Knowledge reduction of dynamic covering decision information systems with varying attribute values

Mingjie Cai ${ }^{a}$
${ }^{a}$ College of Mathematics and Econometrics, Hunan University
Changsha, Hunan 410082, P.R. China

Abstract

Knowledge reduction of dynamic covering information systems involves with the time in practical situations. In this paper, we provide incremental approaches to computing the type- 1 and type- 2 characteristic matrices of dynamic coverings because of varying attribute values. Then we present incremental algorithms of constructing the second and sixth approximations of sets by using characteristic matrices. We employ experimental results to illustrate that the incremental approaches are effective to calculate approximations of sets in dynamic covering information systems. Finally, we perform knowledge reduction of dynamic covering information systems with the incremental approaches.

Keywords: Boolean matrice; Characteristic matrice; Dynamic covering approximation space; Dynamic covering information system; Rough set

1 Introduction

Covering approximation spaces, as generalizations of classical approximation spaces based on equivalence relations, have attracted more attentions, and a great deal of approximation operators have been proposed for knowledge reduction of covering approximation spaces. Nowadays, covering-based rough set theory [20-23, 27, 29, 30, 34-37] are being enriched with the development of computer sciences and related theories.

To our best knowledge, there exist many lower and upper approximation operators for covering approximation spaces, and their basic properties are investigated concretely by researchers. Especially, Wang et al. [26] studied the second and sixth lower and upper approximation operators of covering approximation spaces and proposed effective approaches to computing the second and sixth lower and upper approximations of sets by using characteristic matrices. In practice, dynamic covering approximation spaces are variations of the time. For example, two specialists A and B decided the quality of five cars $U=\{A, B, C, D, E\}$ as follows: good $=\{A, C\}$, middle $=\{C, E\}$, bad $=\{B, D, E\}$, and (U, \mathscr{C}) is a covering approximation space, where $\mathscr{C}=\{$ good, middle, bad $\}$. With the variation of the time, the specialists find that the quality of C is very bad, and (U, \mathscr{C}) is revised into dynamic covering approximation space
$\left(U, \mathscr{C}^{*}\right)$, where $\mathscr{C}^{*}=\left\{\right.$ good *, middle *, bad $\left.^{*}\right\}$, good $^{*}=\{A\}$, middle ${ }^{*}=\{E\}$ and bad $^{*}=\{B, C, D, E\}$. Accordingly, the characteristic matrice of \mathscr{C} changes into that of \mathscr{C}^{*}. Since it is time-consuming to compute the characteristic matrice in large-scale covering approximation space, it costs more time to construct the characteristic matrice of large-scale dynamic coverings for computing approximations of sets. Until now, Lang et al. [4, 5] presented incremental approaches to computing approximations of sets in dynamic covering approximation spaces, in which object sets are variations of the time. But little attention has been paid to dynamic covering approximation spaces, in which elements of coverings are variations of the time. Therefore, it is of interest to study how to compute approximations of sets in dynamic covering approximation spaces when varying attribute values.

Many researchers [$1-3,6-19,24,25,28,29,31,-33]$ have investigated knowledge reduction of dynamic information systems with incremental approaches. For example, when coarsening and refining attribute values and varying attribute sets, Chen et al. [1--3] constructed approximations of sets which provides an effective approach to knowledge reduction of dynamic information systems. Based on characteristic relations, Li, Ruan and Song [9] extended rough sets for incrementally updating decision rules which handles dynamic maintenance of decision rules in data mining. Liu et al. [11-13] presented incremental approaches for knowledge reduction of dynamic information systems and dynamic incomplete information systems. From the perspective of knowledge engineering and neighborhood systems-based rough sets, Yang, Zhang, Dou and Yang [28] studied the neighborhood system for knowledge reduction of incomplete information systems. Zhang, Li and Chen [33] presented matrice-based approaches for computing the approximations, positive, boundary and negative regions in composite information systems. Illustrated by existing researches, the incremental approaches are effective to conduct knowledge reduction of dynamic information systems, which reduces the computation times greatly. It motivates us to compute approximations of sets in dynamic covering approximation spaces and knowledge reduction of dynamic covering information systems by using incremental approaches.

The purpose of this paper is to further study knowledge reduction of dynamic covering information systems when varying attribute values. First, we investigate structures of the characteristic matrices of dynamic covering approximation spaces when varying attribute values and present incremental approaches to computing characteristic matrices of dynamic coverings. We employ several examples to illustrate that the process of calculating the characteristic matrices is simplified greatly by utilizing the incremental approaches. Second, we provide incremental algorithms for constructing the characteristic matrices-based approximations of sets in dynamic covering approximation spaces when varying attribute values. We also compare the time complexities of the incremental algorithms with those of non-incremental algorithms. Third, we perform experiments on ten dynamic covering approximation spaces generated randomly. The experimental results illustrate that the proposed approached are effective to calculate approximations of sets with respect to the variation of attribute values. We also employ examples to show that how to conduct knowledge reduction of dynamic covering information systems with the incremental approaches.

The rest of this paper is organized as follows: Section 2 briefly reviews the basic concepts of coveringbased rough set theory. In Section 3, we introduce incremental approaches to computing the characteristic matrices of dynamic coverings when varying attribute values. Section 4 presents non-incremental and incremental algorithms of calculating the second and fifth lower and upper approximations of sets by using the characteristic matrices. Section 5 performs experiments to show that the incremental approaches are effective to compute approximations of sets in dynamic covering approximation spaces. Section 6 is devoted to knowledge reduction of dynamic covering information systems with the incremental approaches. We conclude the paper in Section 7.

2 Preliminaries

A brief summary of related concepts in covering-based rough sets is given in this section.
Let U be a finite universe of discourse, and \mathscr{C} is a family of subsets of U. If none of elements of \mathscr{C} is empty and $\bigcup\{C \mid C \in \mathscr{C}\}=U$, then \mathscr{C} is referred to as a covering of U. In addition, (U, \mathscr{C}) is called a covering approximation space if \mathscr{C} is a covering of U.

Definition 2.1 [26] Let $U=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a finite universe, and $\mathscr{C}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ a covering of U. For any $X \subseteq U$, the second, fifth and sixth upper and lower approximations of X with respect to \mathscr{C}, respectively, are defined as follows:
(1) The second upper and lower approximations of X :

$$
S H_{\mathscr{C}}(X)=\bigcup\{C \in \mathscr{C} \mid C \cap X \neq \emptyset\}, \quad S L_{\mathscr{C}}(X)=\left[S H_{\mathscr{C}}\left(X^{c}\right)\right]^{c} ;
$$

(2) The fifth upper and lower approximations of X :

$$
I H_{\mathscr{C}}(X)=\{x \in U \mid N(x) \cap X \neq \emptyset\}, \quad I L_{\mathscr{C}}(X)=\{x \in U \mid N(x) \subseteq X\} ;
$$

(3) The sixth upper and lower approximations of X :

$$
X H_{\mathscr{C}}(X)=\bigcup\{N(x) \mid N(x) \cap X \neq \emptyset\}, \quad X L_{\mathscr{C}}(X)=\bigcup\{N(x) \mid N(x) \subseteq X\} .
$$

Definition 2.2 [26] Let $\mathscr{C}=\left\{C_{1}, \ldots, C_{m}\right\}$ be a family of subsets of a finite set $U=\left\{x_{1}, \ldots, x_{n}\right\}$. We define $M_{\mathscr{C}}=\left(a_{i j}\right)_{n \times m}$, where $a_{i j}= \begin{cases}1, & x_{i} \in C_{j}, \\ 0, & x_{i} \notin C_{j} .\end{cases}$

Definition 2.3 [26] Let $U=\left\{x_{1}, \ldots, x_{n}\right\}, A \subseteq U$. We define the characteristic function as $\mathcal{X}_{A}=$ $\left[\begin{array}{lllll}a_{1} & a_{2} & . & . & a_{n}\end{array}\right]^{T}$, where $a_{i}=\left\{\begin{array}{ll}1, & x_{i} \in A, \\ 0, & x_{i} \notin A .\end{array} \quad i=1, \cdots, n\right.$.

Definition 2.4 [26] Let $U=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a finite universe, $\mathscr{C}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ a covering of U, and $M_{\mathscr{C}}=\left(a_{i j}\right)_{n \times m}$ the matrice representation of \mathscr{C}. Then $\Gamma(\mathscr{C})=M_{\mathscr{C}} \cdot M_{\mathscr{C}}^{T}=\left(b_{i j}\right)_{n \times n}$ is called the type- 1 characteristic matrix of \mathscr{C}, where $a_{i j}=\left\{\begin{array}{ll}1, & x_{i} \in C_{j} ; \\ 0, & x_{i} \notin C_{j} .\end{array}\right.$ and $b_{i j}=\bigvee_{k=1}^{m}\left(a_{i k} \cdot a_{j k}\right)$.

Definition 2.5 [26] Let $U=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a finite universe, $\mathscr{C}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ a covering of U, and $M_{\mathscr{C}}=\left(a_{i j}\right)_{n \times m}$ the matrice representation of \mathscr{C}. Then $\Pi(\mathscr{C})=M_{\mathscr{C}} \odot M_{\mathscr{C}}^{T}=\left(c_{i j}\right)_{n \times n}$ is called the type-2 characteristic matrice of \mathscr{C}, where $c_{i j}=\bigwedge_{k=1}^{m}\left(a_{j k}-a_{i k}+1\right)$.

By Definitions 2.4 and 2.5, the second and fifth lower and upper approximation operators are axiomatized equivalently as follows.

Definition 2.6 [26] Let $U=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a finite universe, $\mathscr{C}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ a covering of U, and X_{X} the characteristic function of X in U. Then

$$
X_{S H(X)}=\Gamma(\mathscr{C}) \cdot \mathcal{X}_{X}, \mathcal{X}_{S L(X)}=\Gamma(\mathscr{C}) \odot \mathcal{X}_{X} ; \mathcal{X}_{I H(X)}=\prod(\mathscr{C}) \cdot \mathcal{X}_{X}, \quad \mathcal{X}_{I L(X)}=\prod(\mathscr{C}) \odot \mathcal{X}_{X}
$$

Definition $2.7[4] \operatorname{Let}(U, \mathscr{D} \cup U / d)$ be a covering decision information system, where $\mathscr{D}=\left\{\mathscr{C}_{i} \mid i \in I\right\}$, $U / d=\left\{D_{i} \mid i \in J\right\}, I$ and J are indexed sets. We define $\mathscr{P} \subseteq \mathscr{D}$ as the type-1 reduct of $(U, \mathscr{D} \cup U / d)$ if it satisfies
(1) $\Gamma(\mathscr{D}) \cdot \mathcal{X}_{D_{i}}=\Gamma(\mathscr{P}) \cdot \mathcal{X}_{D_{i}}, \Gamma(\mathscr{D}) \odot \mathcal{X}_{D_{i}}=\Gamma(\mathscr{P}) \odot \mathcal{X}_{D_{i}}, \forall i \in J$;
(2) $\Gamma(\mathscr{D}) \cdot \mathcal{X}_{D_{i}} \neq \Gamma\left(\mathscr{P}^{\prime}\right) \cdot \mathcal{X}_{D_{i}}, \Gamma(\mathscr{D}) \odot \mathcal{X}_{D_{i}} \neq \Gamma\left(\mathscr{P}^{\prime}\right) \odot \mathcal{X}_{D_{i}}, \forall \mathscr{P}^{\prime} \subset \mathscr{P}$.

Definition $2.8[4] \operatorname{Let}(U, \mathscr{D} \cup U / d)$ be a covering decision information system, where $\mathscr{D}=\left\{\mathscr{C}_{i} \mid i \in I\right\}$, $U / d=\left\{D_{i} \mid i \in J\right\}, I$ and J are indexed sets. We define $\mathscr{P} \subseteq \mathscr{D}$ as the type- 2 reduct of $(U, \mathscr{D} \cup U / d)$ if it satisfies
(1) $\Pi(\mathscr{D}) \cdot \mathcal{X}_{D_{i}}=\Pi(\mathscr{P}) \cdot X_{D_{i}}, \Pi(\mathscr{D}) \odot X_{D_{i}}=\Pi(\mathscr{P}) \odot X_{D_{i}}, \forall i \in J$;
(2) $\Pi(\mathscr{D}) \cdot \mathcal{X}_{D_{i}} \neq \Pi\left(\mathscr{P}^{\prime}\right) \cdot \mathcal{X}_{D_{i}}, \Pi(\mathscr{D}) \odot \mathcal{X}_{D_{i}} \neq \Pi\left(\mathscr{P}^{\prime}\right) \odot \mathcal{X}_{D_{i}}, \forall \mathscr{P}^{\prime} \subset \mathscr{P}$.

Definition 2.9 [26] Let $A=\left(a_{i j}\right)_{n \times m}$ and $B=\left(b_{i j}\right)_{n \times m}$ be two matrices. We define $A+B=\left(a_{i j}+b_{i j}\right)_{n \times m}$ for $1 \leq i \leq n, 1 \leq j \leq m$.

3 Incremental approaches to computing approximations of sets

In this section, we present incremental approaches to computing the second and fifth lower and upper approximations of sets when revising attribute values.

Definition 3.1 (Dynamic covering approximation space) Let (U, \mathscr{C}) and $\left(U, \mathscr{C}^{*}\right)$ be covering approximation spaces, where $U=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, \mathscr{C}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}, \mathscr{C}^{*}=\left\{C_{1}^{*}, C_{2}^{*}, \ldots, C_{m}^{*}\right\}$, and $C_{i}^{*}=C_{i}-\left\{x_{k}\right\}$ or $C_{i}^{*}=C_{i} \cup\left\{x_{k}\right\}$ when revising the attribute value of $x_{k} \in U$. Then $\left(U, \mathscr{C}^{*}\right)$ is called a dynamic covering approximation space. In addition, \mathscr{C}^{*} is called a dynamic covering.

In practice, revising attribute values will result in $\left|\mathscr{C}^{*}\right|<|\mathscr{C}|,\left|\mathscr{C}^{*}\right|=|\mathscr{C}|$ and $\left|\mathscr{C}^{*}\right|>|\mathscr{C}|$. In this work, we only discuss the situation that $\left|\mathscr{C}^{*}\right|=|\mathscr{C}|$ when revising attribute values of an object.

Below, we discuss the relationship between $\Gamma(\mathscr{C})$ and $\Gamma\left(\mathscr{C}^{*}\right)$. For convenience, we denote $M_{\mathscr{C}}=$ $\left(a_{i j}\right)_{n \times m}, M_{\mathscr{C}}{ }^{*}=\left(b_{i j}\right)_{n \times m}, \Gamma(\mathscr{C})=\left(c_{i j}\right)_{n \times n}$ and $\Gamma\left(\mathscr{C}^{*}\right)=\left(d_{i j}\right)_{n \times n}$.

Theorem 3.2 Let $\left(U, \mathscr{C}^{*}\right)$ be a dynamic covering approximation space of $(U, \mathscr{C}), \Gamma(\mathscr{C})$ and $\Gamma\left(\mathscr{C}^{*}\right)$ the type-1 characteristic matrices of \mathscr{C} and \mathscr{C}^{*}, respectively. Then

$$
\Gamma\left(\mathscr{C}^{*}\right)=\Gamma(\mathscr{C})+\Delta \Gamma(\mathscr{C})
$$

where

$$
\begin{aligned}
\Delta \Gamma(\mathscr{C}) & =\left[\begin{array}{cccccc}
0 & 0 & \cdots & d_{1 k}^{*} & \cdots & 0 \\
0 & 0 & \cdots & d_{2 k}^{*} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
d_{k 1}^{*} & d_{k 2}^{*} & \cdots & d_{k k}^{*} & \cdots & d_{k n}^{*} \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & d_{n k}^{*} & \cdots & 0
\end{array}\right] ; \\
d_{k j}^{*} & =d_{j k}^{*}=\left[\begin{array}{cccccc}
b_{k 1} & b_{k 2} & \cdots & b_{k m}
\end{array}\right] \cdot\left[\begin{array}{lllll}
b_{1 j} & b_{2 j} & \cdots & b_{m j}
\end{array}\right]^{T}-c_{k j} .
\end{aligned}
$$

Proof. By Definition 2.4, $\Gamma(\mathscr{C})$ and $\Gamma\left(\mathscr{C}^{*}\right)$ are presented as follows:

$$
\left.\left.\begin{array}{rl}
\Gamma(\mathscr{C}) & =M_{\mathscr{C}} \cdot M_{\mathscr{C}}^{T} \\
& =\left[\begin{array}{llll}
a_{11} & a_{12} & \cdots & a_{1 m} \\
a_{21} & a_{22} & \cdots & a_{2 m} \\
\cdots & \cdots & \cdots & \cdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n m}
\end{array}\right] \cdot\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 m} \\
a_{21} & a_{22} & \cdots & a_{2 m} \\
\cdots & \cdots & \cdots & \cdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n m}
\end{array}\right]^{T} \\
& =\left[\begin{array}{llll}
c_{11} & c_{12} & \cdots & c_{1 n} \\
c_{21} & c_{22} & \cdots & c_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
c_{n 1} & c_{n 2} & \cdots & c_{n n}
\end{array}\right] ; \\
\Gamma\left(\mathscr{C}^{*}\right) & =M_{\mathscr{C}^{*}} \cdot M_{\mathscr{C}^{*}}^{T}
\end{array}\right] \begin{array}{llll}
b_{11} & b_{12} & \cdots & b_{1 m} \\
b_{21} & b_{22} & \cdots & b_{2 m} \\
\cdots & \cdots & \cdots & \cdots \\
b_{n 1} & b_{n 2} & \cdots & b_{n m}
\end{array}\right] \cdot\left[\begin{array}{llll}
b_{11} & b_{12} & \cdots & b_{1 m} \\
b_{21} & b_{22} & \cdots & b_{2 m} \\
\cdots & \cdots & \cdots & \cdots \\
b_{n 1} & b_{n 2} & \cdots & b_{n m}
\end{array}\right]^{T},
$$

By Definition 2.4, we have $c_{i j}=d_{i j}$ for $i \neq k, j \neq k$ since $a_{i j}=b_{i j}$ for $i \neq k$. To compute $\Gamma\left(\mathscr{C}^{*}\right)$ on the basis of $\Gamma(\mathscr{C})$, we only need to compute $\left(d_{i j}\right)_{(i k, 1 \leq j \leq n)}$ and $\left(d_{i j}\right)_{(1 \leq i \leq n, j=k)}$. Since $\Gamma\left(\mathscr{C}^{*}\right)$ is symmetric, we only need to compute $\left(d_{i j}\right)_{(i=k, 1 \leq j \leq n)}$. In other words, we need to compute $\Delta \Gamma(\mathscr{C})$, where

$$
\begin{aligned}
\Delta \Gamma(\mathscr{C}) & =\left[\begin{array}{cccccc}
0 & 0 & \cdots & d_{1 k}^{*} & \cdots & 0 \\
0 & 0 & \cdots & d_{2 k}^{*} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
d_{k 1}^{*} & d_{k 2}^{*} & \cdots & d_{k k}^{*} & \cdots & d_{k n}^{*} \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & d_{n k}^{*} & \cdots & 0
\end{array}\right] ; \\
d_{k j}^{*} & =d_{j k}^{*}=\left[\begin{array}{ccccc}
b_{k 1} & b_{k 2} & \cdots & b_{k m}
\end{array}\right] \cdot\left[\begin{array}{llll}
b_{1 j} & b_{2 j} & \cdots & b_{m j}
\end{array}\right]^{T}-c_{k j} .
\end{aligned}
$$

Therefore, we have that

$$
\Gamma\left(\mathscr{C}^{*}\right)=\Gamma(\mathscr{C})+\Delta \Gamma(\mathscr{C}) . \square
$$

The following example is employed to show the process of constructing approximations of sets by Theorem 3.2.

Example 3.3 Let $U=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, \mathscr{C}=\left\{C_{1}, C_{2}, C_{3}\right\}$ and $\mathscr{C}^{*}=\left\{C_{1}^{*}, C_{2}^{*}, C_{3}^{*}\right\}$, where $C_{1}=\left\{x_{1}, x_{4}\right\}$, $C_{2}=\left\{x_{1}, x_{2}, x_{4}\right\}, C_{3}=\left\{x_{3}, x_{4}\right\}, C_{1}^{*}=\left\{x_{1}, x_{3}, x_{4}\right\}, C_{2}^{*}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, C_{3}^{*}=\left\{x_{4}\right\}$, and $X=\left\{x_{3}, x_{4}\right\}$. By Definition 2.4, we first have that

$$
\begin{aligned}
\Gamma(\mathscr{C}) & =M_{\mathscr{C}} \cdot M_{\mathscr{C}}^{T} \\
& =\left(c_{i j}\right)_{4 \times 4} \\
& =\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]^{T} \\
& =\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right] .
\end{aligned}
$$

Second, we denote $\Gamma\left(\mathscr{C}^{*}\right)=\left(d_{i j}\right)_{4 \times 4}$. By Theorem 3.2, we get that

$$
\begin{aligned}
{\left[\begin{array}{llll}
d_{31}^{*} & d_{32}^{*} & d_{33}^{*} & d_{34}^{*}
\end{array}\right] } & =\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right] \cdot M_{\mathscr{C}^{*}}^{T}-\left[\begin{array}{ccc}
c_{31} & c_{32} & c_{33} \\
c_{34}
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right] \cdot\left[\begin{array}{cccc}
1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]-\left[\begin{array}{llll}
0 & 0 & 1 & 1
\end{array}\right] \\
& =\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]-\left[\begin{array}{cccc}
0 & 0 & 1 & 1
\end{array}\right] \\
& =\left[\begin{array}{llll}
1 & 1 & 0 & 0
\end{array}\right] ; \\
{\left[\begin{array}{llll}
d_{13}^{*} & d_{23}^{*} & d_{33}^{*} & d_{43}^{*}
\end{array}\right] } & =\left[\begin{array}{llll}
d_{31}^{*} & d_{32}^{*} & d_{33}^{*} & d_{34}^{*}
\end{array}\right] .
\end{aligned}
$$

By Theorem 3.2, we have that

$$
\begin{aligned}
\Delta \Gamma(\mathscr{C}) & =\left[\begin{array}{cccc}
0 & 0 & d_{13}^{*} & 0 \\
0 & 0 & d_{23}^{*} & 0 \\
d_{31}^{*} & d_{32}^{*} & d_{33}^{*} & d_{34}^{*} \\
0 & 0 & d_{43}^{*} & 0
\end{array}\right] \\
& =\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

Thus, we obtain that

$$
\begin{aligned}
\Gamma\left(\mathscr{C}^{*}\right) & =\Gamma(\mathscr{C})+\Delta \Gamma(\mathscr{C}) \\
& =\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]+\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right] .
\end{aligned}
$$

By Definition 2.6, we have that

$$
\begin{aligned}
\mathcal{X}_{S H(X)} & =\Gamma\left(\mathscr{C}^{*}\right) \cdot \mathcal{X}_{X} ; \\
& =\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]^{T} ; \\
\mathcal{X}_{S L(X)} & =\Gamma\left(\mathscr{C}^{*}\right) \odot \mathcal{X}_{X} \\
& =\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right] \odot\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{llll}
0 & 0 & 0 & 0
\end{array}\right]^{T}
\end{aligned}
$$

Therefore, $S H(X)=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and $S L(X)=\emptyset$.
In Example 3.3, we only need to compute $\Delta \Gamma(\mathscr{C})$ by Theorem 3.2. But there is a need to compute all elements in $\Gamma\left(\mathscr{C}^{*}\right)$ by Definition 2.4. Therefore, the computing time of the incremental algorithm is less than the non-incremental algorithm.

Subsequently, we discuss the construction of $\Pi\left(\mathscr{C}^{*}\right)$ based on $\Pi(\mathscr{C})$. For convenience, we denote $\Pi(\mathscr{C})=\left(e_{i j}\right)_{n \times n}$ and $\Pi\left(\mathscr{C}^{*}\right)=\left(f_{i j}\right)_{n \times n}$.

Theorem 3.4 Let $\left(U, \mathscr{C}^{*}\right)$ be a dynamic covering approximation space of $(U, \mathscr{C}), \Pi(\mathscr{C})$ and $\Pi\left(\mathscr{C}^{*}\right)$ the type-2 characteristic matrice of \mathscr{C} and \mathscr{C}^{*}, respectively. Then

$$
\prod\left(\mathscr{C}^{*}\right)=\prod(\mathscr{C})+\Delta \prod(\mathscr{C})
$$

where

$$
\begin{aligned}
\Delta \prod(\mathscr{C}) & =\left[\begin{array}{cccccc}
0 & 0 & \cdots & f_{1 k}^{*} & \cdots & 0 \\
0 & 0 & \cdots & f_{2 k}^{*} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
f_{k 1}^{*} & f_{k 2}^{*} & \cdots & f_{k k}^{*} & \cdots & f_{k n}^{*} \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & f_{n k}^{*} & \cdots & 0
\end{array}\right] ; \\
{\left[\begin{array}{cccc}
f_{k 1}^{*} & f_{k 2}^{*} & \cdots & f_{k n}^{*}
\end{array}\right] } & =\left[\begin{array}{ccc}
b_{k 1} & b_{k 2} & \cdots \\
b_{k m}
\end{array}\right] \odot M_{\mathscr{C}^{*}}^{T}-\left[\begin{array}{llllll}
e_{k 1} & e_{k 2} & \cdots & e_{k n}
\end{array}\right] ; \\
{\left[\begin{array}{cccc}
f_{1 k}^{*} & f_{2 k}^{*} & \cdots & f_{n k}^{*}
\end{array}\right]^{T} } & =M_{\mathscr{C}^{*}} \odot\left[\begin{array}{llllll}
b_{1 k} & b_{2 k} & \cdots & b_{m k}
\end{array}\right]^{T}-\left[\begin{array}{lllll}
e_{1 k} & e_{2 k} & \cdots & e_{n k}
\end{array}\right] .
\end{aligned}
$$

Proof. By Definition $2.5, \Pi(\mathscr{C})$ and $\Pi\left(\mathscr{C}^{*}\right)$ are presented as follows:

$$
\begin{aligned}
& \prod(\mathscr{C})=M_{\mathscr{C}} \odot M_{\mathscr{C}}^{T} \\
& =\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 m} \\
a_{21} & a_{22} & \cdots & a_{2 m} \\
\cdots & \cdots & \cdots & \cdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n m}
\end{array}\right] \odot\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 m} \\
a_{21} & a_{22} & \cdots & a_{2 m} \\
\cdots & \cdots & \cdots & \cdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n m}
\end{array}\right]^{T} \\
& =\left[\begin{array}{llll}
e_{11} & e_{12} & \cdots & e_{1 n} \\
e_{21} & e_{22} & \cdots & e_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
e_{n 1} & e_{n 2} & \cdots & e_{n n}
\end{array}\right] \text {; } \\
& \prod\left(\mathscr{C}^{*}\right)=M_{\mathscr{C}} * \odot M_{\mathscr{C}}{ }^{*} \\
& =\left[\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 m} \\
b_{21} & b_{22} & \cdots & b_{2 m} \\
\cdots & \cdots & \cdots & \cdots \\
b_{n 1} & b_{n 2} & \cdots & b_{n m}
\end{array}\right] \odot\left[\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 m} \\
b_{21} & b_{22} & \cdots & b_{2 m} \\
\cdots & \cdots & \cdots & \cdots \\
b_{n 1} & b_{n 2} & \cdots & b_{n m}
\end{array}\right]^{T} \\
& =\left[\begin{array}{cccc}
f_{11} & f_{12} & \cdots & f_{1 n} \\
f_{21} & f_{22} & \cdots & f_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
f_{n 1} & f_{n 2} & \cdots & f_{n n}
\end{array}\right] .
\end{aligned}
$$

By Definition 2.5 , we have $e_{i j}=f_{i j}$ for $i \neq k, j \neq k$ since $a_{i j}=b_{i j}$ for $i \neq k$. To compute $\prod\left(\mathscr{C}^{*}\right)$ on the basis of $\Pi(\mathscr{C})$, we only need to compute $\left(f_{i j}\right)_{(i=k, 1 \leq j \leq n)}$ and $\left(f_{i j}\right)_{(1 \leq i \leq n, j=k)}$. In other words, we need to compute $\Delta \Pi(\mathscr{C})$, where

$$
\begin{aligned}
\Delta \prod(\mathscr{C}) & =\left[\begin{array}{cccccc}
0 & 0 & \cdots & f_{1 k}^{*} & \cdots & 0 \\
0 & 0 & \cdots & f_{2 k}^{*} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
f_{k 1}^{*} & f_{k 2} & \cdots & f_{k k}^{*} & \cdots & f_{k n}^{*} \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & f_{n k}^{*} & \cdots & 0
\end{array}\right] ; \\
{\left[\begin{array}{cccc}
f_{k 1}^{*} & f_{k 2}^{*} & \cdots & f_{k n}^{*}
\end{array}\right] } & =\left[\begin{array}{cccc}
b_{k 1} & b_{k 2} & \cdots & b_{k m}
\end{array}\right] \odot M_{\mathscr{C}^{*}}^{T}-\left[\begin{array}{lllll}
e_{k 1} & e_{k 2} & \cdots & e_{k n}
\end{array}\right] ; \\
{\left[\begin{array}{cccc}
f_{1 k}^{*} & f_{2 k}^{*} & \cdots & f_{n k}^{*}
\end{array}\right]^{T} } & =M_{\mathscr{C}^{*}} \odot\left[\begin{array}{llllll}
b_{1 k} & b_{2 k} & \cdots & b_{m k}
\end{array}\right]^{T}-\left[\begin{array}{llll}
e_{1 k} & e_{2 k} & \cdots & e_{n k}
\end{array}\right] .
\end{aligned}
$$

Therefore, we have that

$$
\prod\left(\mathscr{C}^{*}\right)=\prod(\mathscr{C})+\Delta \prod(\mathscr{C}) \cdot \square
$$

The following example is employed to show the process of constructing approximations of sets by Theorem 3.4.

Example 3.5 Let $U=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, \mathscr{C}=\left\{C_{1}, C_{2}, C_{3}\right\}$ and $\mathscr{C}^{*}=\left\{C_{1}^{*}, C_{2}^{*}, C_{3}^{*}\right\}$, where $C_{1}=\left\{x_{1}, x_{4}\right\}$, $C_{2}=\left\{x_{1}, x_{2}, x_{4}\right\}, C_{3}=\left\{x_{3}, x_{4}\right\}, C_{1}^{*}=\left\{x_{1}, x_{3}, x_{4}\right\}, C_{2}^{*}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, C_{3}^{*}=\left\{x_{4}\right\}$, and $X=\left\{x_{3}, x_{4}\right\}$. By Definition 2.5, we first have that

$$
\begin{aligned}
\prod(\mathscr{C}) & =M_{\mathscr{C}} \odot M_{\mathscr{C}}^{T} \\
& =\left(e_{i j}\right)_{4 \times 4} \\
& =\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}\right] \odot\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]^{T} \\
& =\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

Second, we denote $\Pi\left(\mathscr{C}^{*}\right)=\left(f_{i j}\right)_{4 \times 4}$. By Theorem 3.4, we get that

$$
\begin{aligned}
& {\left[\begin{array}{llll}
f_{31}^{*} & f_{32}^{*} & f_{33}^{*} & f_{34}^{*}
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right] \odot M_{\mathscr{C}^{*}}^{T}-\left[\begin{array}{llll}
e_{31} & e_{32} & e_{33} & e_{34}
\end{array}\right]} \\
& =\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right] \odot\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]^{T}-\left[\begin{array}{llll}
0 & 0 & 1 & 1
\end{array}\right] \\
& =\left[\begin{array}{llll}
1 & 0 & 1 & 1
\end{array}\right]-\left[\begin{array}{llll}
0 & 0 & 1 & 1
\end{array}\right] \\
& =\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right] \text {; } \\
& {\left[\begin{array}{llll}
f_{13}^{*} & f_{23}^{*} & f_{33}^{*} & f_{43}^{*}
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right] \odot\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right]^{T}-\left[\begin{array}{llll}
e_{13} & e_{23} & e_{33} & e_{43}
\end{array}\right]} \\
& =\left[\begin{array}{llll}
1 & 1 & 1 & 0
\end{array}\right]^{T}-\left[\begin{array}{llll}
0 & 0 & 1 & 0
\end{array}\right] \\
& =\left[\begin{array}{llll}
1 & 1 & 0 & 0
\end{array}\right]^{T} \text {. }
\end{aligned}
$$

By Theorem 3.4, we have that

$$
\begin{aligned}
\Delta \prod(\mathscr{C}) & =\left[\begin{array}{cccc}
0 & 0 & f_{13}^{*} & 0 \\
0 & 0 & f_{23}^{*} & 0 \\
f_{31}^{*} & f_{32}^{*} & f_{33}^{*} & f_{34}^{*} \\
0 & 0 & f_{43}^{*} & .0
\end{array}\right] \\
& =\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

Therefore, we obtain that

$$
\begin{aligned}
\prod\left(\mathscr{C}^{*}\right) & =\prod(\mathscr{C})+\Delta \prod(\mathscr{C}) \\
& =\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]+\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

By Definition 2.6, we have that

$$
\begin{aligned}
\mathcal{X}_{S H(X)} & =\prod\left(\mathscr{C}^{*}\right) \cdot \mathcal{X}_{X} ; \\
& =\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]^{T} ; \\
\mathcal{X}_{S L(X)} & =\prod\left(\mathscr{C}^{*}\right) \odot \mathcal{X}_{X} \\
& =\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right] \odot\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right]^{T} .
\end{aligned}
$$

Therefore, $S H(X)=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and $S L(X)=\left\{x_{4}\right\}$.
In Example 3.5, we only need to $\Delta \Pi(\mathscr{C})$ by Theorem 3.4. But there is a need to compute all elements in $\Pi\left(\mathscr{C}^{*}\right)$ by Definition 2.5 . Therefore, the computing time of the incremental algorithm is less than the non-incremental algorithm.

4 Non-incremental and incremental algorithms of computing approximations of sets with varying attribute values

In this section, we present non-incremental and incremental algorithms of computing the second and sixth lower and upper approximations of sets with varying attribute values.

In Algorithm 4.1, the time complexity of Step 3 is $O\left(m n^{2}\right)$; the time complexity of step 4 is $O\left(2 n^{2}\right)$. The total time complexity is $O\left((m+2) n^{2}\right)$. In Algorithm 4.2, the time complexity of Step 4 is $O(n m)$; the time complexity of Step 6 is $O(n)$; the time complexity of Step 7 is $O(n)$; the time complexity of Step 8 is $O\left(2 n^{2}\right)$. The total time complexity is $O\left(2 n^{2}+n m+2 n\right)$. Furthermore, $O\left((m+2) n^{2}\right)$ is the time complexity of the non-incremental algorithm. Thus the incremental algorithm is more effective than the non-incremental algorithm.

```
Algorithm 4.1: Non-incremental algorithm of computing the second lower and upper approxima-
tions of sets(NIS)
    Input: \(\left(U, \mathscr{C}^{*}\right)\) and \(X \subseteq U\).
    Output: \(\mathcal{X}_{S H(X)}\) and \(\mathcal{X}_{S L(X)}\).
    begin
        Construct \(M_{\mathscr{C}}{ }^{*}\) based on \(\mathscr{C}^{*}\);
        Compute \(\Gamma\left(\mathscr{C}^{*}\right)=M_{\mathscr{C}} \cdot M_{\mathscr{C}^{*}}^{T}\);
        Obtain \(\mathcal{X}_{S H(X)}=\Gamma\left(\mathscr{C}^{*}\right) \cdot \mathcal{X}_{X}\) and \(\mathcal{X}_{S L(X)}=\Gamma\left(\mathscr{C}^{*}\right) \odot \mathcal{X}_{X}\).
    end
```

```
Algorithm 4.2: Incremental algorithm of computing the second lower and upper approximations of
sets(IS)
    Input: 1. \((U, \mathscr{C}), \Gamma(\mathscr{C}),\left(U, \mathscr{C}^{*}\right), X \subseteq U\).
    Output: \(\mathcal{X}_{S H(X)}\) and \(\mathcal{X}_{S L(X)}\).
    begin
        Construct \(M_{\mathscr{C}}^{*}=\left(b_{i j}\right)_{n \times m}\) based on \(\mathscr{C}^{*}\);
        Denote row \(_{k}=\left[b_{k 1}, b_{k 2}, \ldots, b_{k m}\right]\);
        Compute \(\Delta\) row \(_{k}=\) row \(_{k} \cdot M_{\mathscr{C}^{*}}^{T}\);
        Let \(\Gamma\left(\mathscr{C}^{*}\right)=\Gamma(\mathscr{C})\);
        Set \(k\) th row of \(\Gamma\left(\mathscr{C}^{*}\right)\) as \(\Delta\) row \(_{k}\);
        Set \(k\) th col of \(\Gamma\left(\mathscr{C}^{*}\right)\) as \(\left(\Delta r o w_{k}\right)^{T}\);
        Obtain \(X_{S H(X)}=\Gamma\left(\mathscr{C}^{*}\right) \cdot \mathcal{X}_{X}\) and \(\mathcal{X}_{S L(X)}=\Gamma\left(\mathscr{C}^{*}\right) \odot \mathcal{X}_{X}\).
    end
```

```
Algorithm 4.3: Non-incremental algorithm of computing the sixth lower and upper approximations
of sets(NIX)
    Input: \(\left(U, \mathscr{C}^{*}\right)\) and \(X \subseteq U\).
    Output: \(\mathcal{X}_{X H(X)}\) and \(\mathcal{X}_{X L(X)}\).
    begin
        Construct \(M_{\mathscr{C}}{ }^{*}\) based on \(\mathscr{C}^{*}\);
        Compute \(\Pi\left(\mathscr{C}^{*}\right)=M_{\mathscr{C}^{*}} \odot M_{\mathscr{C}^{*}}^{T} ;\)
        Obtain \(X_{X H(X)}=\Pi\left(\mathscr{C}^{*}\right) \cdot \mathcal{X}_{X}\) and \(\mathcal{X}_{X L(X)}=\Pi\left(\mathscr{C}^{*}\right) \odot \mathcal{X}_{X}\).
    end
```

In Algorithm 4.3, the time complexity of Step 3 is $O\left(m n^{2}\right)$, the time complexity of Step 4 is $O\left(n^{2}\right)$. The total time complexity is $O\left((m+2) n^{2}\right)$. In Algorithm 4.4, the time complexity of Step 4 is $O(n m)$; the time complexity of Step 6 is $O(n m)$; the time complexity of Step 8 is $O(n)$; the time complexity of Step 9 is $O(n)$; the time complexity of Step 10 is $O\left(2 n^{2}\right)$. The total time complexity is $O\left(2 n^{2}+2 n m+2 n\right)$. Furthermore, $O\left((m+2) n^{2}\right)$ is the time complexity of the non-incremental algorithm. Thus the incremental algorithm is more effective than the non-incremental algorithm.

```
sets(IX)
    Input: \((U, \mathscr{C}), \Pi(\mathscr{C}),\left(U, \mathscr{C}^{*}\right)\) and \(X \subseteq U\).
    Output: \(\mathcal{X}_{X H(X)}\) and \(\mathcal{X}_{X L(X)}\).
    begin
        Construct \(M_{\mathscr{C}}^{*}=\left(b_{i j}\right)_{n \times m}\) based on \(\mathscr{C}^{*}\);
        Denote row \(_{k}=\left[b_{k 1}, b_{k 2}, \ldots, b_{k m}\right]\);
        Compute \(\Delta\) row \(_{k}=\) row \(_{k} \odot M_{\mathscr{C}^{*}}^{T}\);
        Denote \(\operatorname{col}_{k}=\left[b_{1 k}, b_{2 k}, \ldots, b_{m k}\right]^{T}\);
        Compute \(\Delta \operatorname{col}_{k}=M_{\mathscr{G}}{ }^{*} \odot \operatorname{col}_{k}\);
        Let \(\Pi\left(\mathscr{C}^{*}\right)=\Pi(\mathscr{C})\);
        Set \(k\) th row of \(\Pi\left(\mathscr{C}^{*}\right)\) as \(\Delta\) row \(_{k}\);
        Set \(k\) th col of \(\Pi\left(\mathscr{C}^{*}\right)\) as \(\Delta c o l_{k}\);
        Obtain \(\mathcal{X}_{X H(X)}=\Pi\left(\mathscr{C}^{*}\right) \cdot \mathcal{X}_{X}\) and \(\mathcal{X}_{X L(X)}=\Pi\left(\mathscr{C}^{*}\right) \odot \mathcal{X}_{X}\).
    end
```

Algorithm 4.4: Incremental algorithm of computing the sixth lower and upper approximations of

5 Experimental analysis

In this section, we perform the series of experiments to validate the effectiveness of Algorithms 4.2 and 4.4 for computing approximations in dynamic covering approximation spaces when varying attribute values.

5.1 Experimental environment

Since transforming information systems into covering approximation spaces takes a great deal of time, and the main objective of this work is to illustrate the efficiency of the Algorithms 4.2 and 4.4 in computing approximations of sets. To evaluate the performance of Algorithms 4.2 and 4.4 , we generated ten covering approximation spaces $\left(U_{i}, \mathscr{C}_{i}\right)$ for the experiment, where $i, j=1,2,3, \ldots, 10$. We outline all these covering approximation spaces in Table 1, where $\left|U_{i}\right|$ denotes the number of objects in U_{i} and $\left|\mathscr{C}_{i}\right|$ is the cardinality of \mathscr{C}_{i}.

All computations were conducted on a PC with a Inter(R) Core(TM) i5-4200M CPU @ 2.50 GHZ and 4 GB memory, running 64-bit Windows 7 Service Pack 1. The software used was 64-bit Matlab R2013b. Details of the hardware and software are given in Table 2.

5.2 Experimental results

5.2.1 Computational times in dynamic covering approximation spaces

In this subsection, we apply Algorithms 4.1-4.4 to the covering approximation space (U_{i}, \mathscr{C}_{i}), where $i=1,2,3, \ldots, 10$, and compare the computing times by using Algorithms 4.1 and 4.3 with those of Algorithms 4.2 and 4.4 , respectively.

First, we calculate $\Gamma\left(\mathscr{C}_{i}\right)$ and $\Pi\left(\mathscr{C}_{i}\right)$ by Definitions 2.4 and 2.5 , respectively. We also obtain the dynamic covering approximation space $\left(U_{i}, \mathscr{C}_{i}^{*}\right)$ when revising attribute values of x_{k}, where and $C_{j}^{*}=$

Table 1: Covering approximation spaces.

No.	Name	$\left\|U_{i}\right\|$	$\left\|\mathscr{C}_{i}\right\|$
1	$\left(U_{1}, \mathscr{C}_{1}\right)$	2000	100
2	$\left(U_{2}, \mathscr{C}_{2}\right)$	4000	200
3	$\left(U_{3}, \mathscr{C}_{3}\right)$	6000	300
4	$\left(U_{4}, \mathscr{C}_{4}\right)$	8000	400
5	$\left(U_{5}, \mathscr{C}_{5}\right)$	10000	500
6	$\left(U_{6}, \mathscr{C}_{6}\right)$	12000	600
7	$\left(U_{7}, \mathscr{C}_{7}\right)$	14000	700
8	$\left(U_{8}, \mathscr{C}_{8}\right)$	16000	800
9	$\left(U_{9}, \mathscr{C}_{9}\right)$	18000	900
10	$\left(U_{10}, \mathscr{C}_{10}\right)$	20000	1000

Table 2: The experimental environment.

No.	Name	Model	Parameters
1	CPU	Inter(R) Core(TM) i5-4200M	2.50 GHZ
2	Memory	ADAT DDR3	4 G
3	Hard disk	SATA	1 T
4	System	Windows 7	64 bit
5	Platform	Matlab R2013b	64 bit

$C_{j} \cup\left\{x_{k}\right\}$ or C_{j}, where $C_{j}^{*} \in \mathscr{C}_{i}^{*}$ and $C_{j} \in \mathscr{C}_{i}$. Subsequently, we get $\Gamma\left(\mathscr{C}_{i}^{*}\right)$ and $\Pi\left(\mathscr{C}_{i}^{*}\right)$ by Algorithms 4.1 and 4.3, respectively.

Second, we calculate $S H(X), S L(X), X H(X)$ and $X L(X)$ based on $\Gamma\left(\mathscr{C}_{i}^{*}\right)$ and $\Pi\left(\mathscr{C}_{i}^{*}\right)$ for $X \subseteq U_{i}$, respectively. The time of computing $S H(X), S L(X), X H(X)$ and $X L(X)$ is shown in Tables 3-12. Concretely, NIS and NIX stands for the time of constructing the second and sixth lower and upper approximations of sets by Algorithms 4.1 and 4.3 in Tables 3-12. Additionally, we obtain $\Gamma\left(\mathscr{C}_{i}^{*}\right)$ and $\Pi\left(\mathscr{C}_{i}^{*}\right)$ by Algorithms 4.2 and 4.4, respectively. Then the time of computing $S H(X), S L(X), X H(X)$ and $X L(X)$ for $X \subseteq U_{i}$ is shown in Tables 3-12. Concretely, $I S$ and $I X$ stands for the time of computing the second and sixth lower and upper approximations of sets by Algorithms 4.2 and 4.4 in Tables 3-12.

Third, we conduct all experiments ten times and show the results in Tables 3-12 and Figures 1-10. We see all algorithms are stable to compute approximations of sets in all experiments. Concretely, we observe that the computing times by using the same algorithm are almost the same in Tables 3-12. Consequently, we see that the times of computing approximations of sets by using incremental algorithms are much smaller than those of the non-incremental algorithms. In Figures 1-10, we also observe that the computing times of Algorithms 4.2 and 4.4 are far less than those of Algorithms 4.1 and 4.3, respectively. Therefore, the incremental algorithms are more effective to construct approximations of sets in the dynamic covering approximation space $\left(U_{i}, \mathscr{C}_{i}^{*}\right)$, where $i=1,2, \ldots, 10$.
Remark: In Tables 3-12, the measure of time is in seconds; \bar{t} indicates the average time of ten experiments; In Figures 1-10, i stands for the experimental number in X Axis; In Figure 11, i refers to as the covering approximation space $\left(U_{i}, \mathscr{C}_{i}\right)$ in X Axis; In Figures 1-11, i is the computing time in Y Axis.

Table 3: Computational times using Algorithms 4.1-4.4 in $\left(U_{1}, \mathscr{C}_{1}\right)$.

Algorithm	1	2	3	4	5	6	7	8	9	10	\bar{t}
NIS	0.4578	0.4213	0.4279	0.4223	0.4271	0.4236	0.4235	0.4263	0.4236	0.4273	0.4281
NIX	0.4681	0.4671	0.4636	0.4646	0.4668	0.4651	0.4651	0.4681	0.4668	0.4720	0.4667
IS	0.0044	0.0026	0.0033	0.0040	0.0029	0.0028	0.0031	0.0030	0.0028	0.0028	0.0032
IX	0.0351	0.0339	0.0333	0.0339	0.0340	0.0334	0.0340	0.0335	0.0338	0.0333	0.0338

Figure 1: Computational times using Algorithms 4.1-4.4 in $\left(U_{1}, \mathscr{C}_{1}\right)$.

Table 4: Computational times using Algorithms 4.1-4.4 in $\left(U_{2}, \mathscr{C}_{2}\right)$.

Algorithm	1	2	3	4	5	6	7	8	9	10	\bar{t}
NIS	1.8902	1.8452	1.8610	1.8203	1.8179	1.8257	1.8223	1.8224	1.8294	1.8189	1.8353
NIX	2.0389	2.0437	2.0314	2.0237	2.0378	2.0331	2.0531	2.0565	2.0583	2.0641	2.0440
IS	0.0091	0.0118	0.0102	0.0100	0.0098	0.0127	0.0110	0.0099	0.0099	0.0096	0.0104
IX	0.2035	0.2018	0.2013	0.2018	0.2034	0.1992	0.2018	0.2006	0.1987	0.2035	0.2016

Figure 2: Computational times using Algorithms 4.1-4.4 in $\left(U_{2}, \mathscr{C}_{2}\right)$.

Table 5: Computational times using Algorithms 4.1-4.4 in $\left(U_{3}, \mathscr{C}_{3}\right)$.

Algorithm	1	2	3	4	5	6	7	8	9	10	\bar{t}
NIS	4.2030	4.1889	4.1905	4.1457	4.1446	4.1681	4.1518	4.1765	4.2310	4.1604	4.1760
NIX	4.6993	4.7126	4.6838	4.6895	4.6941	4.7000	4.7025	4.6711	4.7039	4.6939	4.6951
IS	0.0177	0.0210	0.0211	0.0199	0.0199	0.0199	0.0199	0.0205	0.0200	0.0197	0.0200
IX	0.5259	0.5059	0.5076	0.5056	0.5089	0.5055	0.5106	0.5080	0.5059	0.5078	0.5092

Figure 3: Computational times using Algorithms 4.1-4.4 in $\left(U_{3}, \mathscr{C}_{3}\right)$.

Table 6: Computational times using Algorithms 4.1-4.4 in $\left(U_{4}, \mathscr{C}_{4}\right)$.

Algorithm	1	2	3	4	5	6	7	8	9	10	\bar{t}
NIS	7.5968	7.5550	7.7428	7.6536	7.6756	7.7031	7.6304	7.6051	7.6118	7.7013	7.6475
NIX	8.6892	8.7967	8.8918	9.0384	8.7810	8.7764	8.6300	9.2821	8.6324	8.6121	8.8130
IS	0.0428	0.0338	0.0350	0.0394	0.0378	0.0386	0.0345	0.0345	0.0346	0.0348	0.0366
IX	0.9813	0.9681	0.9694	0.9677	0.9669	0.9731	0.9654	0.9683	0.9648	0.9685	0.9694

Table 7: Computational times using Algorithms 4.1-4.4 in $\left(U_{5}, \mathscr{C}_{5}\right)$.

Algorithm	1	2	3	4	5	6	7	8	9	10	\bar{t}
NIS	12.0856	11.9662	11.9944	11.9200	11.9992	11.9683	11.9321	11.9008	11.8811	11.8839	11.9532
NIX	13.8290	13.6560	13.7430	13.7308	13.6831	13.6816	13.7970	13.6794	13.8141	13.7338	13.7348
IS	0.0675	0.0530	0.0549	0.0537	0.0551	0.0537	0.0536	0.0523	0.0535	0.0540	0.0551
IX	1.6266	1.6193	1.6163	1.6138	1.6189	1.6057	1.6230	1.6213	1.6172	1.6211	1.6183

Figure 4: Computational times using Algorithms 4.1-4.4 in $\left(U_{4}, \mathscr{C}_{4}\right)$.

Figure 5: Computational times using Algorithms 4.1-4.4 in $\left(U_{5}, \mathscr{C}_{5}\right)$.

Table 8: Computational times using Algorithms 4.1-4.4 in $\left(U_{6}, \mathscr{C}_{6}\right)$.

Algorithm	1	2	3	4	5	6	7	8	9	10	\bar{t}
NIS	17.8842	17.8858	18.0800	17.6753	17.5945	17.5710	17.7019	18.2036	17.5415	17.9582	17.8096
NIX	20.1684	20.1404	00.0242	20.0022	20.0277	20.0598	20.0897	20.2560	21.6223	22.1194	20.4510
IS	0.0977	0.0748	0.0746	0.0744	0.0803	0.0727	0.0753	0.0735	0.0738	0.0723	0.0770
IX	2.4011	2.3671	2.4204	2.3771	2.3679	2.3662	2.3737	2.3644	2.3614	2.3692	2.3769

Figure 6: Computational times using Algorithms 4.1-4.4 in $\left(U_{6}, \mathscr{C}_{6}\right)$.

Table 9: Computational times using Algorithms 4.1-4.4 in $\left(U_{7}, \mathscr{C}_{7}\right)$.

Algorithm	1	2	3	4	5	6	7	8	9	10	\bar{t}
NIS	24.2936	24.3201	24.4603	25.2946	24.4922	24.5153	24.3296	25.0792	24.6210	24.2059	24.5612
NIX	27.9154	28.2049	28.2523	28.2664	28.7698	28.2559	28.1121	28.423428 .6467	29.2779	28.4125	
IS	0.1071	0.1014	0.1017	0.0996	0.1015	0.1018	0.1025	0.1007	0.1020	0.1009	0.1019
IX	3.4572	3.3194	3.3070	3.3030	3.2899	3.3109	3.2777	3.2753	3.2790	3.2758	3.3095

Figure 7: Computational times using Algorithms 4.1-4.4 in $\left(U_{7}, \mathscr{C}_{7}\right)$.

5.2.2 The relationship between computational times and the cardinalities of object sets and coverings

In Figure 11, the average times of the incremental and non-incremental algorithms rise monotonically with the increase of the cardinalities of object sets and coverings. We also see that the incremental algorithms perform always faster than the non-incremental algorithms in all experiments, and the average times of the incremental algorithms are much smaller than those of the non-incremental algorithms. Moreover, the speed-up ratios of times by using the non-incremental algorithms are higher than the incremental algorithms with the increasing cardinalities of object sets and coverings. Especially, we observe that there exists little influence of the cardinalities of object sets and coverings on computing the second lower and upper approximations of sets by using Algorithm 4.2.

All experimental results demonstrate that Algorithms 4.2 and 4.4 are more effective to computing the second and sixth lower and upper approximations of sets in dynamic covering approximation spaces. In the future, we will improve the effectiveness of Algorithms 4.2 and 4.4 and test them on large-scale dynamic covering approximation spaces.

6 Attribute reduction of dynamic covering decision information systems

In this section, we employ examples to illustrate that how to compute type- 1 and type- 2 reducts of covering decision information systems.

Example 6.1 Let $(U, \mathscr{D} \cup U / d)$ be a covering decision information system, where $\mathscr{D}=\left\{\mathscr{C}_{1}, \mathscr{C}_{2}, \mathscr{C}_{3}, \mathscr{C}_{4}\right\}$, $\mathscr{C}_{1}=\left\{\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\},\left\{x_{5}\right\}\right\}, \mathscr{C}_{2}=\left\{\left\{x_{1}, x_{2}\right\},\left\{x_{3}, x_{4}, x_{5}\right\}\right\}, \mathscr{C}_{3}=\left\{\left\{x_{1}, x_{2}, x_{5}\right\},\left\{x_{3}, x_{4}\right\}\right\}, \mathscr{C}_{4}=\left\{\left\{x_{1}, x_{2}\right\},\left\{x_{3}, x_{4}\right\}\right.$, $\left.\left\{x_{5}\right\}\right\}, U / d=\left\{\left\{x_{1}, x_{2}\right\},\left\{x_{3}, x_{4}, x_{5}\right\}\right\}$. By Definitions 2.4 and 2.5 , we obtain

$$
\begin{aligned}
& \Gamma(\mathscr{D})=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right] \\
& \prod(\mathscr{D})= \\
& \left.\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

Table 10: Computational times using Algorithms 4.1-4.4 in $\left(U_{8}, \mathscr{C}_{8}\right)$.

Algorithm	1	2	3	4	5	6	7	8	9	10
NIS	33.2714	33.3024	33.2390	33.2370	33.3127	33.3602	33.3527	33.259933 .449633 .3485	33.3133	
NIX	39.0763	39.0729	39.1256	39.1677	39.138239 .5114	39.2732	38.963239 .1487	38.8493	39.1327	
IS	0.1267	0.1243	0.1293	0.1242	0.1248	0.1239	0.1259	0.1234	0.1226	0.1284
IX	6.1013	5.3888	5.3412	5.3710	5.2641	5.3158	5.3229	5.3422	5.2858	5.4398

Figure 8: Computational times using Algorithms 4.1-4.4 in $\left(U_{8}, \mathscr{C}_{8}\right)$.

Table 11: Computational times using Algorithms 4.1-4.4 in $\left(U_{9}, \mathscr{C}_{9}\right)$.

Algorithm	1	2	3	4	5	6	7	8	9	10	\bar{t}
NIS	44.2060	43.5990	43.2590	44.3375	43.916543 .6185	44.3864	44.466744 .2301	45.215944 .1236			
NIX	50.1711	50.8559	50.4446	49.7286	50.6871	50.3282	50.5291	49.5770	50.0544	50.3550	50.2731
IS	0.2048	0.1611	0.1628	0.1620	0.1607	0.1607	0.1605	0.1612	0.1615	0.1615	0.1657
IX	6.1794	5.8323	5.8586	5.7428	5.8902	5.8318	5.8949	5.7688	5.7606	5.8051	5.8564

Figure 9: Computational times using Algorithms 4.1-4.4 in ($\left.U_{9}, \mathscr{C}_{9}\right)$.

Table 12: Computational times using Algorithms 5.1-5.8 in $\left(U_{1}^{*}, \mathscr{C}_{1}^{*}\right)$, where $\left|U_{1}^{*}\right|=625$ and $\left|\mathscr{C}_{1}^{*}\right|=20$.

Algorithm	1	2	3	4	5	6	7	8	9	10	\bar{t}
NIS	55.6793	55.8107	55.6728	55.9174	55.591758 .198159 .1824	56.0537	55.7757	55.566456 .3448			
NIX	64.8043	65.7104	65.2075	64.5169	64.785664 .711865 .0349	64.4148	64.7802	64.3155	64.8282		
IS	0.2716	0.1941	0.1944	0.1924	0.1938	0.1956	0.1936	0.1917	0.1947	0.1948	0.2017
IX	8.3148	7.6287	7.3082	7.9581	7.2058	7.4084	7.1585	7.2874	7.1620	7.2413	7.4673

Figure 10: Computational times using Algorithms 4.1-4.4 in $\left(U_{10}, \mathscr{C}_{10}\right)$.

Figure 11: Computation times using Algorithms 4.1-4.4.

By Definition 2.6, we have the second and sixth lower and upper approximations of decision classes as follows:

$$
\begin{aligned}
& \mathcal{X}_{S H\left(D_{1}\right)}=\Gamma(\mathscr{D}) \cdot \mathcal{X}_{D_{1}} \\
& =\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1
\end{array}\right] ; \\
& \mathcal{X}_{S L\left(D_{1}\right)}=\Gamma(\mathscr{D}) \odot \mathcal{X}_{D_{1}} \\
& =\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0
\end{array}\right] \text {; } \\
& X_{S H\left(D_{2}\right)}=\Gamma(\mathscr{D}) \cdot X_{D_{2}} \\
& =\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1
\end{array}\right] ; \\
& X_{S L\left(D_{2}\right)}=\Gamma(\mathscr{D}) \odot X_{D_{2}} \\
& =\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0
\end{array}\right] \text {; } \\
& \mathcal{X}_{X H\left(D_{1}\right)}=\Gamma(\mathscr{D}) \cdot \mathcal{X}_{D_{1}} \\
& =\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0
\end{array}\right] \text {; } \\
& X_{X L\left(D_{1}\right)}=\Gamma(\mathscr{D}) \odot X_{D_{1}} \\
& =\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0
\end{array}\right] ; \\
& \mathcal{X}_{X H\left(D_{2}\right)}=\Gamma(\mathscr{D}) \cdot \mathcal{X}_{D_{2}} \\
& =\left[\begin{array}{lllll}
0 & 0 & 1 & 1 & 1
\end{array}\right] \text {; } \\
& X_{X L\left(D_{2}\right)}=\Gamma(\mathscr{D}) \odot X_{D_{2}} \\
& =\left[\begin{array}{lllll}
0 & 0 & 1 & 1 & 1
\end{array}\right] .
\end{aligned}
$$

To construct type-1 and type- 2 reducts, we have that

$$
\begin{aligned}
\Gamma\left(\mathscr{D} / \mathscr{C}_{4}\right) \cdot \mathcal{X}_{D_{1}} & =\mathcal{X}_{S H\left(D_{1}\right)} \\
\Gamma\left(\mathscr{D} / \mathscr{C}_{4}\right) \odot \mathcal{X}_{D_{1}} & =\mathcal{X}_{S L\left(D_{1}\right)} \\
\Gamma\left(\mathscr{D} / \mathscr{C}_{4}\right) \cdot \mathcal{X}_{D_{2}} & =\mathcal{X}_{S H\left(D_{2}\right)} \\
\Gamma\left(\mathscr{D} / \mathscr{C}_{4}\right) \odot \mathcal{X}_{D_{2}} & =\mathcal{X}_{S L\left(D_{2}\right)} \\
\prod\left(\mathscr{D} / \mathscr{C}_{4}\right) \cdot \mathcal{X}_{D_{1}} & =\mathcal{X}_{X H\left(D_{1}\right)} ; \\
\prod\left(\mathscr{D} / \mathscr{C}_{4}\right) \odot \mathcal{X}_{D_{1}} & =\mathcal{X}_{X L\left(D_{1}\right)} \\
\prod\left(\mathscr{D} / \mathscr{C}_{4}\right) \cdot \mathcal{X}_{D_{2}} & =\mathcal{X}_{X H\left(D_{2}\right)} ; \\
\prod\left(\mathscr{D} / \mathscr{C}_{4}\right) \odot \mathcal{X}_{D_{2}} & =\mathcal{X}_{X L\left(D_{2}\right)} ;
\end{aligned}
$$

To perform the above process continuously, we have that $\left\{\mathscr{C}_{1}, \mathscr{C}_{3}\right\}$ is type-1 and type- 2 reducts of $(U, \mathscr{D} \cup U / d)$.

We employ an example to illustrate that how to construct type- 1 and type- 2 reducts of dynamic covering decision information systems as follows.

Example 6.2 (Continuation of Example 6.1) Let $\left(U, \mathscr{D}^{*} \cup U / d\right)$ be a covering decision information system, where $\mathscr{D}^{*}=\left\{\mathscr{C}_{1}^{*}, \mathscr{C}_{2}^{*}, \mathscr{C}_{3}^{*}, \mathscr{C}_{4}^{*}\right\}, \mathscr{C}_{1}^{*}=\left\{\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\},\left\{x_{5}\right\}\right\}, \mathscr{C}_{2}^{*}=\left\{\left\{x_{1}, x_{2}\right\},\left\{x_{3}, x_{4}, x_{5}\right\}\right\}, \mathscr{C}_{3}^{*}=$ $\left\{\left\{x_{1}, x_{2}, x_{3}, x_{5}\right\},\left\{x_{4}\right\}\right\}, \mathscr{C}_{4}^{*}=\left\{\left\{x_{1}, x_{2}\right\},\left\{x_{3}, x_{4}\right\},\left\{x_{5}\right\}\right\}, U / d=\left\{\left\{x_{1}, x_{2}\right\},\left\{x_{3}, x_{4}, x_{5}\right\}\right\}$. By Theorems 3.2 and 3.4, we obtain

$$
\begin{aligned}
\Gamma\left(\mathscr{D}^{*}\right) & =\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right] \\
\prod\left(\mathscr{D}^{*}\right) & =\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

By Definition 2.6, we have the second and sixth lower and upper approximations of decision classes as follows:

$$
\begin{aligned}
& \mathcal{X}_{S H\left(D_{1}\right)}=\Gamma\left(\mathscr{D}^{*}\right) \cdot \mathcal{X}_{D_{1}} \\
& =\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1
\end{array}\right] ; \\
& \mathcal{X}_{S L\left(D_{1}\right)}=\Gamma\left(\mathscr{D}^{*}\right) \odot \mathcal{X}_{D_{1}} \\
& =\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0
\end{array}\right] ; \\
& \mathcal{X}_{S H\left(D_{2}\right)}=\Gamma\left(\mathscr{D}^{*}\right) \cdot \mathcal{X}_{D_{2}} \\
& =\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1
\end{array}\right] ; \\
& \mathcal{X}_{S L\left(D_{2}\right)}=\Gamma\left(\mathscr{D}^{*}\right) \odot \mathcal{X}_{D_{2}} \\
& =\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0
\end{array}\right] ; \\
& \mathcal{X}_{X H\left(D_{1}\right)}=\Gamma\left(\mathscr{D}^{*}\right) \cdot \mathcal{X}_{D_{1}} \\
& =\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0
\end{array}\right] ; \\
& X_{X L\left(D_{1}\right)}=\Gamma\left(\mathscr{D}^{*}\right) \odot \mathcal{X}_{D_{1}} \\
& =\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0
\end{array}\right] ; \\
& X_{X H\left(D_{2}\right)}=\Gamma\left(\mathscr{D}^{*}\right) \cdot X_{D_{2}} \\
& =\left[\begin{array}{lllll}
0 & 0 & 1 & 1 & 1
\end{array}\right] ; \\
& \mathcal{X}_{X L\left(D_{2}\right)}=\Gamma\left(\mathscr{D}^{*}\right) \odot \mathcal{X}_{D_{2}} \\
& =\left[\begin{array}{lllll}
0 & 0 & 1 & 1 & 1
\end{array}\right] .
\end{aligned}
$$

To construct type-1 and type- 2 reducts, we have that

$$
\begin{aligned}
\Gamma\left(\mathscr{D}^{*} / \mathscr{C}_{4}^{*}\right) \cdot \mathcal{X}_{D_{1}} & =\mathcal{X}_{S H\left(D_{1}\right)} ; \\
\Gamma\left(\mathscr{D}^{*} / \mathscr{C}_{4}^{*}\right) \odot \mathcal{X}_{D_{1}} & =\mathcal{X}_{S L\left(D_{1}\right)} ; \\
\Gamma\left(\mathscr{D}^{*} / \mathscr{C}_{4}^{*}\right) \cdot \mathcal{X}_{D_{2}} & =\mathcal{X}_{S H\left(D_{2}\right)} ; \\
\Gamma\left(\mathscr{D}^{*} / \mathscr{C}_{4}^{*}\right) \odot \mathcal{X}_{D_{2}} & =\mathcal{X}_{S L\left(D_{2}\right)} ; \\
\prod\left(\mathscr{D}^{*} / \mathscr{C}_{4}^{*}\right) \cdot \mathcal{X}_{D_{1}} & =\mathcal{X}_{X H\left(D_{1}\right) ;} ; \\
\prod\left(\mathscr{D}^{*} / \mathscr{C}_{4}^{*}\right) \odot \mathcal{X}_{D_{1}} & =\mathcal{X}_{X L\left(D_{1}\right)} ; \\
\prod\left(\mathscr{D}^{*} / \mathscr{C}_{4}^{*}\right) \cdot \mathcal{X}_{D_{2}} & =\mathcal{X}_{X H\left(D_{2}\right)} ; \\
\prod\left(\mathscr{D}^{*} / \mathscr{C}_{4}^{*}\right) \odot \mathcal{X}_{D_{2}} & =\mathcal{X}_{X L\left(D_{2}\right)} ;
\end{aligned}
$$

To perform the above process continuously, we have that $\left\{\mathscr{C}_{1}^{*}, \mathscr{C}_{3}^{*}\right\}$ is a type-1 reduct of $\left(U, \mathscr{D}^{*} \cup U / d\right)$, and $\left\{\mathscr{C}_{1}^{*}, \mathscr{C}_{2}^{*}, \mathscr{C}_{3}^{*}\right\}$ is a type- 2 reduct of $\left(U, \mathscr{D}^{*} \cup U / d\right)$.

7 Conclusions

Knowledge reduction of covering information systems have attracted more attention of researchers. In this paper, we have introduced incremental approaches to computing the characteristic matrices of dynamic coverings when revising attribute values. We have presented the non-incremental and incremental algorithms for computing the second and sixth lower and upper approximations of sets and compared the computational complexities of the non-incremental algorithms with those of incremental algorithms. We have tested the incremental algorithms on dynamic covering approximation spaces. Experimental results have been employed to illustrate that the incremental approaches are effective to compute approximations of sets in dynamic covering approximation spaces. We have demonstrated that how to conduct knowledge reduction of dynamic covering information systems with the incremental approaches.

In practical situations, there exist many types of dynamic covering information systems and dynamic covering approximation spaces. In the future, we will introduce more effective approaches to constructing the characteristic matrices of these types of dynamic coverings and perform knowledge reduction of these types of dynamic covering information systems.

Acknowledgments

We would like to thank the anonymous reviewers very much for their professional comments and valuable suggestions. This work is supported by the National Natural Science Foundation of China (NO. 11201490,11371130,11401052,11401195), the Scientific Research Fund of Hunan Provincial Education Department(No.14C0049).

References

[1] H.M. Chen, T.R. Li, S.J. Qiao, D. Ruan, A rough set based dynamic maintenance approach for approximations in coarsening and refining attribute values, International Journal of Intelligent Systems $25(10)(2010) 1005-1026$.
[2] H.M. Chen, T.R. Li, D. Ruan, Maintenance of approximations in incomplete ordered decision systems while attribute values coarsening or refining, Knowledge-Based Systems 31 (2012) 140-161.
[3] H.M. Chen, T.R. Li, D. Ruan, J.H. Lin, C.X. Hu, A rough-set based incremental approach for updating approximations under dynamic maintenance environments, IEEE Transactions on Knowledge and Data Engineering 25(2) (2013) 174-184.
[4] G.M. Lang, Q.G. Li, M.J. Cai, T. Yang, Characteristic matrices-based knowledge reduction in dynamic covering decision information systems, Knowledge-Based Systems doi: http://dx.doi.org/10.1016/j.knosys.2015.03.021, 2015.
[5] G.M. Lang, Q.G. Li, M.J. Cai, T. Yang, Q.M. Xiao, Incremental approaches to constructing approximations of sets based on characteristic matrices, International Journal of Machine Learning and Cybernetics doi:10. 1007/s 13042-014-0315-4, 2014.
[6] S.Y. Li, T.R. Li, D. Liu, Incremental updating approximations in dominance-based rough sets approach under the variation of the attribute set, Knowledge-Based Systems 40 (2013) 17-26.
[7] S.Y. Li, T.R. Li, D. Liu, Dynamic Maintenance of Approximations in Dominance-Based Rough Set Approach under the Variation of the Object Set, International Journal of Intelligent Systems 28(8) (2013) 729-751.
[8] T.R. Li, D. Ruan, W. Geert, J. Song, Y. Xu, A rough sets based characteristic relation approach for dynamic attribute generalization in data mining, Knowledge-Based Systems 20(5) (2007) 485-494.
[9] T.R. Li, D. Ruan, J. Song, Dynamic maintenance of decision rules with rough set under characteristic relation, Wireless Communications, Networking and Mobile Computing (2007) 3713-3716.
[10] J.Y. Liang, F. Wang, C.Y. Dang, Y.H. Qian, A Group Incremental Approach to Feature Selection Applying Rough Set Technique, IEEE Transactions on Knowledge and Data Engineering 26(2) (2014) 294-308.
[11] D. Liu, T.R. Li, D. Ruan, J.B. Zhang, Incremental learning optimization on knowledge discovery in dynamic business intelligent systems, Journal of Global Optimization 51(2) (2011) 325-344.
[12] D. Liu, T.R. Li, D. Ruan, W.L. Zou, An incremental approach for inducing knowledge from dynamic information systems, Fundamenta Informaticae 94(2) (2009) 245-260.
[13] D. Liu, T.R. Li, J.B.Zhang, A rough set-based incremental approach for learning knowledge in dynamic incomplete information systems, International Journal of Approximate Reasoning 55(8) (2014) 1764-1786.
[14] C. Luo, T.R. Li, H.M. Chen, Dynamic maintenance of approximations in set-valued ordered decision systems under the attribute generalization, Information Sciences 257 (2014) 210-228.
[15] C. Luo, T.R. Li, H.M. Chen, D. Liu, Incremental approaches for updating approximations in setvalued ordered information systems, Knowledge-Based Systems 50 (2013) 218-233.
[16] C. Luo, T.R. Li, H.M. Chen, L.X. Lu, Fast algorithms for computing rough approximations in 4 set-valued decision systems while updating criteria values, Information Sciences (2014) http://dx.doi.org/10.1016/j.ins.2014.12.029.
[17] N. Shan, W. Ziarko, Data-based acquisition and incremental modification of classification rules, Computation Intelligence 11(2) (1995) 357-370.
[18] W.H. Shu, H. Shen, Updating attribute reduction in incomplete decision systems with the variation of attribute set, International Journal of Approximate Reasoning 55(3) (2013) 867-884.
[19] W.H. Shu, H. Shen, Incremental feature selection based on rough set in dynamic incomplete data, Pattern Recognition 47(12) (2014) 3890-3906.
[20] A.H. Tan, J.J. Li, Y.J. Lin, G.P. Lin, Matrix-based set approximations and reductions in covering decision information systems, International Journal of Approximate Reasoning 59 (2015) 68-80.
[21] A.H. Tan, J.J. Li, G.P. Lin, Y.J. Lin, Fast approach to knowledge acquisition in covering information systems using matrix operations, Knowledge-Based Systems 79(2015) 90-98.
[22] C.Z. Wang, M.W. Shao, B.Q. Sun, Q.H. Hu, An improved attribute reduction scheme with covering based rough sets, Applied Soft Computing 26 (2015) 235-243.
[23] C.Z. Wang, Q. He, D.G. Chen, Q.H. Hu, A novel method for attribute reduction of covering decision systems, Information Sciences 254 (2014) 181-196.
[24] F. Wang, J.Y. Liang, C.Y. Dang, Attribute reduction for dynamic data sets, Applied Soft Computing 13 (2013) 676-689.
[25] F. Wang, J.Y. Liang, Y.H. Qian, Attribute reduction: A dimension incremental strategy, KnowledgeBased Systems 39 (2013) 95-108.
[26] S.P. Wang, W. Zhu, Q.H. Zhu, F. Min, Characteristic matrix of covering and its application to boolean matrice decomposition and axiomatization, Information Sciences 263(1) (2014) 186-197.
[27] T. Yang, Q.G. Li, Reduction about approximation spaces of covering generalized rough sets, International Journal of Approximate Reasoning 51(3) (2010) 335-345.
[28] X.B. Yang, M. Zhang, H.L. Dou, J. Y. Yang, Neighborhood systems-based rough sets in incomplete information system, Knowledge-Based Systems 24(6) (2011) 858-867.
[29] X.B. Yang, Y. Qi, H.L. Yu, X.N. Song, J.Y. Yang, Updating multigranulation rough approximations with increasing of granular structures, Knowledge-Based Systems 64 (2014) 59-69.
[30] W. Zakowski, Approximations in the space (u, π), Demonstratio Mathematics 16 (1983) 761-769.
[31] J.B. Zhang, T.R. Li, D. Ruan, D. Liu, Rough sets based matric approaches with dynamic attribute variation in set-valued information systems, International Journal of Approximate Reasoning 53(4) (2012) 620-635.
[32] J.B. Zhang, T.R. Li, D. Ruan, D. Liu, Neighborhood rough sets for dynamic data mining, International Journal of Intelligent Systems 27(4) (2012) 317-342.
[33] J.B. Zhang, T.R. Li, H.M. Chen, Composite rough sets for dynamic data mining, Information Sciences 257 (2014) 81-100.
[34] Y.L. Zhang, J.J. Li, W.Z. Wu, On axiomatic characterizations of three pairs of covering based approximation operators, Information Sciences 180(2) (2010) 274-287.
[35] P. Zhu, Covering rough sets based on neighborhoods: an approach without using neighborhoods, International Journal of Approximate Reasoning 52(3) (2011) 461-472.
[36] W. Zhu, Relationship among basic concepts in covering-based rough sets, Information Sciences 179(14) (2009) 2478-2486.
[37] W. Zhu, Relationship between generalized rough sets based on binary relation and coverings, Information Sciences 179(3) (2009) 210-225.

