 bnm
[ fi1 fi2 oo fip
_ | fa f2 oo fa
L 1:nl fn2 1:nn

By Definition 2.5, we have; = fjj fori # k, ] # ksincea;; = byj; fori # k. To compute[](€™) on
the basis of [ (%), we only need to computefi() - 1<j<n) and (fij)(1<i<n j=k)- In other words, we need to
computeA (%), where

o o g
IO =T e s )
0 0 f:k 0
[fo fo - f0] = [ba be - bm]oML -[@a @ - @anl;
[ fh fa - fal” = Mg o[ bx ba - b -[ex ex - en].

Therefore, we have that

[l&)=]]@ +a] |0
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The following example is employed to show the process of toasng approximations of sets by
Theorem 3.4.

Example 3.5 Let U = {x1, X2, X3, X4}, € = {C1,C,C3} and ¢ = {C},C5,C3}, where G = {Xg, X4},
Ca = {X1, %2, Xa}, C3 = {X3, Xa}, C] = {X1, X3, Xa}, C5 = {X1, Xz, X3, Xa}, C3 = {Xq}, and X = {x3, X4}. By
Definition 2.5, we first have that

[ )

My © M,

= (&j)axa
r 1

RPOOR
RPORR
PROO

OORFrRO FrROREF
OrOO FrPrFrOO

OORFrREF FrPOO
N

Second, we denofg (6*) = (fij)axa. By Theorem 3.4, we get that

[ f5 f3 fi3 f3,] = [1 1 OJoMl.—[en e e ey |

1107
010
:[110]@110—[0011]
111
= [1011]-[0 0 1 1]
= [100 0];
110
[ T3 T35 T35 Tzl = l(l) i 8 ©[1 1 0] [ e es e €]
111
=[1110]"-[0 0 1 0]
=[1 10 0].
By Theorem 3.4, we have that
0 0 f; O
81 1(3)2 33 %4
- 1:43 :
0 0 1 0
o010
- 1 0 0 O]}
| 0O 0 0 O




Therefore, we obtain that

[ ]

[ &) +a] @)
0 17

1 0 0010
11101 0010
= loo0o 11| 1000

000 1] O OOO

1 0 1 1)
1111
=110 1 1|

|0 0 0 1]

By Definition 2.6, we have that
Xswx = | @)X
101 17710
111 1]]o0
= 1101 1|1
000 1] [1
= [111 1],
Xswg = | |@)exx
101 1 0
11111 0
= ]101 1|91
0001 1
= [0 00 1],

Therefore, S X) = {Xq, X2, X3, X4} and S I(X) = {Xa}.

In Example 3.5, we only need to[](%¥) by Theorem 3.4. But there is a need to compute all elements
in [1(¢™) by Definition 2.5. Therefore, the computing time of the gmental algorithm is less than the
non-incremental algorithm.

4 Non-incremental and incremental algorithms of computingapproxima-
tions of sets with varying attribute values

In this section, we present non-incremental and increrhatdarithms of computing the second and
sixth lower and upper approximations of sets with varyirtglaite values.

In Algorithm 4.1, the time complexity of Step 3 @(mr?); the time complexity of step 4 i©(2n?).
The total time complexity i©O((m + 2)n?). In Algorithm 4.2, the time complexity of Step 4 ®&(nm);
the time complexity of Step 6 i©(n); the time complexity of Step 7 i®(n); the time complexity of
Step 8 isO(2n?). The total time complexity i©(2n? + nm+ 2n). FurthermoreQ((m + 2)r?) is the time
complexity of the non-incremental algorithm. Thus the émental algorithm is moreffective than the
non-incremental algorithm.
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Algorithm 4.1: Non-incremental algorithm of computing the second lowet apper approxima-
tions of sets(NIS)

Input: (U,%*)andX C U.
Output: XsHx) andXs yx).
1 begin
2 ConstructMy- based or¢™;
3 | Computel(¢*) = Mg - M_.;
4 ObtainXs HX) = F(%*) - Xx andXg LX) = F(%*) O Xx.
5 end

Algorithm 4.2: Incremental algorithm of computing the second lower anceupypproximations of
sets(I1S)

Input: 1. (U, %), T(¥), (U,€*), X C U.
Output: XsHx) andXs yx).

1 begin

2 ConstructMZ =(bij )nxm based ore™;

3 Denoterowx=[by1, bko, ..., bk

4 ComputeArow=rowy - MJ..;

5 LetI'(¢)=I'(%);

6 Setkth row of I'(¢™*) asArow;

7 | Setkth col of I'(¢*) as (Arow)";

8 ObtainXs Hx)=I'(¢") - Xx andXs x)=I'(¢") © Xx.
9 end

Algorithm 4.3: Non-incremental algorithm of computing the sixth lower ampger approximations
of sets(NIX)

Input: (U,%*)andX C U.
OUtpUtZ XXH(X) andXXL(x).
1 begin
2 ConstructM+ based or¢™;
3 | Compute[](¢*) = Mg © M_.;
4 dObtainXXH(x) = [1(%") - Xx andXXL(x) = [1(%*) © Xx.
5 en

In Algorithm 4.3, the time complexity of Step 3 &(mr?), the time complexity of Step 4 i©(n?).
The total time complexity i©((m+ 2)n?). In Algorithm 4.4, the time complexity of Step 4@(nm); the

time complexity of Step 6 i©(nm); the time complexity of Step 8 i©(n); the time complexity of Step

9 is O(n); the time complexity of Step 10 ©(2n?). The total time complexity i©(2n? + 2nm + 2n).

FurthermoreQ((m+ 2)n?) is the time complexity of the non-incremental algorithnu$ the incremental

algorithm is more fective than the non-incremental algorithm.
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Algorithm 4.4: Incremental algorithm of computing the sixth lower and upggproximations of
sets(IX)
Input: (U, %), [1(¥), (U,€*) andX C U.
Out_put: XXH(X) andXXL(x).
1 begin
ConstructMZ, =(bjj )nxm based ore™;
Denoterowk=[bx1, bio, ..., bkml;
ComputeArowy=rowi ® ML ;
Denotecolc=[bi, ba, .., brmid T;
ComputeAcoly=Mg- © coly;
Let [1(¢7)=I1(%);
Setkth row of [[(€*) asArow;
Setkth col of [](%*) asAcok;
10 ObtainXXH(x):H(%*) - Xx andXXL(x):H(%*) o Xx.
11 end

© 00 N0 B~ WDN

5 Experimental analysis

In this section, we perform the series of experiments talasdi the &ectiveness of Algorithms 4.2
and 4.4 for computing approximations in dynamic coveringrapimation spaces when varying attribute
values.

5.1 Experimental environment

Since transforming information systems into covering agnation spaces takes a great deal of time,
and the main objective of this work is to illustrate thfB@ency of the Algorithms 4.2 and 4.4 in computing
approximations of sets. To evaluate the performance oftklyos 4.2 and 4.4, we generated ten covering
approximation spaces)(, ;) for the experiment, wheriej = 1,2, 3, ..., 10. We outline all these covering
approximation spaces in Table 1, whédg denotes the number of objectslily and|%;| is the cardinality
of %i.

All computations were conducted on a PC with a Inter(R) Cov#)(i5-4200M CPU @ 2.50 GHZ and
4 GB memory, running 64-bit Windows 7 Service Pack 1. Thewsnfe used was 64-bit Matlab R2013b.
Details of the hardware and software are given in Table 2.

5.2 Experimental results

5.2.1 Computational times in dynamic covering approximatbn spaces

In this subsection, we apply Algorithms 4.1-4.4 to the convgapproximation spacel(, €;), where
i=123,..,10, and compare the computing times by using Algorithms Adl4a3 with those of Algo-
rithms 4.2 and 4.4, respectively.

First, we calculatd(%;) and [1(%;) by Definitions 2.4 and 2.5, respectively. We also obtain the
dynamic covering approximation spadg;(%;") when revising attribute values o, where anoC]? =

12



Table 1: Covering approximation spaces.

No. Name Uil ||
1 U1, %) 2000 100
2 Uz, %) 4000 200
3 (U3, 63) 6000 300
4 (Ua, 64) 8000 400
5 (Us, 65) 10000 500
6 (Us, 65) 12000 600
7 U7,%7) 14000 700
8 (Us, %3) 16000 800
9 (Ug, %o) 18000 900
10 U10, ¢10) 20000 1000

Table 2: The experimental environment.

No. Name Model Parameters
1 CPU Inter(R) Core(TM) i5-4200M 2.50 GHz
2 Memory ADAT DDR3 4G
3 Hard disk SATA 1T
4 System Windows 7 64bit
5 Platform Matlab R2013b 64bit
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Cj U {xJ orC;j, WhereC]? € ¢ andCj € %j. Subsequently, we g&(%;") and[](%;") by Algorithms 4.1
and 4.3, respectively.

Second, we calculats H(X), S L(X), XH(X) and XL(X) based od(4") and[](%;") for X c U, re-
spectively. The time of computing H(X), S L(X), XH(X) andXL(X) is shown in Tables 3-12. Concretely,
NIS andNIX stands for the time of constructing the second and sixthil@amnd upper approximations of
sets by Algorithms 4.1 and 4.3 in Tables 3-12. Additionalg obtainl'(4;") and[(%;") by Algorithms
4.2 and 4.4, respectively. Then the time of comput8ig(X), S L(X), XH(X) and XL(X) for X € U; is
shown in Tables 3-12. Concretel\g andlX stands for the time of computing the second and sixth lower
and upper approximations of sets by Algorithms 4.2 and 4Falres 3-12.

Third, we conduct all experiments ten times and show thdteeisuTables 3-12 and Figures 1-10. We
see all algorithms are stable to compute approximationstsfis all experiments. Concretely, we observe
that the computing times by using the same algorithm are stlthe same in Tables 3-12. Consequently,
we see that the times of computing approximations of setssiiyguncremental algorithms are much
smaller than those of the non-incremental algorithms. gufes 1-10, we also observe that the computing
times of Algorithms 4.2 and 4.4 are far less than those of Aflgans 4.1 and 4.3, respectively. Therefore,
the incremental algorithms are mofrestive to construct approximations of sets in the dynamiedog
approximation space, "), wherei = 1,2, ..., 10.

Remark: In Tables 3-12, the measure of time is in secortdagicates the average time of ten experi-
ments; In Figures 1-10,stands for the experimental numberXnAxis; In Figure 11,i refers to as the
covering approximation spac¥ji( %;) in X Axis; In Figures 1-11j is the computing time ify’ Axis.

Table 3: Computational times using Algorithms 4.1-4.4Uh (£1).

Algorithm 1 2 3 4 5 6 7 8 9 10 t
NIS  0.4578 0.4213 0.4279 0.4223 0.4271 0.4236 0.4235 0.426336 0.4273 0.4281
NIX  0.4681 0.4671 0.4636 0.4646 0.4668 0.4651 0.4651 0.468668 0.4720 0.4667
IS 0.0044 0.0026 0.0033 0.0040 0.0029 0.0028 0.0031 0.003028 0.0028 0.0032
IX 0.0351 0.0339 0.0333 0.0339 0.0340 0.0334 0.0340 0.038338 0.0333 0.0338
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Figure 1: Computational times using Algorithms 4.1-4.4UR (%7).

Table 4: Computational times using Algorithms 4.1-4.41h(%2).

Algorithm

1 2 3 4 5 6 7 8 9 10 t

NIS
NIX
IS
IX

1.8902 1.8452 1.8610 1.8203 1.8179 1.8257 1.8223 1.828294 1.8189 1.8353
2.0389 2.0437 2.0314 2.0237 2.0378 2.0331 2.0531 2.056583 2.0641 2.0440
0.0091 0.0118 0.0102 0.0100 0.0098 0.0127 0.0110 0.009@99 0.0096 0.0104
0.2035 0.2018 0.2013 0.2018 0.2034 0.1992 0.2018 0.200680¢ 0.2035 0.2016
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Figure 2: Computational times using Algorithms 4.1-4.4Un (%2).
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Table 5: Computational times using Algorithms 4.1-4.41hk(%3).

Algorithm 1 2 3 4 5 6 7 8 9 10 t
NIS  4.2030 4.1889 4.1905 4.1457 4.1446 4.1681 4.1518 4.14/8310 4.1604 4.1760
NIX  4.6993 4.7126 4.6838 4.6895 4.6941 4.7000 4.7025 4.64¥0D39 4.6939 4.6951
IS 0.0177 0.0210 0.0211 0.0199 0.0199 0.0199 0.0199 0.020200 0.0197 0.0200
IX 0.5259 0.5059 0.5076 0.5056 0.5089 0.5055 0.5106 0.508059 0.5078 0.5092

R e S Sk sl SLE L PSP Sy

>
o

Rt R R TRy papppprppappappes £ E EE L R R

I
T

w
o

w
T

=+=NIS

- =NIX

—e—Is
IX

N
o
T

N
T

Computational time(s)

=
o
T

-
T

ith experiment: |U|=6000,|C|=300

Figure 3: Computational times using Algorithms 4.1-4.4UR (%3).

Table 6: Computational times using Algorithms 4.1-4.41h(64).

Algorithm 1 2 3 4 5 6 7 8 9 10 t
NIS  7.5968 7.5550 7.7428 7.6536 7.6756 7.7031 7.6304 7.606118 7.7013 7.6475
NIX  8.6892 8.7967 8.8918 9.0384 8.7810 8.7764 8.6300 9.28%B24 8.6121 8.8130
IS 0.0428 0.0338 0.0350 0.0394 0.0378 0.0386 0.0345 0.03@346 0.0348 0.0366
IX 0.9813 0.9681 0.9694 0.9677 0.9669 0.9731 0.9654 0.9689848 0.9685 0.9694

Table 7: Computational times using Algorithms 4.1-4.41k(%5).
Algorithm 1 2 3 4 5 6 7 8 9 10 t
NIS 12.085611.966211.994411.920011.999211.9683 11.PB200811.881111.883911.9532
NIX 13.829013.656013.743013.7308 13.6831 13.6816 18.196794 13.8141 13.7338 13.7348
IS 0.0675 0.0530 0.0549 0.0537 0.0551 0.0537 0.0536 0.0528395 0.0540 0.0551
IX 1.6266 1.6193 1.6163 1.6138 1.6189 1.6057 1.6230 1.62B372 1.6211 1.6183
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Figure 5: Computational times using Algorithms 4.1-4.4i3,(65).

Table 8: Computational times using Algorithms 4.1-4.4lk,(€5).
Algorithm 1 2 3 4 5 6 7 8 9 10 t
NIS 17.884217.885818.080017.675317.594517.571019 1/@203617.541517.9582 17.8096
NIX 20.168420.1404 20.024220.0022 20.0277 20.0598 20.262560 21.6223 22.1194 20.4510
IS 0.0977 0.0748 0.0746 0.0744 0.0803 0.0727 0.0753 0.078338 0.0723 0.0770
IX 2.4011 2.3671 2.4204 2.3771 2.3679 2.3662 2.3737 2.368612 2.3692 2.3769
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Figure 6: Computational times using Algorithms 4.1-4.4kg,(65).

Table 9: Computational times using Algorithms 4.1-4.4lh,(¢7).
Algorithm 1 2 3 4 5 6 7 8 9 10 t
NIS 24.293624.320124.4603 25.2946 24.4922 24,5153 28 329792 24.6210 24.2059 24.5612
NIX 27.915428.204928.2523 28.2664 28.7698 28.2559 28.2821234 28.6467 29.2779 28.4125
IS 0.1071 0.1014 0.1017 0.0996 0.1015 0.1018 0.1025 0.100@20 0.1009 0.1019
IX 3.4572 3.3194 3.3070 3.3030 3.2899 3.3109 3.2777 3.272398 3.2758 3.3095
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Figure 7: Computational times using Algorithms 4.1-4.41R,(67).

18



5.2.2 The relationship between computational times and theardinalities of object sets and cover-
ings

In Figure 11, the average times of the incremental and noreinental algorithms rise monotonically
with the increase of the cardinalities of object sets ancedngs. We also see that the incremental al-
gorithms perform always faster than the non-incremengrghms in all experiments, and the average
times of the incremental algorithms are much smaller thasdlof the non-incremental algorithms. More-
over, the speed-up ratios of times by using the non-incréamhafgorithms are higher than the incremental
algorithms with the increasing cardinalities of objecssatd coverings. Especially, we observe that there
exists little influence of the cardinalities of object setsl @overings on computing the second lower and
upper approximations of sets by using Algorithm 4.2.

All experimental results demonstrate that Algorithms 4n#l 4.4 are more feective to computing
the second and sixth lower and upper approximations of setgriamic covering approximation spaces.
In the future, we will improve theféectiveness of Algorithms 4.2 and 4.4 and test them on lacgkes
dynamic covering approximation spaces.

6 Attribute reduction of dynamic covering decision information systems

In this section, we employ examples to illustrate that howdmpute type-1 and type-2 reducts of
covering decision information systems.

Example 6.1 Let (U, 2 U U/d) be a covering decision information system, where- {%1, ©», €3, €4},

61 = {{X1, X2, X3, X4}, {Xs}}, €2 = {{X1, X2}, {X3, X4, Xs}}, €3 = {{X1, X2, X5}, {X3, Xa}}, €4 = {{X1, X2}, {X3, Xa},
{xs}}, U/d = {{x1, X2}, {X3, X4, X5}}. By Definitions 2.4 and 2.5, we obtain

I'(2)

[ @

COORR RRRRER
COORR RRRRER
ORROO RRRRER
ORRFROO RRRRER
POOOO RRERE

Table 10: Computational times using Algorithms 4.1-4.4U,(%3).
Algorithm 1 2 3 4 5 6 7 8 9 10 t
NIS 33.271433.3024 33.239033.237033.3127 33.3602 33.352599 33.4496 33.3485 33.3133
NIX 39.076339.072939.1256 39.1677 39.1382 39.5114 32.283632 39.1487 38.8493 39.1327
IS 0.1267 0.1243 0.1293 0.1242 0.1248 0.1239 0.1259 0.123226 0.1284 0.1254
IX 6.1013 5.3888 5.3412 5.3710 5.2641 5.3158 5.3229 5.342858 5.4398 5.4173
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Figure 8: Computational times using Algorithms 4.1-4.4lk,(63).

Table 11: Computational times using Algorithms 4.1-4.4UR,(%5).
Algorithm 1 2 3 4 5 6 7 8 9 10 t

NIS 44.206043.599043.259044.337543.916543.6185 44 888667 44.230145.215944.1236
NIX  50.171150.855950.4446 49.7286 50.6871 50.3282 50.89%770 50.0544 50.3550 50.2731
IS 0.2048 0.1611 0.1628 0.1620 0.1607 0.1607 0.1605 0.16181% 0.1615 0.1657
IX 6.1794 5.8323 5.8586 5.7428 5.8902 5.8318 5.8949 5.76F806 5.8051 5.8564
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Figure 9: Computational times using Algorithms 4.1-4.4lk,(6).
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Table 12: Computational times using Algorithms 5.1-5.801,(¢7), where|U]| = 625 and%7| = 20.
Algorithm 1 2 3 4 5 6 7 8 9 10 t
NIS 55.679355.810755.672855.917455.591758.1981 59 8@P537 55.7757 55.5664 56.3448
NIX 64.804365.710465.207564.5169 64.7856 64.7118 65.6841148 64.7802 64.3155 64.8282
IS 0.2716 0.1941 0.1944 0.1924 0.1938 0.1956 0.1936 0.19194D 0.1948 0.2017
IX 8.3148 7.6287 7.3082 7.9581 7.2058 7.4084 7.1585 7.2814620 7.2413 7.4673
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Figure 10: Computational times using Algorithms 4.1-4.4URg, 610).
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By Definition 2.6, we have the second and sixth lower and ugpproximations of decision classes
as follows:
Iﬂ(g)‘XDl
=[11111];
Xsupy = I(Z2)eXp,
= [0 0 0 0 OJ;
Xsup, = I(2)-Xp,
=[11111];
Xsup,) = T(Z2)0Xp,
= [0 0 0 0 O]J;
Xxupy = T[(2)-Xp,
=[11 0 0 0];
Xxpy = T'(2)oXp,
=[11 0 0 0];
Xxupy) = I(2)-Xp,
= [0 011 1];
XxLp, = T'(2)0Xp,
[0 0 1 1 1].

XsHDy)

To construct type-1 and type-2 reducts, we have that

[(2/¢4) - Xp, = XsHpy;

I[(2/63) ©Xp, = Xsupy:

[(2/€4)- Xp, = Xswpy):

[(2/61) ©Xp, = Xsup,;

n(-@/%) ‘Xp, = XxH(D:

H(Q/%) ©Xp, = Xxupy:

n(-@/%) Xp, = XxH(D):

H(Q/%) ©0Xp, = Xxupy:

To perform the above process continuously, we have {Hats3} is type-1 and type-2 reducts of
(U, 2 uU/d).

We employ an example to illustrate that how to constructty/@ad type-2 reducts of dynamic cov-
ering decision information systems as follows.
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Example 6.2 (Continuation of Example 6.1) Lét, 2* U U/d) be a covering decision information sys-
tem, where7* = {47,%7.43.%,}, 7 = {{X1. X2, X3, Xah, {Xs}}, €5 = {{X1. %o}, {Xa, X4, Xs}}, G5 =
{X1, X2, X3, Xs}, {Xal}, €; = {{X1, X2}, {X3, Xa}, {Xs}}, U/d = {{X1, X2}, {X3, X4, Xs}}. By Theorems 3.2 and
3.4, we obtain

(77)

[ ]tz

COORR RRRRER
COORR RRRRER
COROO RRRRER
OO0 RRRRER
POOOO RRERE

By Definition 2.6, we have the second and sixth lower and ugpproximations of decision classes
as follows:

[(27) - Xp,

- [11111];
Xsypy = T(Z2")oXp,

- [00 0 0 0];
Xswp, = I(Z2")-Xp,

- [11 11 1];
XSI(DZ) = F(.@*)G(\’Dz

- [00 0 0 0]
Xxuoy = I(Z2%)-Xp,

_[1100 0]
Xxupy = T(Z2%)oXp,

_[1100 0]
XxHoy = I(Z7)-Xp,

_[00 1 1 1];
Xxup, = T(Z%)oXp,

_[00 11 1]

XsHpDy)
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To construct type-1 and type-2 reducts, we have that

(27 /6;) - Xp, XsHpDy);
[(7°/¢,)0Xp, = Xsupy:
[(2°)6,) - Xp, = XsHpy:
I(2°/6,)0Xp, = Xsupy:
n(-@*/(ﬁ) ‘Xp, = XxH(D:
H(Q*/%I)Gxol = XxLD.):
n(-@*/(ﬁ) Xp, = XxXH(D,):
n(g*/%I)GXDZ = XxuD,):

To perform the above process continuously, we have{#iaté7;} is a type-1 reduct oy, " U U/d),
and{¢;,%;,¢;} is atype-2 reduct ofy, 7* U U/d).

7 Conclusions

Knowledge reduction of covering information systems haweaeted more attention of researchers.
In this paper, we have introduced incremental approachesnputing the characteristic matrices of dy-
namic coverings when revising attribute values. We havegmied the non-incremental and incremental
algorithms for computing the second and sixth lower and uppproximations of sets and compared the
computational complexities of the non-incremental akponis with those of incremental algorithms. We
have tested the incremental algorithms on dynamic coveripgoximation spaces. Experimental results
have been employed to illustrate that the incremental @uhes areféective to compute approximations
of sets in dynamic covering approximation spaces. We hawmdstrated that how to conduct knowledge
reduction of dynamic covering information systems with itleremental approaches.

In practical situations, there exist many types of dynamigecing information systems and dynamic
covering approximation spaces. In the future, we will idtroe more fective approaches to constructing
the characteristic matrices of these types of dynamic aaygand perform knowledge reduction of these
types of dynamic covering information systems.
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