Skip to main content

Advertisement

Log in

Mixed \(H_2/H_{\infty }\) pitch control of wind turbine generator system based on global exact linearization and regional pole placement

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

When the wind power electricity system working above the rated wind speed, the disturbed wind speed can lead to the output ripple easily, which causes a significant negative influence on the stability of the power grid. In order to overcome this disadvantage, this paper discusses the mixed \(H_2/H_{\infty }\) pitch angle control design problem for the nonlinear wind turbine generator system, where the turbulence is regarded as the disturbance input. Especially, the global exact linearization and the pole placement techniques are also applied to guarantee the desired control performance and expected dynamic characteristics in the situation of a large-scale variety of the system operation points. The simulation results show the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. GWEC, Global wind 2014 report. http://www.gwec.net/

  2. Muyeen SM (2012) Wind energy conversion systems: technology and trends. Springer, Berlin

    Book  Google Scholar 

  3. Jha AR (2011) Wind turbine technology. CRC Press, Florida

    Google Scholar 

  4. Mathew S, Philip GS (2011) Advances in wind energy conversion technology. Springer, Berlin

    Google Scholar 

  5. Munteanu L, Bratcu AL, Cutuluis NA (2008) Optimal control of wind energy systems. Springer, London

    Google Scholar 

  6. Senjyu T, Sakamoto R, Urasaki N et al (2006) Output power leveling of wind turbine generator for all operating regions by pitch angle control. IEEE Trans Energy Convers 21:467–475

    Article  Google Scholar 

  7. El-Tous Y (2008) Pitch angle control of variable speed wind turbine. Am J Eng Appl Sci 2:118–120

    Article  Google Scholar 

  8. Lescher F, Zhao JY, Borne P (2005) Robust gain scheduling controller for pitch regulated variable speed wind turbine. Stud Inform Control 14:299–315

    Google Scholar 

  9. Bianchi FD, Mantz RJ, Christiansen CF (2005) Gain scheduling control of variable speed wind energy conversion systems using quasi-LPV models. Control Eng Pract 13:247–255

    Article  Google Scholar 

  10. Balas MJ, Wright A, Hand M et al (2003) Dynamics and control of horizontal axis wind turbines. In: The American control conference, Denver, Colorado, USA, pp 3781–3793

  11. Slotha C, Esbensenb T, Stoustrup J (2011) Robust and fault-tolerant linear parameter-varying control of wind turbines. Mechatronics 21:645–659

    Article  Google Scholar 

  12. Bianchi FD, Battista HD, Mantz RJ (2007) Wind turbine control systems principles, modelling and gain scheduling design. Springer, Netherlands

    Google Scholar 

  13. Isidri A (1995) Nonlinear control system. Springer, Berlin

    Book  Google Scholar 

  14. Khalil HK (2002) Nonlinear system. Prentice Hall, London

    Google Scholar 

  15. Cheng D, Isidori A, Respondek W, Tarn TJ (1988) Exact linearization of nonlinear systems with outputs. Math Syst Theory 21:63–83

    Article  MathSciNet  MATH  Google Scholar 

  16. Lin ZW, Lin Y, Zhang WH (2009) A unified design for state and output feedback \(H_{\infty }\) control of nonlinear stochastic Markovian jump systems with state and disturbance-dependent noise. Automatica 41:2955–2962

    Article  MATH  Google Scholar 

  17. Lin ZW, Liu JZ, Zhang WH, Niu YG (2011) Stabilization of interconnected nonlinear stochastic Markovian jump systems via dissipativity approach. Automatica 47:2796–2800

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu J, Meng H, Hu Y et al (2015) A novel MPPT method for enhancing energy conversion efficiency taking power smoothing into account. Energy Convers Manag 101:738–748

    Article  Google Scholar 

  19. Su X, Wu L, Shi P et al (2014) A novel approach to output feedback control of fuzzy stochastic systems. Automatica 50(12):3268–3275

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang J (2014) Adaptive fuzzy control of direct-current motor dead-zone systems. Int J Innov Comput Inform Control 10(4):1391–1399

    Google Scholar 

  21. Su X, Shi P, Wu L et al (2013) A novel control design on discrete-time Takagi–Sugeno fuzzy systems with time-varying delays. IEEE Trans Fuzzy Syst 21(4):655–671

    Article  Google Scholar 

  22. Wu L, Su X, Shi P (2015) Fuzzy control of nonlinear electromagnetic suspension systems. In: Fuzzy control systems with time-delay and stochastic perturbation. Springer International Publishing, Berlin, pp 289–307

  23. Li YM, Tong SC, Li TS (2015) Observer-based adaptive fuzzy tracking control of MIMO stochastic nonlinear systems with unknown control direction and unknown dead-zones. IEEE Trans Fuzzy Syst 23(4):1228–1241

    Article  Google Scholar 

  24. Li YM, Tong SC, Liu YJ, Li TS (2014) Adaptive fuzzy robust output feedback control of nonlinear systems with unknown dead zones based on small-gain approach. IEEE Trans Fuzzy Syst 22(1):164–176

    Article  Google Scholar 

  25. Mistler V, Benallegue A, M’Sirdi NK (2001) Exact linearization and noninteracting control of a 4 rotors helicopter via dynamic feedback. In: IEEE international workshop on robot and human interactive communication, Bordeaux, Paris, pp 586–593

  26. Chang LY, Chen HC (2014) Linearization and input–output decoupling for nonlinear control of proton exchange membrane fuel cells. Energies 7:591–606

    Article  Google Scholar 

  27. Famouri P (1992) Control of a linear permanent magnet brushless dc motor via exact linearization methods. IEEE Trans Energy Convers 7:544–551

    Article  Google Scholar 

  28. Chilali M, Gahinet P (1996) \(H_{\infty }\) design with pole placement constrains: an LMI approach. IEEE Trans Autom Control 41:358–367

    Article  MathSciNet  MATH  Google Scholar 

  29. Chilali M, Gahinet P, Apkarian P (1999) Robust pole placement in LMI regions. IEEE Trans Autom Control 44:2257–2270

    Article  MathSciNet  MATH  Google Scholar 

  30. Hassan HM, ElShafei AL, Farag WA, Saad MS (2012) A robust LMI-based pitch controller for large wind turbines. Renew Energy 4:63–71

    Article  Google Scholar 

  31. Salle SA, Reardon D, Leithead WE, Grimble MJ (1990) Review of wind turbine control. Int J Control 52:1295–1310

    Article  Google Scholar 

  32. Abdin ES, Xu W (2000) Control design and dynamic performance analysis of a wind turbine-induction generator unit. IEEE Trans EC 15:91–96

    Google Scholar 

  33. Golnaraghi F, Kuo BC (2010) Automatic control system, 9th edn. Wiley, USA

    Google Scholar 

  34. Dou ZL, Cheng MZ, Ling ZB et al (2010) An adjustable pitch control system in a large wind turbine based on a fuzzy-PID controller. In: International symposium on power electronics electrical drives automation and motion, pp 391–395

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mu Zhu.

Additional information

This work is partially supported by the National Basic Research Program of China (973 Program) (Grant No. 2012CB215203), the National Natural Science Foundation of China (No. 61203043, No. 51036002) and the Fundamental Research Funds for the Central Universities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Liu, J., Lin, Z. et al. Mixed \(H_2/H_{\infty }\) pitch control of wind turbine generator system based on global exact linearization and regional pole placement. Int. J. Mach. Learn. & Cyber. 7, 921–930 (2016). https://doi.org/10.1007/s13042-016-0519-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-016-0519-x

Keywords

Navigation