Skip to main content

Advertisement

Log in

Synchronization for memristive chaotic neural networks using Wirtinger-based multiple integral inequality

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

This paper investigates the synchronization problem for a class of memristive chaotic neural networks with time-varying delays. Based on te Wirtinger-based double integral inequality, two novel inequalities are proposed, which are multiple integral forms of the Wirtinger-based integral inequality. Next, by applying the reciprocally convex combination approach for high order case and a free-matrix-based inequality, novel delay-dependent conditions are established to achieve the synchronization for the memristive chaotic neural networks. The results are based on dividing the bounding of activation function into two subintervals with equal length. Finally, a numerical example is provided to demonstrate the effectiveness of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ashfaq RAR, Wang X-Z, Huang JZ, Abbas H, He Y (2016) Fuzziness based semi-supervised learning approach for intrusion detection system. Inf Sci. doi:10.1016/j.ins.2016.04.019

    Google Scholar 

  2. Aubin JP, Cellina A (1984) Differential inclusions. Springer, Berlin

    Book  MATH  Google Scholar 

  3. Aubin JP, Frankowska H (1990) Set-valued analysis. Birkhauser, Boston

    MATH  Google Scholar 

  4. Bao H, Park JH, Cao J (2015) Matrix measure strategies for exponential synchronization and anti-synchronization of memristor-based neural networks with time-varying delays. Appl Math Comput 2701:543–556

    MathSciNet  Google Scholar 

  5. Chandrasekar A, Rakkiyappan R, Cao J, Lakshmanan S (2014) Synchronization of memristor-based recurrent neural networks with two delay components based on second-order reciprocally convex approach. Neural Netw 57:79–93

    Article  MATH  Google Scholar 

  6. Chen J, Zeng Z, Jiang P (2014) Global Mittag–Leffler stability and synchronization of memristor-based fractional-order neural networks. Neural Netw 51:1–8

    Article  MATH  Google Scholar 

  7. Chua LO (1971) Memristor-the missing circuit element. IEEE Trans Circuit Theory 18:507–519

    Article  Google Scholar 

  8. Fang M, Park JH (2013) A multiple integral approach to stability of neutral time-delay systems. Appl Math Comput 224:714–718

    MathSciNet  MATH  Google Scholar 

  9. Filippov AF (1984) Differential equations with discontinuous right-hand side. Mathematics and its applications (Soviet Series). Kluwer Academic, Boston

    Google Scholar 

  10. Jiang M, Mei J, Hu J (2015) New results on exponential synchronization of memristor-based chaotic neural networks. Neurocomputing 156:60–67

    Article  Google Scholar 

  11. Gu K (2000) An integral inequality in the stability problem of time-delay systems. In: Proceedings of 39th IEEE conference decision and control, pp 2805–2810

  12. He Y, Liu JNK, Hu Y, Wang X-Z (2015) OWA operator based link prediction ensemble for social network. Exp Syst Appl 42(1):21–50

    Article  Google Scholar 

  13. He Y, Wang X-Z, Huang JZ (2016) Fuzzy nonlinear regression analysis using a random weight network. Inf Sci 364–365:222–240

    Article  Google Scholar 

  14. Jiang M, Wang S, Mei J, Shen Y (2015) Finite-time synchronization control of a class of memristor-based recurrent neural networks. Neural Netw 63:133–140

    Article  MATH  Google Scholar 

  15. Kim SH, Park P, Jeong CK (2010) Robust H\(_\infty\) stabilisation of networks control systems with packet analyser. IET Control Theory Appl 4:1828–1837

    Article  Google Scholar 

  16. Kwon OM, Lee SM, Park JH, Cha EJ (2012) New approaches on stability criteria for neural networks with interval time-varying delays. Appl Math Comput 218(19):9953–9964

    MathSciNet  MATH  Google Scholar 

  17. Lee TH, Park JH, Park M-J, Kwon O-M, Jung H-Y (2015) On stability criteria for neural networks with time-varying delay using Wirtinger-based multiple integral inequality. J Frank Inst 352(12):5627–5645

    Article  MathSciNet  Google Scholar 

  18. Leine RI, Van Campen DH, Van De Vrande BL (2000) Bifurcations in nonlinear discontinuous systems. Nonlinear Dyn 23(1):105–164

    Article  MathSciNet  MATH  Google Scholar 

  19. Lin D, Liu H, Song H, Zhang F (2014) Fuzzy neural control of uncertain chaotic systems with backlash nonlinearity. Int J Mach Learn Cyber 5(5):721–728

    Article  Google Scholar 

  20. Lin D, Wang X-Y (2010) Observer-based decentralized fuzzy neural sliding mode control for interconnected unknown chaotic systems via network structure adaptation. Fuzzy Sets Syst 161(15):2066–2080

    Article  MathSciNet  MATH  Google Scholar 

  21. Lin D, Zhang F, Liu J-M (2014) Symbolic dynamics-based error analysis on chaos synchronization via noisy channels. Phys Rev E 90(1):012908–012908

    Article  Google Scholar 

  22. Liu Z, Zhang H, Zhang Q (2010) Novel stability analysis for recurrent neural networks with multiple delays via line integral-type L-K functional. IEEE Trans Neural Netw 21(11):1710–1718

    Article  Google Scholar 

  23. Mathiyalagan K, Park JH, Sakthivel R (2015) Synchronization for delayed memristive BAM neura using impulsive control with random nonlinearities. Appl Math Comput 259:967–979

    MathSciNet  MATH  Google Scholar 

  24. Park MJ, Kwon OM, Park JH, Lee SM, Cha EJ (2015) Stability of time-delay systems via Wirtinger-based double integral inequality. Automatica 55(1):204–208

    Article  MathSciNet  MATH  Google Scholar 

  25. Park P, Ko JW, Jeong C (2011) Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47(1):235–238

    Article  MathSciNet  MATH  Google Scholar 

  26. Pecora L, Carroll T (1990) Synchronization in chaotic systems. Phys Rev Lett 64:821–824

    Article  MathSciNet  MATH  Google Scholar 

  27. Rakkiyappan R, Dharani S, Zhu Q (2015) Stochastic sampled-data H-infinity synchronization of coupled neutral-type delay partial differential systems. J Franklin Inst 352(10):4480–4502

    Article  MathSciNet  Google Scholar 

  28. Rakkiyappan R, Dharani S, Zhu Q (2015) Synchronization of reaction-diffusion neural networks with time-varying delays via stochastic sampled-data controller. Nonlinear Dyn 79(1):485–500

    Article  MathSciNet  MATH  Google Scholar 

  29. Seuret A, Gouaisbaut F (2013) Wirtinger-based integral inequality: application to time-delay systems. Automatica 49:2860–2866

    Article  MathSciNet  MATH  Google Scholar 

  30. Song Y, Wen S (2015) Synchronization control of stochastic memristor-based neural networks with mixed delays. Neurocomputing 156:121–128

    Article  Google Scholar 

  31. Struko DB, Snider GS, Stewart GR, Williams RS (2008) The missing memristor found. Nature 453:80–83

    Article  Google Scholar 

  32. Wang G, Shen Y (2014) Exponential synchronization of coupled memristive neural networks with time delays. Neural Comput Appl 24(6):1421–1430

    Article  Google Scholar 

  33. Wang X, Li C, Huang T, Chen L (2015) Dual-stage impulsive control for synchronization of memristive chaotic neural networks with discrete and continuously distributed delays. Neurocomputing 149(B):621–628

    Article  Google Scholar 

  34. Wang X-Y, Song J-M (2009) Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control. Commun Nonlinear Sci Numer Simul 14(8):3351–3357

    Article  MATH  Google Scholar 

  35. Wang X-Y, He Y (2008) Projective synchronization of fractional order chaotic system based on linear separation. Phys Lett A 372(4):435–441

    Article  MATH  Google Scholar 

  36. Wang X-Z (2015) Learning from big data with uncertainty–editorial. J Intell Fuzzy Syst 28(5):2329–2330

    Article  MathSciNet  Google Scholar 

  37. Wang X-Z, Ashfaq RAR, Fu A-M (2015) Fuzziness based sample categorization for classifier performance improvement. J Intell Fuzzy Syst 29(3):1185–1196

    Article  MathSciNet  Google Scholar 

  38. Wu A, Wen S, Zeng Z (2012) Synchronization control of a class of memristor-based recurrent neural networks. Inf Sci 183(1):106–116

    Article  MathSciNet  MATH  Google Scholar 

  39. Wu A, Wen S, Zeng Z, Zhu X, Zhang J (2011) Exponential synchronization of memristor-based recurrent neural networks with time delays. Neurocomputing 74(17):3043–3050

    Article  Google Scholar 

  40. Wu A, Zeng Z (2013) Anti-synchronization control of a class of memristive recurrent neural networks. Commun Nonlinear Sci Numer Simul 18(2):373–385

    Article  MathSciNet  MATH  Google Scholar 

  41. Wu H, Li R, Yao R, Zhang X (2015) Weak, modified and function projective synchronization of chaotic memristive neural networks with time delays. Neurocomputing 149(B):667–676

    Article  Google Scholar 

  42. Wu H, Li R, Zhang X, Yao R (2015) Adaptive finite-time complete periodic synchronization of memristive neural networks with time delays. Neural Process Lett 42(3):563–583

    Article  Google Scholar 

  43. Zeng H-B, He Y, Wu M, She J (2015) Free-matrix-based integral inequality for stability analysis of systems with time-varying delay. IEEE Trans Autom Control 60(10):2768–2774

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang G, Shen Y (2013) New algebraic criteria for synchronization stability of chaotic memristive neural networks with time-varying delays. IEEE Trans Neural Netw Learn Syst 24(10):1701–1707

    Article  Google Scholar 

  45. Zhang G, Shen Y, Yin Q, Sun J (2013) Global exponential periodicity and stability of a class of memristor-based recurrent neural networks with multiple delays. Inf Sci 232:386–396

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhang H, Liu Z, Huang G-B, Wang Z (2010) Novel weighting-delay-based stability criteria for recurrent neural networks with time-varying delay. IEEE Trans Neural Netw 21(1):91–106

    Article  Google Scholar 

  47. Zhang H, Yang F, Liu X, Zhang Q (2013) Stability analysis for neural networks with time-varying delay based on quadratic convex combination. IEEE Trans Neural Netw Learn Syst 24(4):513–521

    Article  Google Scholar 

  48. Zhu Q, Cao J (2014) Mean-square exponential input-to-state stability of stochastic delayed neural networks. Neurocomputing 131:157–163

    Article  Google Scholar 

  49. Zhu Q, Cao J (2012) Stability analysis of Markovian jump stochastic BAM neural networks with impulse control and mixed time delays. IEEE Trans Neural Netw Learn Syst 23(3):467–479

    Article  MathSciNet  Google Scholar 

  50. Zhu Q, Cao J (2012) Stability of Markovian jump neural networks with impulse control and time varying delays. Nonlinear Anal Real World Appl 13(5):2259–2270

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhu Q, Cao J, Rakkiyappan R (2015) Exponential input-to-state stability of stochastic Cohen–Grossberg neural networks with mixed delays. Nonlinear Dyn 79:1085–1098

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhu Q, Rakkiyappan R, Chandrasekar A (2014) Stochastic stability of Markovian jump BAM neural networks with leakage delays and impulse control. Neurocomputing 136:136–151

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-De Zheng.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61273022, 61473070, 61433004), the Fundamental Research Funds for the Central Universities (Grant Nos. N130504002 and N130104001), and SAPI Fundamental Research Funds (Grant No. 2013ZCX01).

Appendices

Appendix I

1.1 Proof of Lemma 1

We utilize the mathematical induction to prove inequality (6). Let \(\imath =0,\) inequality (6) changes into the Wirtinger-based integral inequality [29]. That is, inequality (6) holds for \(\imath =0.\) Now assume that inequality (6) holds for \(\imath =k,\) that is, for any scalar \(s\ (a<s<b),\) the following inequality holds

$$\begin{aligned} 0\le\,&\Theta _k(a,s,\vartheta ,X)-\frac{(k+1)!}{(s-a)^{k+1}}\rho _k(a,s,\vartheta )^TX\rho _k(a,s,\vartheta )\nonumber \\&-\frac{(k+3)k!}{(s-a)^{k+1}}\Big [\rho _k(a,s,\vartheta )-\frac{k+2}{s-a}\rho _{k+1}(a,s,\vartheta )\Big ]^T \nonumber \\&\times X\Big [\rho _k(a,s,\vartheta )-\frac{k+2}{s-a}\rho _{k+1}(a,s,\vartheta )\Big ]\nonumber \\ =\,&\Theta _k(a,s,\vartheta ,X)+\varpi (s)^T\Omega (s)\varpi (s), \end{aligned}$$
(21)

where \(\varpi (s)=\mathrm{col}\big \{\rho _k(a,s,\vartheta ),\ \rho _{k+1}(a,s,\vartheta )\big \}\) and

$$\begin{aligned} \Omega (s)=\big [\Omega _{ij}(s)\big ]_{2\times 2}=\frac{(k+2)k!}{(s-a)^{k+1}}\bigg [\begin{array}{ll} -2X&\frac{k+3}{s-a}X \\ *&-\frac{(k+2)(k+3)}{(s-a)^{2}}X \end{array}\bigg ]. \end{aligned}$$

Note that matrix \(X>0\), thus \(\Omega _{11}(s)=-\frac{2(k+2)k!}{(s-a)^{k+1}}X<0\) and \(\Omega _{22}(s)-\Omega _{21}(s)\Omega _{11}(s)^{-1}\Omega _{12}(s)=-\frac{(k+3)!}{2(s-a)^{k+3}}X<0\). Applying Schur Complements to \(\Omega (s)\) yields \(\Omega (s)<0\). By Schur Complements again, (21) is equivalent to the following inequality:

$$\begin{aligned} \bigg [\begin{array}{ll}\Theta _k(a,s,\vartheta ,X) &\varpi (s)^T \\ *& \widetilde{\Omega }(s)\end{array}\bigg ]\ge 0, \end{aligned}$$
(22)

where

$$\begin{aligned} \widetilde{\Omega }(s)=\big [\widetilde{\Omega }_{ij}(s)\big ]_{2\times 2}=-\Omega (s)^{-1}= \frac{(s-a)^{k+1}}{(k+1)!}\bigg [\begin{array}{ll} X^{-1}& \frac{s-a}{k+2}X^{-1} \\ *&\frac{2(s-a)^{2}}{(k+2)(k+3)}X^{-1} \end{array}\bigg ]. \end{aligned}$$

Since \(\widetilde{\Omega }_{22}(s)=\frac{2(s-a)^{k+3}}{(k+3)!}X^{-1}>0\) and \(\widetilde{\Omega }_{11}(s)-\widetilde{\Omega }_{12}(s)\widetilde{\Omega }_{22}(s)^{-1}\widetilde{\Omega }_{21}(s) =\frac{k+1}{2(k+2)!}X^{-1}>0,\) applying Schur Complements to \(\widetilde{\Omega }(s)\) leads to \(\widetilde{\Omega }(s)>0\).

Integrating (22) from a to b yields

$$\begin{aligned} \Bigg [\begin{array}{ll}\Theta _{k+1}(a,b,\vartheta ,X) &\int ^{b}_{a}\varpi (s)^T\mathrm{d}s \\ *& \int ^{b}_{a}\widetilde{\Omega }(s)\mathrm{d}s\end{array}\Bigg ]\ge 0,\end{aligned}$$
(23)

where \(\int ^{b}_{a}\varpi (s)\mathrm{d}s=\mathrm{col}\big \{\rho _{k+1}(a,b,\vartheta ),\ \rho _{k+2}(a,b,\vartheta )\big \}\) and

$$\begin{aligned} \int ^{b}_{a}\widetilde{\Omega }(s)\mathrm{d}s=\frac{(b-a)^{k+2}}{(k+2)!}\bigg [\begin{array}{ll} X^{-1}& \frac{b-a}{k+3}X^{-1} \\ *&\frac{2(b-a)^{2}}{(k+3)(k+4)}X^{-1} \end{array}\bigg ]. \end{aligned}$$

Applying Schur Complements again to (23) yields

$$\begin{aligned} \Theta _{k+1}(a,b,\vartheta ,X)\ge \bigg [\begin{array}{c} \rho _{k+1}(a,b,\vartheta ) \\ \rho _{k+2}(a,b,\vartheta ) \end{array}\bigg ]^T\bigg (\int ^{b}_{a}\widetilde{\Omega }(s)\mathrm{d}s\bigg )^{-1}\bigg [\begin{array}{c} \rho _{k+1}(a,b,\vartheta ) \\ \rho _{k+2}(a,b,\vartheta ) \end{array}\bigg ], \end{aligned}$$
(24)

where

$$\begin{aligned} \bigg (\int ^{b}_{a}\widetilde{\Omega }(s)\mathrm{d}s\bigg )^{-1}=\frac{(k+3)(k+1)!}{(b-a)^{k+2}}\bigg [\begin{array}{ll} 2X& -\frac{k+4}{b-a}X \\ *&\frac{(k+3)(k+4)}{(b-a)^{2}}X \end{array}\bigg ]. \end{aligned}$$

Simple calculating yields that (24) is equivalent to inequality (6) with \(\imath =k+1.\) This completes the proof.

Appendix II

1.1 Proof of Lemma 3

Equality (8) comes from Ref. [17], we only need to prove that equality (9) holds for any positive integer i. We utilize the mathematical induction again. Let \(i=1,\) (9) changes into the following equality

$$\begin{aligned} \rho _0(a,b,\lambda )=\int ^{b}_{a}\lambda (s)\mathrm{d}s=\int ^{b}_{c}\lambda (s)\mathrm{d}s+\int ^{c}_{a}\lambda (s)\mathrm{d}s=\rho _0(c,b,\lambda )+\rho _0(a,c,\lambda ). \end{aligned}$$

That is, equality (9) holds for \(i=1.\) Now assume that inequality (9) holds for \(i=k.\) Set \(\Gamma (s)=\int ^{s}_{a}\lambda (v)\mathrm{d}v,\) then \(\Gamma (s)\) is continuous on [ab]. Based on the assumption of induction, we have

$$\begin{aligned} \rho _{k}(a,b,\lambda )=&\int ^{b}_{a}\int ^{v_1}_{a}\cdots \int ^{v_{k-1}}_{a}\int ^{v_k}_{a}\lambda (s)\mathrm{d}s\mathrm{d}v_k\mathrm{d}v_{k-1}\ldots \mathrm{d}v_1=\rho _{k-1}(a,b,\Gamma )\\ =\,&\rho _{k-1}(c,b,\Gamma )+\sum ^k_{j=1}\frac{(b-c)^{k-j}}{(k-j)!}\rho _{j-1}(a,c,\Gamma )\\ =&\int ^{b}_{c}\int ^{v_1}_{c}\cdots \int ^{v_{k-1}}_{c}\int ^{v_k}_{a}\lambda (s)\mathrm{d}s\mathrm{d}v_k\mathrm{d}v_{k-1}\ldots \mathrm{d}v_1\\&+\sum ^k_{j=1}\frac{(b-c)^{k-j}}{(k-j)!}\int ^{c}_{a}\int ^{v_1}_{a}\cdots \int ^{v_{j-1}}_{a}\int ^{v_k}_{a}\lambda (s)\mathrm{d}s\mathrm{d}v_k\mathrm{d}v_{j-1}\ldots \mathrm{d}v_1\\ =&\int ^{b}_{c}\int ^{v_1}_{c}\cdots \int ^{v_{k-1}}_{c}\bigg (\int ^{c}_{a}\lambda (s)\mathrm{d}s+\int ^{v_k}_{c}\lambda (s)\mathrm{d}s\bigg )\mathrm{d}v_k\mathrm{d}v_{k-1}\ldots \mathrm{d}v_1 \\&+\sum ^k_{j=1}\frac{(b-c)^{k-j}}{(k-j)!}\rho _{j}(a,c,\lambda )\\ =\,&\rho _{k}(c,b,\lambda ) +\frac{(b-c)^{k}}{k!}\rho _{0}(a,c,\lambda )+\sum ^{k+1}_{l=2}\frac{(b-c)^{k+1-l}}{(k+1-l)!}\rho _{l-1}(a,c,\lambda )\\ =\,&\rho _{k}(c,b,\lambda )+\sum ^{k+1}_{j=1}\frac{(b-c)^{k+1-j}}{(k+1-j)!}\rho _{j-1}(a,c,\lambda ). \end{aligned}$$

That is, inequality (9) holds for \(i=k+1.\) This completes the proof.

Appendix III

1.1 Proof of Theorem 1

Consider the following Lyapunov–Krasovskii functional candidate:

$$\begin{aligned} V(e_t,t)=\,&e(t)^T{K}e(t)+\sum ^3_{i=1}V_i(e_t,t), \end{aligned}$$

where

$$\begin{aligned} V_1(e_t,t)=&\int ^t_{t-\tau (t)}\kappa (s)^T\mathcal {Q}\kappa (s)\mathrm{d}s+\bar{\tau }\int ^{t}_{t-\bar{\tau }}\int ^t_{\theta }\kappa (s)^T\mathcal {R}\kappa (s)\mathrm{d}s\mathrm{d}\theta +\int ^{t}_{t-\bar{\tau }}\kappa (s)^T\mathcal {S}\kappa (s)\mathrm{d}s,\\ V_2(e_t,t)=&\int ^{t}_{t-\bar{\tau }}\int ^t_{\theta }\big \{\bar{\tau }\nu (s)^T\mathcal {Z}\nu (s)+\dot{e}(s)^TY\dot{e}(s)\big \}\mathrm{d}s\mathrm{d}\theta ,\\ V_3(e_t,t)=&\sum ^m_{i=1}\frac{\bar{\tau }^i}{i!}\bigg \{\Omega _i(t-\bar{\tau },t,\dot{e}(t),U_i) \\&+\int ^{t}_{t-\bar{\tau }}\int ^{v_i}_{t-\bar{\tau }}\cdots \int ^{v_2}_{t-\bar{\tau }}\int ^{t}_{v_1}\dot{e}(s)^TM_i\dot{e}(s)\mathrm{d}v_1\mathrm{d}v_2\ldots \mathrm{d}v_{i-1}\mathrm{d}v_i\bigg \}, \end{aligned}$$

with \(\kappa (s)=\mathrm{col}\big \{e_s,\ g(e_s)\big \}, \nu (t)=\mathrm{col}\big \{e_t,\dot{e}(t)\big \}\) and \(\Omega _i(\cdot ,\cdot ,\cdot ,\cdot )(i=1,2,\ldots ,m)\) are defined in Lemma 1.

Calculating the time derivatives of \(V(e_t,t)\) along the trajectories of the error system (3), we obtain

$$\begin{aligned} \dot{V}(e_t,t)=2e(t)^T{K}\dot{e}(t)+\sum ^3_{i=1}\dot{V}_i(e_t,t), \end{aligned}$$
(25)

where

$$\begin{aligned} \dot{V}_1(e_t,t)=&\kappa (t)^T\big (\mathcal {Q}+\bar{\tau }^2\mathcal {R}+\mathcal {S}\big )\kappa (t) -[1-\dot{\tau }(t)]\kappa (t-\tau (t))^T\mathcal {Q}\kappa (t-\tau (t))\end{aligned}$$
(26)
$$\begin{aligned}&-\bar{\tau }\int ^{t}_{t-\bar{\tau }}\kappa (s)^T\mathcal {R}\kappa (s)\mathrm{d}s-\kappa (t-\bar{\tau })^T\mathcal {S}\kappa (t-\bar{\tau }),\nonumber \\ \dot{V}_2(e_t,t)=&\bar{\tau }^2\nu (t)^T\mathcal {Z}\nu (t)+\bar{\tau }\dot{e}(t)^TY\dot{e}(t) -\int ^{t}_{t-\bar{\tau }}\big \{\bar{\tau }\nu (s)^T\mathcal {Z}\nu (s)+\dot{e}(s)^TY\dot{e}(s)\big \}\mathrm{d}s,\end{aligned}$$
(27)
$$\begin{aligned} \dot{V}_3(e_t,t)=&\sum ^m_{i=1}\frac{\bar{\tau }^i}{i!}\bigg \{\frac{\bar{\tau }^i}{i!}\dot{e}(t)^T(U_i+M_i)\dot{e}(t) \nonumber \\&-\Omega _{i-1}(t-\bar{\tau },t,\dot{e}(t),U_i)-\Theta _{i-1}(t-\bar{\tau },t,\dot{e}(t),M_i)\bigg \}, \end{aligned}$$
(28)

where \(\Theta _i(\cdot ,\cdot ,\cdot ,\cdot )(i=0,1,\ldots ,m-1)\) are defined in Lemma 1.

When \(0<{\tau }(t)<\bar{\tau },\) by utilizing the Jensen integral inequality [11] and reciprocally convex combination [25], we obtain from (11) that

$$\begin{aligned} -\bar{\tau }\int ^{t}_{t-\bar{\tau }}\kappa (s)^T\mathcal {R}\kappa (s)\mathrm{d}s =&-\bar{\tau }\int ^{t}_{t-{\tau }(t)}\kappa (s)^T\mathcal {R}\kappa (s)\mathrm{d}s-\bar{\tau }\int ^{t-{\tau }(t)}_{t-\bar{\tau }}\kappa (s)^T\mathcal {R}\kappa (s)\mathrm{d}s\nonumber \\ \le&-\frac{\bar{\tau }}{\tau (t)}\left( \int ^{t}_{t-{\tau }(t)}\kappa (s)\mathrm{d}s\right) ^T\mathcal {R} \left( \int ^{t}_{t-{\tau }(t)}\kappa (s)\mathrm{d}s\right) \nonumber \\&-\frac{\bar{\tau }}{\bar{\tau }-\tau (t)}\left( \int ^{t-{\tau }(t)}_{t-\bar{\tau }}\kappa (s)\mathrm{d}s\right) ^T\mathcal {R}\left( \int ^{t-{\tau }(t)}_{t-\bar{\tau }}\kappa (s)\mathrm{d}s\right) \nonumber \\ \le&-\tilde{\kappa }(t)^T\bigg [\begin{array}{ll} \mathcal {R} &\mathcal {X} \\ *&\mathcal {R} \end{array}\bigg ]\tilde{\kappa }(t), \end{aligned}$$
(29)

where \(\tilde{\kappa }(t)=\mathrm{col}\Big \{\int ^{t}_{t-{\tau }(t)}\kappa (s)\mathrm{d}s,\ \int ^{t-{\tau }(t)}_{t-\bar{\tau }}\kappa (s)\mathrm{d}s\Big \}.\)

Inspired by the work of [15], the following zero equalities with any symmetric matrices \(D_i(i=1,2)\) are proposed according to the Leibniz-Newton formula:

$$\begin{aligned}&\bar{\tau }e_t^TD_1e_t-\bar{\tau }e_\tau ^TD_1e_\tau -2\bar{\tau }\int ^t_{t-\tau (t)}{e}(s)^TD_1\dot{e}(s)\mathrm{d}s=0,\end{aligned}$$
(30)
$$\begin{aligned}&\bar{\tau }e_\tau ^TD_2e_\tau -\bar{\tau }e_{\bar{\tau }}^TD_2e_{\bar{\tau }} -2\bar{\tau }\int ^{t-\tau (t)}_{t-\bar{\tau }}{e}(s)^TD_2\dot{e}(s)\mathrm{d}s=0. \end{aligned}$$
(31)

By utilizing the Jensen integral inequality [11] and reciprocally convex combination [25], we get from (12) that

$$\begin{aligned}&-\bar{\tau }\int ^{t}_{t-\bar{\tau }}\nu (s)^T\mathcal {Z}\nu (s)\mathrm{d}s-2\bar{\tau }\int ^t_{t-\tau (t)}{e}(s)^TD_1\dot{e}(s)\mathrm{d}s-2\bar{\tau }\int ^{t-\tau (t)}_{t-\bar{\tau }}{e}(s)^TD_2\dot{e}(s)\mathrm{d}s\nonumber \\ =&-\bar{\tau }\int ^{t}_{t-{\tau }(t)}\nu (s)^T(\mathcal {Z}+\mathcal {D}_1)\nu (s)\mathrm{d}s-\bar{\tau }\int ^{t-{\tau }(t)}_{t-\bar{\tau }}\nu (s)^T(\mathcal {Z}+\mathcal {D}_2)\nu (s)\mathrm{d}s\nonumber \\ \le&-\frac{\bar{\tau }}{\tau (t)}\left( \int ^{t}_{t-{\tau }(t)}\nu (s)\mathrm{d}s\right) ^T(\mathcal {Z}+\mathcal {D}_1)\left( \int ^{t}_{t-{\tau }(t)}\nu (s)\mathrm{d}s\right) \nonumber \\&-\frac{\bar{\tau }}{\bar{\tau }-\tau (t)}\left( \int ^{t-{\tau }(t)}_{t-\bar{\tau }}\nu (s)\mathrm{d}s\right) ^T(\mathcal {Z}+\mathcal {D}_2)\left( \int ^{t-{\tau }(t)}_{t-\bar{\tau }}\nu (s)\mathrm{d}s\right) \nonumber \\ \le&-\tilde{\nu }(t)^T\bigg [\begin{array}{ll} \mathcal {Z}+\mathcal {D}_1 &\mathcal {Y} \\ *&\mathcal {Z}+\mathcal {D}_2 \end{array}\bigg ]\tilde{\nu }(t), \end{aligned}$$
(32)

where \(\tilde{\nu }(t)=\mathrm{col}\Big \{\int ^{t}_{t-{\tau }(t)}\nu (s)\mathrm{d}s,\ \int ^{t-{\tau }(t)}_{t-\bar{\tau }}\nu (s)\mathrm{d}s\Big \}.\)

Based on Lemma 5, from inequalities (13)–(14) we get that

$$\begin{aligned}&-\int ^{t}_{t-\bar{\tau }}\dot{e}(s)^TY\dot{e}(s)\mathrm{d}s\nonumber \\ =&-\int ^{t}_{t-{\tau }(t)}\dot{e}(s)^TY\dot{e}(s)\mathrm{d}s-\int ^{t-{\tau }(t)}_{t-\bar{\tau }}\dot{e}(s)^TY\dot{e}(s)\mathrm{d}s\nonumber \\ \le&\theta (t)^T\Big \{{\tau }(t)\Big (H_1+\frac{1}{3}H_3\Big )+\mathrm{sym}\big \{H_4\big [\begin{array}{lll} I&-I&0 \end{array}\big ] +H_5\big [\begin{array}{lll} -I&-I&2I \end{array}\big ]\big \}\Big \}\theta (t)\nonumber \\&+\iota (t)^T\Big \{[\bar{\tau }-{\tau }(t)]\Big (E_1+\frac{1}{3}E_3\Big )+\mathrm{sym}\big \{E_4\big [\begin{array}{lll} I&-I&0 \end{array}\big ] +E_5\big [\begin{array}{lll} -I&-I&2I \end{array}\big ]\big \}\Big \}\iota (t). \end{aligned}$$
(33)

where

$$\begin{aligned} \theta (t)=\mathrm{col}\bigg \{e_t,\ e_\tau ,\ \frac{1}{{\tau }(t)}\int ^{t}_{t-{\tau }(t)}e_s\mathrm{d}s\bigg \},\ \iota (t)=\mathrm{col}\bigg \{e_\tau ,\ e_{\bar{\tau }},\ \frac{1}{\bar{\tau }-{\tau }(t)}\int ^{t-{\tau }(t)}_{t-\bar{\tau }}e_s\mathrm{d}s\bigg \}. \end{aligned}$$

Applying Lemma 3 yields

$$\begin{aligned}&\Omega _{i-1}(t-\bar{\tau },t,\dot{e}(t),U_i)=\Omega _{i-1}(t-\bar{\tau },t-\tau (t),\dot{e}(t),U_i) \end{aligned}$$
(34)
$$\begin{aligned}&+\sum ^i_{j=1}\frac{[\bar{\tau }-\tau (t)]^{i-j}}{(i-j)!}\Omega _{j-1}(t-\tau (t),t,\dot{e}(t),U_i), \nonumber \\&\Theta _{i-1}(t-\bar{\tau },t,\dot{e}(t),M_i)=\Theta _{i-1}(t-\tau (t),t,\dot{e}(t),M_i) \nonumber \\&+\sum ^i_{j=1}\frac{[\tau (t)]^{i-j}}{(i-j)!}\Theta _{j-1}(t-\bar{\tau },t-\tau (t),\dot{e}(t),M_i). \end{aligned}$$
(35)

Based on Lemmas 2, 3 and 6, if conditions (15)-(16) hold, then by simple calculating we obtain from inequalities (34)-(35) that

$$\begin{aligned}&\sum ^m_{i=1}\frac{\bar{\tau }^i}{i!}\big \{\Omega _{i-1}(t-\bar{\tau },t,\dot{e}(t),U_i) +\Theta _{i-1}(t-\bar{\tau },t,\dot{e}(t),M_i)\big \}\nonumber \\ =&\sum ^m_{i=1}\frac{\bar{\tau }^i}{i!}\bigg \{\Omega _{i-1}(t-\bar{\tau },t-\tau (t),\dot{e}(t),U_i) +\Omega _{i-1}(t-\tau (t),t,\dot{e}(t),\mathcal {U}_i(t))\nonumber \\&\quad +\Theta _{i-1}(t-\tau (t),t,\dot{e}(t),M_i) +\Theta _{i-1}(t-\bar{\tau },t-\tau (t),\dot{e}(t),\mathcal {M}_i(t))\bigg \}\nonumber \\ \ge&\bigg (\frac{\bar{\tau }}{\bar{\tau }-\tau (t)}\bigg )^i(\psi '_\omega )^T\bigg [\begin{array}{ll} {U}_i &0 \\ 0& \frac{i+2}{i}{U}_i \end{array}\bigg ]\psi '_\omega +\bigg (\frac{\bar{\tau }}{\tau (t)}\bigg )^i(\psi ''_\omega )^T\bigg [\begin{array}{ll} \mathcal {U}_i(t) &0 \\ 0& \frac{i+2}{i}\mathcal {U}_i(t) \end{array}\bigg ]\psi ''_\omega \nonumber \\&+\bigg (\frac{\bar{\tau }}{\tau (t)}\bigg )^i(\hbar '_\xi )^T\bigg [\begin{array}{ll} {M}_i &0 \\ 0& \frac{i+2}{i}{M}_i \end{array}\bigg ]\hbar '_\xi +\bigg (\frac{\bar{\tau }}{\bar{\tau }-\tau (t)}\bigg )^i(\hbar ''_\xi )^T\bigg [\begin{array}{ll} \mathcal {M}_i(t) &0 \\ 0& \frac{i+2}{i}\mathcal {M}_i(t) \end{array}\bigg ]\hbar ''_\xi \nonumber \\ \ge&\big [\begin{array}{ll} \psi '_\omega&\psi ''_\omega \end{array}\big ]^T\mathcal {U}_i(t)\mathrm{col}\big \{\psi '_\omega ,\psi ''_\omega \big \}+\big [\begin{array}{ll} \hbar '_\xi&\hbar ''_\xi \end{array}\big ]^T\mathcal {M}_i(t)\mathrm{col}\big \{\hbar '_\xi ,\hbar ''_\xi \big \}, \end{aligned}$$
(36)

where \(\psi '_\omega =\mathrm{col}\big \{\psi _{i-1}(t-\bar{\tau },t-\tau (t),{e}_t),\ \omega _{i-1}(t-\bar{\tau },t-\tau (t),{e}_t)\big \},\ \psi ''_\omega =\mathrm{col}\big \{\psi _{i-1}(t-\tau (t),t,{e}_t),\ \omega _{i-1}(t-\tau (t),t,{e}_t)\big \},\) \(\hbar '_\xi =\mathrm{col}\big \{\hbar _{i-1}(t-\tau (t),t,{e}_t),\ \xi _{i-1}(t-\tau (t),t,{e}_t)\big \},\ \hbar ''_\xi =\mathrm{col}\big \{\hbar _{i-1}(t-\bar{\tau },t-\tau (t),{e}_t),\ \xi _{i-1}(t-\bar{\tau },t-\tau (t),{e}_t)\big \}.\)

Based on (3), the following equalities hold for any positive diagonal matrix P:

$$\begin{aligned} 0=\,&2\dot{e}(t)^T{P}[-\dot{e}(t)+\dot{e}(t)]\nonumber \\ =\,&2\dot{e}(t)^T{P}[-\dot{e}(t)-(C-G_1)e(t)+{G_{2}}e(t-{\tau }(t))]\nonumber \\&+2\sum ^n_{i,j=1}\dot{e}_i(t)p_i\big [{a}_{ij}(y_j(t))f_j(y_j(t))-a_{ij}(x_j(t))f_j(x_j(t))\big ]\nonumber \\&+2\sum ^n_{i,j=1}\dot{e}_i(t)p_i\big [{b}_{ij}(y_j(t))f_j(y_j(t-\tau (t)))-{b}_{ij}(x_j(t))f_j(x_j(t-\tau (t)))\big ], \end{aligned}$$
(37)

where \(C=\mathrm{diag}\{c_1,c_2,...,c_n\},P=\mathrm{diag}\{p_1,p_2,...,p_n\}.\)

According to Lemma 4 and the Cauchy inequality \(2\alpha ^T\beta \le \alpha ^TQ\alpha +\beta ^TQ^{-1}\beta ,\) the following inequalities hold for any positive scalars \(\varepsilon _1,\varepsilon _2\):

$$\begin{aligned}&2\sum ^n_{i,j=1}\dot{e}_i(t)p_i\big [{a}_{ij}(y_j(t))f_j(y_j(t))-a_{ij}(x_j(t))f_j(x_j(t))\big ]\nonumber \\ \le&\sum ^n_{i,j=1}\Big \{\varepsilon _1^{-1}\dot{e}_i^2(t)p_i^2+\varepsilon _1\big [{a}_{ij}(y_j(t))f_j(y_j(t)) -a_{ij}(x_j(t))f_j(x_j(t))\big ]^2\Big \}\nonumber \\ \le&\sum ^n_{i,j=1}\Big \{\varepsilon _1^{-1}\dot{e}_i^2(t)p_i^2 +\varepsilon _1\hat{a}_{ij}^2\sigma ^2_j\big [y_j(t)-x_j(t)\big ]^2\Big \}\nonumber \\ =\,&n\varepsilon _1^{-1}\dot{e}(t)^T{P}^2\dot{e}(t)+\varepsilon _1e(t)^T\Sigma \hat{A}\Sigma e(t), \nonumber \\&\times 2\sum ^n_{i,j=1}\dot{e}_i(t)p_i\big [{b}_{ij}(y_j(t))f_j(y_j(t-\tau (t)))-{b}_{ij}(x_j(t))f_j(x_j(t-\tau (t)))\big ]\nonumber \\ \le&\sum ^n_{i,j=1}\Big \{\varepsilon _2^{-1}\dot{e}_i^2(t)p_i^2 +\varepsilon _2\big [{b}_{ij}(y_j(t))f_j(y_j(t-\tau (t)))-{b}_{ij}(x_j(t))f_j(x_j(t-\tau (t)))\big ]^2\Big \} \end{aligned}$$
(38)
$$\begin{aligned} \le&\sum ^n_{i,j=1}\Big \{\varepsilon _2^{-1}\dot{e}_i^2(t)p_i^2 +\varepsilon _2\hat{b}_{ij}^2\sigma ^2_j\big [y_j(t-\tau (t))-x_j(t-\tau (t))\big ]^2\Big \}\nonumber \\ =\,&n\varepsilon _2^{-1}\dot{e}(t)^T{P}^2\dot{e}(t)+\varepsilon _2e(t-\tau (t))^T\Sigma \hat{B}\Sigma e(t-\tau (t)), \end{aligned}$$
(39)

where \(\hat{A}=\mathrm{diag}\big \{\sum ^n_{i=1}\hat{a}_{i1}^2,\ \sum ^n_{i=1}\hat{a}_{i2}^2,\ \ldots ,\ \sum ^n_{i=1}\hat{a}_{in}^2\big \},\ \hat{B}=\mathrm{diag}\big \{\sum ^n_{i=1}\hat{b}_{i1}^2,\ \sum ^n_{i=1}\hat{b}_{i2}^2,\ \ldots ,\ \sum ^n_{i=1}\hat{b}_{in}^2\big \}.\)

Inspired by the work of [16], the interval satisfied by the activation function is divided into the following two subintervals:

Case I:

$$\begin{aligned}&-\sigma _j\le \frac{g_j(\varsigma )-g_j(\zeta )}{\varsigma -\zeta }\le 0,\quad \forall \ \varsigma ,\zeta \in \mathbb {R},\ \varsigma \ne \zeta ,\ j\in \mathbb {N};\end{aligned}$$
(40)
$$\begin{aligned}&-\sigma _j\le \frac{g_j(\varsigma )}{\varsigma }\le 0,\quad \forall \ \varsigma \in \mathbb {R},\ \varsigma \ne 0,\ j\in \mathbb {N}. \end{aligned}$$
(41)

It should be noted that the conditions (40) and (41) are equivalent to the following inequalities respectively:

$$\begin{aligned}&\left[ g_j(\varsigma )-g_j(\zeta )+\sigma _j(\varsigma -\zeta )\right] \cdot \left[ g_j(\varsigma )-g_j(\zeta )\right] \le 0,\quad \forall \ \varsigma ,\zeta \in \mathbb {R},\ \varsigma \ne \zeta ,\ j\in \mathbb {N};\end{aligned}$$
(42)
$$\begin{aligned}&\left[ g_j(\varsigma )+\sigma _j\varsigma \right] g_j(\varsigma )\le 0,\quad \forall \ \varsigma \in \mathbb {R},\ \varsigma \ne 0,\ j\in \mathbb {N}. \end{aligned}$$
(43)

Based on inequalities (42) and (43), the following matrix inequalities hold for any positive diagonal matrices \(W_i(i=1,\ldots ,6)\) with compatible dimensions:

$$\begin{aligned} 0\le&-[g(e_t)+\Sigma e_t]^TW_1g(e_t),\end{aligned}$$
(44)
$$\begin{aligned} 0\le&-[g(e_{\tau })+\Sigma e_{\tau }]^TW_2g(e_{\tau }),\end{aligned}$$
(45)
$$\begin{aligned} 0\le&-[g(e_{\bar{\tau }})+\Sigma e_{\bar{\tau }}]^TW_3g(e_{\bar{\tau }}),\end{aligned}$$
(46)
$$\begin{aligned} 0\le&-\big \{g(e_t)-g(e_{\tau })+\Sigma (e_t-e_{\tau })\big \}^TW_4[g(e_t)-g(e_{\tau })],\end{aligned}$$
(47)
$$\begin{aligned} 0\le&-\big \{g(e_{\tau })-g(e_{\bar{\tau }})+\Sigma (e_{\tau }-e_{\bar{\tau }})\big \}^TW_5[g(e_{\tau })-g(e_{\bar{\tau }})],\end{aligned}$$
(48)
$$\begin{aligned} 0\le&-\big \{g(e_t)-g(e_{\bar{\tau }})+\Sigma (e_t-e_{\bar{\tau }})\big \}^TW_6[g(e_t)-g(e_{\bar{\tau }})]. \end{aligned}$$
(49)

Substituting (26)–(36) and (44)–(49) into (25) yields that

$$\begin{aligned} \dot{V}(e_t,t)\le \eth (t)^T\big \{\Xi +\overline{\Xi }+\widetilde{\Xi }+\Xi _1+n\big (\varepsilon _1^{-1} +\varepsilon _2^{-1}\big )\eta _7^T{P}^2\eta _7\big \}\eth (t).\end{aligned}$$
(50)

It is easy to see that inequality (50) holds for \({\tau }(t)=0\) or \({\tau }(t)=\bar{\tau }\) from the Jensen integral inequality [11]. Therefore, inequality (50) holds for any \(t>0\) with \(0\le {\tau }(t)\le \bar{\tau }\).

According to the Schur Complement, \(\Xi +\overline{\Xi }+\widetilde{\Xi }+\Xi _1+n\big (\varepsilon _1^{-1}+\varepsilon _2^{-1}\big )\eta _7^T{P}^2\eta _7<0\) is equivalent to inequality (17) with \(p=1.\) Therefore when condition (17) is satisfied for \(p=1\), from (50) we get that \(\dot{V}(e_t,t)<0.\) That is, error system (3) is asymptotically stable.

Case II:

$$\begin{aligned}&0\le \frac{g_j(\varsigma )-g_j(\zeta )}{\varsigma -\zeta }\le \sigma _j,\quad \forall \ \varsigma ,\zeta \in \mathbb {R},\ \varsigma \ne \zeta ,\ j\in \mathbb {N};\end{aligned}$$
(51)
$$\begin{aligned}&0\le \frac{g_j(\varsigma )}{\varsigma }\le \sigma _j ,\quad \forall \ \varsigma \in \mathbb {R},\ \varsigma \ne 0,\ j\in \mathbb {N}. \end{aligned}$$
(52)

It is obvious that the conditions (51) and (52) are equivalent to the following inequalities respectively:

$$\begin{aligned}&\left[ g_j(\varsigma )-g_j(\zeta )\right] \cdot \left[ g_j(\varsigma )-g_j(\zeta )-\sigma _j(\varsigma -\zeta )\right] \le 0,&\forall \ \varsigma ,\zeta \in \mathbb {R},\ \varsigma \ne \zeta ,\ j\in \mathbb {N};\end{aligned}$$
(53)
$$\begin{aligned}&g_j(\varsigma )\left[ g_j(\varsigma )-\sigma _j\varsigma \right] \le 0,&\forall \ \varsigma \in \mathbb {R},\ \varsigma \ne 0,\ j\in \mathbb {N}. \end{aligned}$$
(54)

From (53) and (54), the following matrix inequalities hold for any positive diagonal matrices \(L_i(i=1,\ldots ,6)\) with compatible dimensions:

$$\begin{aligned} 0\le&-g(e_t)^TL_1[g(e_t)-\Sigma e_t],\end{aligned}$$
(55)
$$\begin{aligned} 0\le&-g(e_{\tau })^TL_2[g(e_{\tau })-\Sigma e_{\tau }],\end{aligned}$$
(56)
$$\begin{aligned} 0\le&-g(e_{\bar{\tau }})^TL_3[g(e_{\bar{\tau }})-\Sigma e_{\bar{\tau }}],\end{aligned}$$
(57)
$$\begin{aligned} 0\le&-[g(e_t)-g(e_{\tau })]^TL_4\big \{g(e_t)-g(e_{\tau })-\Sigma (e_t-e_{\tau })\big \},\end{aligned}$$
(58)
$$\begin{aligned} 0\le&-[g(e_{\tau })-g(e_{\bar{\tau }})]^TL_5\big \{g(e_{\tau })-g(e_{\bar{\tau }})-\Sigma (e_{\tau }-e_{\bar{\tau }})\big \},\end{aligned}$$
(59)
$$\begin{aligned} 0\le&-[g(e_t)-g(e_{\bar{\tau }})]^TL_6\big \{g(e_t)-g(e_{\bar{\tau }})-\Sigma (e_t-e_{\bar{\tau }})\big \}. \end{aligned}$$
(60)

Substituting (26)–(36) and (55)–(60) into (25) yields that

$$\begin{aligned} \dot{V}(e_t,t)&\le \eth (t)^T\big \{\Xi +\overline{\Xi }+\widetilde{\Xi }+\Xi _2+n\big (\varepsilon _1^{-1} \nonumber \\&\quad +\varepsilon _2^{-1}\big )\eta _7^T{P}^2\eta _7\big \}\eth (t). \end{aligned}$$
(61)

It is easy to see that inequality (61) holds for \({\tau }(t)=0\) or \({\tau }(t)=\bar{\tau }\) from the Jensen integral inequality [11]. Therefore, inequality (61) holds for any \(t>0\) with \(0\le {\tau }(t)\le \bar{\tau }\).

Again according to the Schur Complement, \(\Xi +\overline{\Xi }+\widetilde{\Xi }+\Xi _2+n\big (\varepsilon _1^{-1}+\varepsilon _2^{-1}\big )\eta _7^T{P}^2\eta _7<0\) is equivalent to inequality (17) with \(p=2.\) Therefore when condition (17) is satisfied for \(p=2,\) we conclude that the drive system (1) and response system (2) are synchronous. This completes the proof of Theorem 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, CD., Zhang, Y. & Wang, Z. Synchronization for memristive chaotic neural networks using Wirtinger-based multiple integral inequality. Int. J. Mach. Learn. & Cyber. 9, 1069–1083 (2018). https://doi.org/10.1007/s13042-016-0626-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-016-0626-8

Keywords

Navigation