Skip to main content
Log in

Constructing lattice based on irreducible concepts

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

The construction of concept lattices is one of the key issues of formal concept analysis. Many methods and algorithms are proposed to build a lattice, among which, incremental algorithms are more appropriate in real-life applications that work with dynamic datasets. But they cost much time to locate generators before generating a real concept. The batch algorithms generate concepts quickly. However, they ignore the procedure of building lattice relationship. In this paper, we build the lattice from meet-irreducible attribute concepts by using generators directly, and make optimizations in key steps. We yield the relationship among concepts during the generating process that saves much time in contrast to other batch algorithms. In addition to proving the correctness of our algorithm, we evaluate its performance on some real datasets and compare it with an incremental algorithm called FastAddIntent. The results show that our algorithm mainly depends on the numbers of concepts and the numbers of attributes, which achieves good performance, especially to large formal contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Andrews S, Orphanides C, FcaBedrock, a Formal Context Creator (2010) Conceptual structures: from information to intelligence. Springer, Berlin, pp 181–184

  2. Aswani Kumar C, Srinivas S (2010) Concept lattice reduction using fuzzy K-means clustering. Expert Syst Appl 37(3):2696–2704

    Article  Google Scholar 

  3. Bache K, Lichman M UCI machine learning repository. http://archive.ics.uci.edu/ml

  4. Belohlavek R (2001) Lattices of fixed points of fuzzy galois connections. Math Logic Quarter 47(1):111–116

    Article  MathSciNet  MATH  Google Scholar 

  5. Bělohlávek R, Sklenář V, Zacpal J (2005) Crisply generated fuzzy concepts. In: Proceedings of the third international conference on formal concept analysis. Springer, Berlin, pp 269–284

  6. Cao FY, Huang JZX, Liang JY (2014) Trend analysis of categorical data streams with a concept change method. Inform Sci 276:160–173

    Article  Google Scholar 

  7. Carpineto C, Romano G (2004) Concept data analysis: theory and applications, 1st edn. Wiley, New York

    Book  MATH  Google Scholar 

  8. Dias SM, Vieira NJ (2015) Concept lattices reduction: definition, analysis and classification. Expert Syst Appl 42(20):7084–7097

    Article  Google Scholar 

  9. Fu XH, Yang K, Huang JZX, Cui LZ (2015) Dynamic non-parametric joint sentiment topic mixture model. Knowl Based Syst 82:102–114

    Article  Google Scholar 

  10. Ganter B, Wille R (1999) Formal concept analysis, Mathematical foundations. Springer, Berlin

  11. Godin R, Missaoui R, Alaoui H (1995) Incremental concept formation algorithms based on galois (concept) lattices. Comput Intell 11(2):246–267

    Article  Google Scholar 

  12. Grätzer G et al (2003) General lattice theory, 2nd edn. Birkhäuser, Basel

    MATH  Google Scholar 

  13. He YL, Wang XZ, Huang JZX (2016) Fuzzy nonlinear regression analysis using a random weight network. Inform Sci. doi:10.1016/j.ins.2016.01.037

  14. Jaoua A, Elloumi S (2002) Galois connection, formal concepts and galois lattice in real relations: application in a real classifier. J Syst Softw 60(2):149–163

    Article  Google Scholar 

  15. Kourie DG, Obiedkov S, Watson BW, van der Merwe D (2009) An incremental algorithm to construct a lattice of set intersections. Sci Comput Program 74(3):128–142

    Article  MathSciNet  MATH  Google Scholar 

  16. Krajca P, Outrata J, Vychodil V (2010) Parallel algorithm for computing fixpoints of galois connections. Ann Math Artif Intell 59(2):257–272

    Article  MathSciNet  MATH  Google Scholar 

  17. Krajči S (2003) Cluster based efficient generation of fuzzy concepts. Neural Netw World 5:521–530

    Google Scholar 

  18. Kumar CA (2012) Fuzzy clustering-based formal concept analysis for association rules mining. Appl Artif Intell 26(3):274–301

    Article  Google Scholar 

  19. Kumar CA, Dias SM, Vieira NJ (2014) Knowledge reduction in formal contexts using non-negative matrix factorization. Math Comput Simul 109:46–63

    MathSciNet  Google Scholar 

  20. Kuznetsov S (1989) Interpretation on graphs and complexity characteristics of a search for specific patterns. Autom Doc Math Linguist 24(1):37–45

    MATH  Google Scholar 

  21. Kuznetsov S (1993) A fast algorithm for computing all intersections of objects in a finite semilattice. Autom Doc Math Linguist 27(5):11–21

    Google Scholar 

  22. Kuznetsov SO (1999) Learning of simple conceptual graphs from positive and negative examples. Springer, Berlin

    Book  Google Scholar 

  23. Kuznetsov SO, Obiedkov S (2002) Comparing performance of algorithms for generating concept lattices. J Exp Theor Artif Intell 14:189–216

    Article  MATH  Google Scholar 

  24. Li JH, Huang CC, Qi JJ et al (2016) Three-way cognitive concept learning via multi-granularity. Inform Sci. doi:10.1016/j.ins.2016.04.051

  25. Li JH, Mei CL, Cherukuri AK, Zhang X (2013) On rule acquisition in decision formal contexts. Int J Mach Learn Cybern 4(6):721–731

    Article  Google Scholar 

  26. Li JH, Mei CL, Wang JH, Zhang X (2014) Rule-preserved object compression in formal decision contexts using concept lattices. Knowl Based Syst 71:435–445

    Article  Google Scholar 

  27. Li JH, Ren Y, Mei CL, Qian YH, Yang XB (2016) A comparative study of multigranulation rough sets and concept lattices via rule acquisition. Knowl Based Syst 91:152–164

    Article  Google Scholar 

  28. Li KW, Shao MW, Wu WZ (2016) A data reduction method in formal fuzzy contexts. Int J Mach Learn Cybern. doi:10.1007/s13042-015-0485-8

  29. Li MZ, Wang GY (2015) Knowledge reduction in crisply generated fuzzy concept lattices. Fundamenta Informaticae 142(1–4):307–335

    Article  MathSciNet  MATH  Google Scholar 

  30. Ma JM, Zhang WX (2013) Axiomatic characterizations of dual concept lattices. Int J Approx Reason 54:690–697

    Article  MathSciNet  MATH  Google Scholar 

  31. Ma JM, Zhang WX, Leung Y, Song XX (2007) Granular computing and dual Galois connection. Inform Sci 177(23):5365–5377

    Article  MathSciNet  MATH  Google Scholar 

  32. Medina J (2012) Relating attribute reduction in formal, object-oriented and property-oriented concept lattices. Comput Math Appl 64:1992–2002

    Article  MathSciNet  MATH  Google Scholar 

  33. Medina J, Ojeda-Aciego M (2010) Multi-adjoint t-concept lattices. Inform Sci 180(5):712–725

    Article  MathSciNet  MATH  Google Scholar 

  34. Mi JS, Leung Y, Wu WZ (2010) Approaches to attribute reduction in concept lattices induced by axialities. Knowl Based Syst 23:504–511

    Article  Google Scholar 

  35. Norris E (1978) An algorithm for computing the maximal rectangles in a binary relationship. Rev Roum Math Pures Appl 23(2):243–250

    MATH  Google Scholar 

  36. Outrata J, Vychodil V (2012) Fast algorithm for computing fixpoints of galois connections induced by object-attribute relational data. Inform Sci 185(1):114–127

    Article  MathSciNet  MATH  Google Scholar 

  37. Pan WK, Liu ZD, Ming Z, Zhong H, Wang X, Xu CF (2015) Compressed knowledge transfer via factorization machine for heterogeneous collaborative recommendation. Knowl Based Syst 85:234–244

    Article  Google Scholar 

  38. Poelmans J, Elzinga P, Viaene S, Dedene G (2010) Formal concept analysis in knowledge discovery. Springer, Berlin

    Book  Google Scholar 

  39. Qi JJ, Wei L, Yao YY (2014) Three-way formal concept analysis. In: Proceedings of international conference on rough sets and knowledge technology. Shanghai, pp 732–741

  40. Shao MW, Leung Y (2014) Relations between granular reduct and dominance reduct in formal contexts. Knowl Based Syst 65:1–11

    Article  Google Scholar 

  41. Shao MW, Li KW (2016) Attribute reduction in generalized one-sided formal contexts. Inform Sci. doi:10.1016/j.ins.2016.03.018

  42. Shao MW, Yang H (2013) Two kinds of multi-level formal concepts and its application for sets approximations. Int J Mach Learn Cybern 4(6):621–630

    Article  Google Scholar 

  43. Shao MW, Yang HZ, Wu WZ (2015) Knowledge reduction in formal fuzzy contexts. Knowl Based Syst 73:265–275

    Article  Google Scholar 

  44. Singh PK, Kumar CA (2014) Bipolar fuzzy graph representation of concept lattice. Inform Sci 288:437–448

    Article  MathSciNet  Google Scholar 

  45. Singh PK, Cherukuri AK, Li J (2014) Concepts reduction in formal concept analysis with fuzzy setting using Shannon entropy. Int J Mach Learn Cybern. doi:10.1007/s13042-014-0313-6

  46. Singh PK, Aswani Kumar C, Li J (2016) Knowledge representation using interval-valued fuzzy formal concept lattice. Soft Comput 20(4):1485–1502

    Article  Google Scholar 

  47. Singh PK, Kumar CA, Gani A (2016) A Comprehensive survey on formal concept analysis, its research trends and applications. Int J Appl Math Comput Sci 26(2):495–516

    Article  MathSciNet  MATH  Google Scholar 

  48. Tan AH, Li JJ, Lin GP (2015) Connections between covering-based rough sets and concept lattices. Int J Approx Reason 56:43–58

    Article  MathSciNet  MATH  Google Scholar 

  49. Xu WH, Li WT (2016) Granular computing approach to two-way learning based on formal concept analysis in fuzzy datasets. IEEE Trans Cybern 46(2):366–379

    Article  Google Scholar 

  50. Xu B, de Fréin R, Robson E, Foghlú MÓ (2012) Distributed formal concept analysis algorithms based on an iterative mapreduce framework. Springer, Berlin

    Book  MATH  Google Scholar 

  51. Wang X (2012) Approaches to attribute reduction in concept lattices based on rough set theory. Int J Hybrid Inform Technol 5(2):67–79

    Google Scholar 

  52. Wang X, Zhang WX (2008) Relations of attribute reduction between object and property oriented concept lattices. Knowl Based Syst 21(5):398–403

    Article  Google Scholar 

  53. Wang XZ, He YL, Dong LC, Zhao HY (2011) Particle swarm optimization for determining fuzzy measures from data. Inform Sci 181(19):4230–4252

    Article  MATH  Google Scholar 

  54. Wang XZ, Xing HJ, Li Y, Hua Q, Dong CR, Pedrycz W (2015) A study on relationship between generalization abilities and fuzziness of base classifiers in ensemble learning. IEEE Trans Fuzzy Syst 23(5):1638–1654

    Article  Google Scholar 

  55. Wang XZ, Huang JZX (2015) Editorial: uncertainty in learning from big data. Fuzzy Sets Syst 258(1):1–4

    Article  MathSciNet  MATH  Google Scholar 

  56. Wei L, Qi JJ (2010) Relationship between concept lattice reduction and rough set reduction. Knowl Based Syst 23(8):934–938

    Article  Google Scholar 

  57. Wille R (1982) Restructuring lattice theory: an approach based on hierarchies of concepts. Springer, Dordrecht

    MATH  Google Scholar 

  58. Wu WZ, Leung Y, Mi JS (2009) Granular computing and knowledge reduction in formal contexts. IEEE Trans Knowl Data Eng 21(10):1461–1474

    Article  Google Scholar 

  59. Yahia SB, Jaoua A (2001) Data mining and computational intelligence, chap. Discovering knowledge from fuzzy concept lattice. Physica-Verlag GmbH, Heidelberg

    Google Scholar 

  60. Yao YY (2009) Three-way decision: an interpretation of rules in rough set theory. In: Proceedings of the 4th international conference on rough sets and knowledge technology, Gold Coast, pp 642–649

  61. Zhang XH, Miao DQ, Liu CH, Le ML (2016) Constructive methods of rough approximation operators and multigranulation rough sets. Knowl Based Syst 91:114–125

    Article  Google Scholar 

  62. Zou L, Zhang Z, Long J (2015) A fast incremental algorithm for constructing concept lattices. Expert Syst Appl 42(9):4474–4481

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the National Natural Science Foundation of China (Nos. 61173181, 61272021, 61363056, 61573321, 61673396), National Social Science Foundation of China (No. 14XXW004), Shandong Provincial Natural Science Foundation (No. 2015ZRE28145), the Fundamental Research Funds for the Central Universities (Nos. 15CX02049A, 15CX02119A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Wen Shao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Shao, MW. & Zhao, XM. Constructing lattice based on irreducible concepts. Int. J. Mach. Learn. & Cyber. 8, 109–122 (2017). https://doi.org/10.1007/s13042-016-0587-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-016-0587-y

Keywords

Navigation