Skip to main content
Log in

Adaptive control of nonlinear fractional-order systems using T–S fuzzy method

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Owing to the superior capability of fractional differential equations in modeling and characterizing accurate dynamical properties of many high technology real world systems, the design and control of fractional-order systems have captured lots of attention in recent decades. In this paper, an adaptive intelligent fuzzy approach to controlling and stabilization of nonlinear non-autonomous fractional-order systems is proposed. Since dynamic equations of applied fractional-order systems usually contain various parameters and nonlinear terms, the Takagi–Sugeno (T–S) fuzzy models with if-then rules are adopted to describe the system dynamics. Also, as the nonlinear system parameters are assumed to be unknown, adaptive laws are derived to estimate such fluctuations. Simple adaptive linear-like control rules are developed based on the T–S fuzzy control theory. The stability of the resulting closed loop system is guaranteed by Lyapunov’s stability theory. Two illustrative numerical examples are presented to emphasize the correct performance and applicability of the proposed adaptive fuzzy control methodology. It is worth to notice that the proposed controller works well for stabilization of a wide class of either autonomous nonlinear uncertain fractional-order systems or non-autonomous complex systems with unknown parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li C, Deng W (2007) Remarks on fractional derivatives. Appl Math Comput 187(2):777–784

    MathSciNet  MATH  Google Scholar 

  2. Maione G (2013) On the Laguerre rational approximation to fractional discrete derivative and integral operators. IEEE Trans Autom Control 58(6):1579–1585

    MathSciNet  MATH  Google Scholar 

  3. Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol 198. Academic Press

  4. Rahimkhani P, Ordokhani Y, Babolian E (2017) Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet. J Comput Appl Math 309:493–510

    MathSciNet  MATH  Google Scholar 

  5. Cohen I et al (2001) Biofluiddynamics of lubricating bacteria. Math Methods Appl Sci 24(17–18):1429–1468

    MathSciNet  MATH  Google Scholar 

  6. Aghababa MP, Borjkhani M (2014) Chaotic fractional-order model for muscular blood vessel and its control via fractional control scheme. Complexity 20(2):37–46

    MathSciNet  Google Scholar 

  7. Abdeljawad T (2015) On conformable fractional calculus. J Comput Appl Math 279:57–66

    MathSciNet  MATH  Google Scholar 

  8. Khalil R et al (2014) A new definition of fractional derivative. J Comput Appl Math 264:65–70

    MathSciNet  MATH  Google Scholar 

  9. Aghababa MP (2012) Chaos in a fractional-order micro-electro-mechanical resonator and its suppression. Chin Phys B 21(10):100505

    Google Scholar 

  10. Ahmad WM, El-Khazali R (2007) Fractional-order dynamical models of love. Chaos Solitons Fractals 33(4):1367–1375

    MathSciNet  MATH  Google Scholar 

  11. Song L, Xu S, Yang J (2010) Dynamical models of happiness with fractional order. Commun Nonlinear Sci Numer Simul 15(3):616–628

    MathSciNet  MATH  Google Scholar 

  12. Bouzeriba A, Boulkroune A, Bouden T (2016) Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems. Int J Mach Learn Cybern 7(5):893–908

    MATH  Google Scholar 

  13. Lei D, Fei J (2017) Adaptive neural nonsingular terminal sliding mode control for MEMS gyroscope based on dynamic surface controller. Int J Mach Learn Cybern. doi:10.1007/s13042-017-0643-2

  14. Lin D et al (2014) Fuzzy neural control of uncertain chaotic systems with backlash nonlinearity. Int J Mach Learn Cybern 5(5):721–728

    Google Scholar 

  15. Wang B et al (2016) Robust finite-time control of fractional-order nonlinear systems via frequency distributed model. Nonlinear Dyn 85(4):2133–2142

    MathSciNet  MATH  Google Scholar 

  16. Wu J, Fu Q, Li Z (2017) H∞ control via state observer feedback for the T–S fuzzy singular system. Int J Mach Learn Cybern 8(2):619–626

    Google Scholar 

  17. Zhang X et al (2016) Robust stability analysis of uncertain genetic regulatory networks with mixed time delays. Int J Mach Learn Cybern 7(6):1005–1022

    Google Scholar 

  18. Hao Z, Cao W, Lin G (2017) A second-order difference scheme for the time fractional substantial diffusion equation. J Comput Appl Math 313:54–69

    MathSciNet  MATH  Google Scholar 

  19. Aghababa MP (2014) Chaotic behavior in fractional-order horizontal platform systems and its suppression using a fractional finite-time control strategy. J Mech Sci Technol 28(5):1875–1880

    Google Scholar 

  20. Liu L et al (2014) Hyperchaos synchronization of fractional-order arbitrary dimensional dynamical systems via modified sliding mode control. Nonlinear Dyn 76(4):2059–2071

    MathSciNet  MATH  Google Scholar 

  21. Wang G-S et al (2014) Adaptive pinning cluster synchronization of fractional-order complex dynamical networks. Appl Math Comput 231:347–356

    MathSciNet  MATH  Google Scholar 

  22. Roohi M, Aghababa MP, Haghighi AR (2015) Switching adaptive controllers to control fractional-order complex systems with unknown structure and input nonlinearities. Complexity 21(2):211–223

    MathSciNet  Google Scholar 

  23. Yang P et al (2014) The adaptive global robust sliding mode control for uncertain systems with time-varying delay. Control Decis 29(9):1688–1692

    Google Scholar 

  24. Lin T-C, Lee T-Y, Balas VE (2011) Adaptive fuzzy sliding mode control for synchronization of uncertain fractional order chaotic systems. Chaos Solitons Fractals 44(10):791–801

    MATH  Google Scholar 

  25. Schuster A, Yamaguchi Y (2011) From foundational issues in artificial intelligence to intelligent memristive nano-devices. Int J Mach Learn Cybern 2(2):75–87

    Google Scholar 

  26. Rhouma A et al (2014) Model predictive control of fractional order systems. J Comput Nonlinear Dyn 9(3):031011

    Google Scholar 

  27. Aghababa MP (2013) Design of a chatter-free terminal sliding mode controller for nonlinear fractional-order dynamical systems. Int J Control 86(10):1744–1756

    MathSciNet  MATH  Google Scholar 

  28. Aghababa MP (2013) A novel terminal sliding mode controller for a class of non-autonomous fractional-order systems. Nonlinear Dyn 73(1–2):679–688

    MathSciNet  MATH  Google Scholar 

  29. Zhu Q (2017) Razumikhin-type theorem for stochastic functional differential equations with Lévy noise and Markov switching. Int J Control 90(8):1703–1712

    MATH  Google Scholar 

  30. He W, Chen Y, Yin Z (2016) Adaptive neural network control of an uncertain robot with full-state constraints. IEEE Trans Cybern 46(3):620–629

    Google Scholar 

  31. He W, Dong Y, Sun C (2016) Adaptive neural impedance control of a robotic manipulator with input saturation. IEEE Trans Syst Man Cybern Syst 46(3):334–344

    Google Scholar 

  32. He W, Dong Y (2017) Adaptive fuzzy neural network control for a constrained robot using impedance learning. IEEE Trans Neural Netw Learn Syst. doi:10.1109/TNNLS.2017.2665581

  33. Yang C et al (2017) Neural control of bimanual robots with guaranteed global stability and motion precision. IEEE Trans Ind Inform 13:1162–1171

  34. Djennoune S, Bettayeb M (2013) Optimal synergetic control for fractional-order systems. Automatica 49(7):2243–2249

    MathSciNet  MATH  Google Scholar 

  35. Hegazi A, Ahmed E, Matouk A (2013) On chaos control and synchronization of the commensurate fractional order Liu system. Commun Nonlinear Sci Numer Simul 18(5):1193–1202

    MathSciNet  MATH  Google Scholar 

  36. Zhu Q, Cao J, Rakkiyappan R (2015) Exponential input-to-state stability of stochastic Cohen–Grossberg neural networks with mixed delays. Nonlinear Dyn 79(2):1085–1098

    MathSciNet  MATH  Google Scholar 

  37. Zheng Y (2015) Fuzzy prediction-based feedback control of fractional order chaotic systems. Optik Int J Light Electron Opt 126(24):5645–5649

    Google Scholar 

  38. Wang B, Zhu Q (2017) Stability analysis of Markov switched stochastic differential equations with both stable and unstable subsystems. Syst Control Lett 105:55–61

    MathSciNet  MATH  Google Scholar 

  39. Wang B et al (2016) Robust Takagi–Sugeno fuzzy control for fractional order hydro-turbine governing system. ISA Trans 65:72–80

    Google Scholar 

  40. Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 1:116–132

    MATH  Google Scholar 

  41. Bin W et al (2014) Analysis on a class of double-wing chaotic system and its control via linear matrix inequality. Acta Physica Sinica 63(21):210502

  42. Yousef H (2015) Design of adaptive fuzzy-based tracking control of input time delay nonlinear systems. Nonlinear Dyn 79(1):417–426

    MathSciNet  Google Scholar 

  43. Chen D et al (2012) Synchronization between integer-order chaotic systems and a class of fractional-order chaotic system based on fuzzy sliding mode control. Nonlinear Dyn 70(2):1549–1561

    MathSciNet  MATH  Google Scholar 

  44. Wang G, Liu S, Zhang L (2014) Neutral fractional integro-differential equation with nonlinear term depending on lower order derivative. J Comput Appl Math 260:167–172

    MathSciNet  MATH  Google Scholar 

  45. Nazari D, Shahmorad S (2010) Application of the fractional differential transform method to fractional-order integro-differential equations with nonlocal boundary conditions. J Comput Appl Math 234(3):883–891

    MathSciNet  MATH  Google Scholar 

  46. Balasubramaniam P, Muralisankar S (2004) Existence and uniqueness of fuzzy solution for semilinear fuzzy integrodifferential equations with nonlocal conditions. Comput Math Appl 47(6):1115–1122

    MathSciNet  MATH  Google Scholar 

  47. Chen D et al (2013) Application of Takagi–Sugeno fuzzy model to a class of chaotic synchronization and anti-synchronization. Nonlinear Dyn 73(3):1495–1505

    MathSciNet  MATH  Google Scholar 

  48. Wang H, Zhu Q (2015) Finite-time stabilization of high-order stochastic nonlinear systems in strict-feedback form. Automatica 54:284–291

    MathSciNet  MATH  Google Scholar 

  49. Song X et al (2016) Output feedback control for fractional-order Takagi–Sugeno fuzzy systems with unmeasurable premise variables. Trans Inst Meas Control 38(10):1201–1211

    Google Scholar 

  50. Wang B et al (2016) Stabilization conditions for fuzzy control of uncertain fractional order non-linear systems with random disturbances. IET Control Theory Appl 10(6):637–647

    MathSciNet  Google Scholar 

  51. Lin C, Chen B, Wang Q-G (2016) Static output feedback stabilization for fractional-order systems in TS fuzzy models. Neurocomputing 218:354–358

    Google Scholar 

  52. Zhu Q (2014) pth moment exponential stability of impulsive stochastic functional differential equations with Markovian switching. J Franklin Inst 351(7):3965–3986

    MathSciNet  MATH  Google Scholar 

  53. Wang B, Xue J, Chen D (2016) Takagi–Sugeno fuzzy control for a wide class of fractional-order chaotic systems with uncertain parameters via linear matrix inequality. J Vib Control 22(10):2356–2369

    MathSciNet  MATH  Google Scholar 

  54. Wang H, Zhu Q (2016) Global stabilization of stochastic nonlinear systems via C1 and C ∞ controllers. IEEE Trans Autom Control. doi:10.1109/TAC.2016.2644379

  55. He W, Ouyang Y, Hong J (2017) Vibration control of a flexible robotic manipulator in the presence of input deadzone. IEEE Trans Ind Inf 13(1):48–59

    Google Scholar 

  56. Huang X et al (2014) Design of fuzzy state feedback controller for robust stabilization of uncertain fractional-order chaotic systems. J Franklin Inst 351(12):5480–5493

    MathSciNet  MATH  Google Scholar 

  57. Aguila-Camacho N, Duarte-Mermoud MA, Gallegos JA (2014) Lyapunov functions for fractional order systems. Commun Nonlinear Sci Numer Simul 19(9):2951–2957

    MathSciNet  MATH  Google Scholar 

  58. Duarte-Mermoud MA et al (2015) Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Commun Nonlinear Sci Numer Simul 22(1):650–659

    MathSciNet  MATH  Google Scholar 

  59. Petras I (2011) Fractional-order nonlinear systems: modeling, analysis and simulation. Springer

Download references

Acknowledgements

The authors are most grateful to Mr. Majid Roohi for his kind help in Matlab programming of the numerical simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Pourmahmood Aghababa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzajani, S., Aghababa, M.P. & Heydari, A. Adaptive control of nonlinear fractional-order systems using T–S fuzzy method. Int. J. Mach. Learn. & Cyber. 10, 527–540 (2019). https://doi.org/10.1007/s13042-017-0733-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-017-0733-1

Keywords

Navigation